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ABSTRACT

Multimodal Large Language Models (MLLMs) still struggle with hallucinations
despite their impressive capabilities. Recent studies have attempted to mitigate
this by applying Direct Preference Optimization (DPO) to multimodal scenarios
using preference pairs from text-based responses. However, our analysis of repre-
sentation distributions reveals that multimodal DPO struggles to align image and
text representations and to distinguish between hallucinated and non-hallucinated
descriptions. To address these challenges, In this work, we propose a Cross-modal
Hierarchical Direct Preference Optimization (CHiP) to address these limitations.
We introduce a visual preference optimization module within the DPO frame-
work, enabling MLLM:s to learn from both textual and visual preferences simulta-
neously. Furthermore, we propose a hierarchical textual preference optimization
module that allows the model to capture preferences at multiple granular levels,
including response, segment, and token levels. We evaluate CHiP through both
quantitative and qualitative analyses, with results across multiple benchmarks
demonstrating its effectiveness in reducing hallucinations. On the Object Hal-
Bench dataset, CHiP outperforms DPO in hallucination reduction, achieving im-
provements of 52.7% and 55.5% relative points based on the base model Muffin
and LLaVA models, respectively. We make all our datasets and code publicly
available. [1]

1 INTRODUCTION

The emergence of large language models (LLMs) has demonstrated unprecedented intelligence
(Chiang et al., 2023 [Touvron et al., 2023} /Al@Metal, 2024), bringing us closer to achieving human-
level Al Concurrently, building on the foundation of text-based LLMs, research in Multimodal
Large Language Models (MLLMs) has also rapidly surged, leading to the development of power-
ful multimodal models such as GPT-4V (OpenAl, |2023)), BLIP2 (Li et al.,|2023a)), and LLaVA (Liu
et al.;|2024c)). The current MLLM:s typically integrate the visual encoder into the text-oriented back-
bone LLMs through a connector to achieve the understanding of visual signals (Liu et al., |[2024c;
Yao et al.| 2024). Although MLLMs have achieved impressive results, hallucination remains a sig-
nificant challenge, where the model’s output is not based on the visual input (Bai et al., [2024; Jiang
et al., [2024).

With the help of Direct Preference Optimization (DPO) (Rafailov et all [2024) (Fig. 2}(a)), text-
oriented LLMs have achieved satisfactory alignment with human preferences, which can help pre-
vent hallucinations and enhance their ability to meet human needs. However, the alignment tech-
niques for Multimodal LLMs (MLLMs) remain underexplored. A natural approach is to extend DPO
from the text modality to multimodal contexts through multimodal DPO (Pi et al.|[2024; Sarkar et al.,
20244) (Fig. 2}(b)). However, simply replacing text preference data with multimodal preference data
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Figure 1: Comparison of representation distributions and performance across models. Representa-
tions are constructed by selecting 150 samples (images, non-hallucinated descriptions, and hallu-
cinated descriptions). The image or text semantics are represented using the last token embedding
from the LLM. (d) is the hallucination rate (lower the better) comparison of different models on
hallucination benchmarks, namely ObjHal, MMHal, and AMBER. Findings: (1) DPO struggles to
align image and description representations and to effectively distinguish between hallucinated and
non-hallucinated descriptions. (2) The proposed CHiP method, which incorporates both image and
fine-grained text preferences, achieves better alignment between images and ground-truth descrip-
tions while increasing the distance between ground-truth and hallucinated descriptions. (3) CHiP
outperforms DPO and original LLaVA in terms of hallucination rate.
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Figure 2: Comparison of preference optimization in different scenarios: (a) DPO, (b) Multimodal
DPO, and (c) Cross-modal Hierarchical Direct Preference Optimization (CHiP). x represents the
instruction. ¥, denotes the response preferred by the human over y;. m,, represents the image
that is more likely to generate the preferred response y,, than m;. (A) and () represent
the segments (tokens) involved in the hierarchy reward calculation in the preferred and unpreferred
responses.

is insufficient to handle complex multimodal scenarios. In this work, we identify the limitations of
multimodal DPO by visualizing the representation distributions of both images and texts and pro-
pose solutions to overcome these challenges. Ideally, for well-aligned MLLMs, the representations
of an image and its ground-truth description should be as close as possible, while the representations
of ground-truth and hallucinated descriptions should be more distant. shows a visualization
of the last token representations of image and text in the LLM (specifically LLaMA (Touvron et al.,
2023))) for LLaVA-1.6 (Liu et al} |2024b)), using 150 samples (image, ground-truth description, and
hallucinated description). [Fig. T}(a, b, d) highlights the limitations of multimodal DPO, showing its
difficulty in aligning image and description representations and distinguishing between hallucinated
and non-hallucinated descriptions, hindering performance improvement in hallucination evaluations.

To address these limitations, we propose Cross-modal Hierarchical Direct Preference Optimiza-
tion (CHiP) (Fig. 2}(c)), which enhances the alignment from multiple textual granularities (e.g., re-
sponse, segment, token levels) and visual preferences. Specifically, we introduce Visual Preference
Optimization by constructing visual preference pairs, allowing the model to learn preferences from
both text and visual modalities, aligning text and image representations more closely. Moreover, we
introduce a Hierarchical Textual Preference Optimization to allow MLLMs to acquire preference in-
formation at multiple granular levels, namely, response, segment, and token, enhancing their ability
to differentiate between hallucinated and non-hallucinated text. To validate the efficacy of CHiP, we
evaluate it on four popular hallucination benchmarks under LLaVA-1.6 and Muffin frameworks. The
results show that CHiP outperforms GPT-4V significantly on the evaluated benchmarks. Moreover,
on the Object HalBench dataset, based on Muffin and LLaVA-1.6 models, CHiP outperforms DPO
in hallucination reduction, with performance improvements of 52.7% and 55.5% relative points,
respectively.
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To sum up, our contributions are threefold:

* We analyze the limitations of multimodal DPO through image and text representation distribu-
tions, emphasizing its failure to achieve cross-modal semantic alignment and distinguish between
hallucinated and non-hallucinated descriptions.

* We propose CHiP to address these limitations. CHiP includes a hierarchical textual preference
optimization module to capture fine-grained (i.e., response, segment, and token) preferences and
a visual preference optimization module to extract cross-modal preferences.

* We equipped CHiP with various MLLMs, and the results of multiple datasets demonstrate that
CHiP reduces hallucinations and enhances cross-modal semantic alignment.

2 RELATED WORK

Multimodal Large Language Models (MLLMs) (Liu et al.} 2024c; Bai et al., 2023} Dai et al., 2023;
He et al.| 2024) play a crucial role in multimodal understanding and reasoning tasks by processing
both images and text. Their development has been fueled by progress in open-source LLMs (Tou-
vron et al.} 2023} |Al@Metal 2024} |Chiang et al., |2023)) and cutting-edge image encoders (Radford
et al.,|2021b; Wang et al.,[2023c; |Li et al.| [2022).

However, misalignment between images and text causes MLLMs to face issues like hallucinations
and errors. Mitigating hallucinations is a crucial research of MLLMs. Hallucination mitigation
strategies generally fall into two categories: training-free and training-based methods. Training-
free approaches (Huang et al., 2024} |Yin et al., |2023) handle potential hallucinations by post-
processing MLLMSs’ outputs. On the other hand, training-based approaches aim to reduce hallu-
cinations through instruction fine-tuning (Liu et al.,[2023b} [Zhang et al.| 2024])) or preference learn-
ing (Gunjal et al.l2024; [Li et al., 2023bj [Sun et al., [2023}; |Yu et al., 2024a; Deng et al., 2024; Wang
et al., 2024). For example, REVERIE (Zhang et al., [2024) is a reflective instruction tuning method
that incorporates rationale learning into visual instruction tuning. As for the preference learning,
for example, |Gunjal et al.| (2024) proposed Fine-grained DPO (FDPO) and trained a fine-grained
multimodal reward model based on InstructBLIP (Dai et al., 2023)).

Different from previous research, we address the visual-language preference misalignment in
MLLMs by introducing a novel cross-modal hierarchical DPO (i.e., CHiP), which simultaneously
optimizes preferences in both the text and image modalities from a fine-grained perspective. Our
approach demonstrates better alignment between the two modalities from the visualization of repre-
sentation and reduced hallucination generation.

3 PRELIMINARIES

Direct Preference Optimization (DPO) (Rafailov et al.||2024) is primarily a preference optimization
method that focuses on aligning language models with human preferences without the need for
explicit reward modeling or reinforcement learning. Given a model to be optimized 7y, and the
reference policy 7, which is a supervised fine-tuning model, the RL optimization of RLHF can be
formulated as:

H;%X E.’E~D,y~‘n’9(y|.’l)) [T(.’L’,y)] - BDKL [Wﬂ(y | LC) || Trl’ef(y | x)} . ey

By maximizing the KL-constrained reward objective to obtain the optimal solution and establishing a
mapping between the reward model and the optimal policy, the representation of the reward function
is derived as follows:
r(z,y) = Blog Lyklc) + Blog Z(z), )
Tret(Y|)
where x is the input instruction, y is the response, (3 is a constant, and Z(x) is the partition function.

Given the chosen response y,,, where the evaluator preferred it over the rejected response y;, DPO
is expected to learn to maximize the reward difference between chosen (y,,) and rejected responses
(y1). The preference optimization objective becomes:

Lppo = ~E(a,y, ) [l0g o (r(2, yw) — (2, 31))]
7T9(yw|x) 7T9(1/z|56) )] 3)

=—E.., logo(Blog ———= — Blo
(,yw,yz)[ go(B gﬂ—ref(ywm) P Trer(y1|2)
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where DPO learns preferences based on the ranking of the entire response, and the action score can
be formulated as:
logm(yla) = Y logp(yilz, y<i) , 4)
Yi €Y
where y; denotes the i-th token of the response y. During DPO training, the reference model
Tref(y|x) is usually kept fixed while the policy model 7y (y|x) is updated.

4 METHODOLOGY: CROSS-MODAL HIERARCHICAL DIRECT PREFERENCE
OPTIMIZATION

In this section, we will introduce the Cross-modal Hierarchical Direct Preference Optimization
(CHiP). CHiP consists of two modules: (1) Hierarchical Textual Preference Optimization, which
incorporates preference optimization at the response, segment, and token levels; and (2) Visual Pref-
erence Optimization, which addresses the overlooked visual information.

4.1 HIERARCHICAL TEXTUAL PREFERENCE OPTIMIZATION

Image-based responses are often long and complex, and response-level preference optimization re-
lies on rough rankings of response quality without clearly identifying which segments or tokens
contain hallucinations. This makes it challenging to assign credit to desirable behaviors, leading
to reward hacking (Laidlaw et al 2024) and the need for a large amount of labeled data. There-
fore, we introduce the Hierarchical Textual Preference Optimization module to assign rewards from
fine-grained.

For MLLMs, each sample includes an image (m) in addition to prompt x, chosen response ¥,,, and
rejected response ;. Multimodal DPO relies on both prompt = and image m to select the preferred
response from {y,,, y; }. Next, we will provide a detailed illustration of the three levels of preference
optimization for text: response-level, segment-level, and token-level.

Response-level Preference Optimization (Cppp,.). At the response level, DPO in the MLLMs’
scenario aims to maximize o (r(x, My, Yuw) — 7(x, My, y1)), and the objective function can be for-

mulated as:
Lopo, = — 10g0’(5 log Tolyulm z) _ fBlog Tolplm, z) ) ) 4)
ﬂ-fef(yw|m7 l‘) ﬂ—ref(yl‘mv 13)
log w(y|x) can be formulated as:
log m(ylz,m) =Y log p(yila, m, y<i), (6)
Yi€yY

where y; denotes the i-th token of the response y.

Segment-level Preference Optimization (Lppo,). Intuitively, the corrected segments, particu-
larly entity nouns, play a crucial role in eliminating hallucinations and should be assigned more
rewards. Following |Yu et al.|(2024a)), we assign higher rewards to the segments that differ between
the chosen response and the rejection response. Based on [Eq. ] the action score for the segment-
level can be denoted as:

y 1
log %yl m) = & ( 3 (il moye) +7 Y logpule.mye)) @)

Yi€yY Yi€Ye

where y. indicates the segments where changes have occurred. y; denotes the i-th token of the
response y. To prevent the model from being misled into giving higher scores to longer responses,
& is used as a normalization factor, where C' = |y| + 7 * |y.|. By substituting into[Eq. 5| we
can obtain the objective function of segment-level preference optimization Lppo .

Token-level Preference Optimization (Lp»;). For most previous methods, the optimization ob-
jective of DPO was constructed based on sentence-level KL divergence [Eq. T). However, the output
generated from images is an autoregressive sequence, so aligning MLLMs with human values at the
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token level is natural. Finer-grained alignment not only improves alignment performance but also
helps the model maintain diversity (Zeng et al., 2024). Unlike response-level optimization, which
computes a single reward and KL divergence for the entire response, token-level optimization eval-
uates each token individually, with the cumulative token values forming the score of response. The
sequential KL divergence can be defined as:

ACPOk =sg (BDSquL ($7 m, Yw; 7Tref||7ré)) - ﬁDSquL (J], m, Yy, 7Tref||779) ; (8)

where sg represents the stop-gradient operator, and

T
Dseqxr. (@, m, y; et | 0) = Y Dicr.(mret(yl2, y=") | mo (yla, y=")) - ©

t=1

Hierarchical Textual Preference Optimization (HDPQO). includes the response, segment, and
token-level preference optimization. It can be formulated as:

Lypro = Lppo, + Appos +7Lpok (10)

where A\ and y represent the weights of Lppe,. and Lpo,, respectively.

4.2 VISUAL PREFERENCE OPTIMIZATION

To mitigate MLLMs’ over-reliance on large language models, we next introduce our Visual Prefer-
ence Optimization Module. This module forces the model to make preference judgments based on
visual information by constructing pairs of images with preferences as variables. Given a pair of
images (m.,, m;), where m,, allows the prompt x to better match the chosen response y,, compared
to my, Visual Preference Optimization tries to maximize o (r(x, My, Yo ) — (2, My, Yu)), and the
objective function can be formulated as:

7o (Yo [0, ) 7o (Yo |11, 7) )
7Tref(yw ‘muu x) 7Tref(yw |ml, SU) ’

where the rejection image m; can be generated by rotating, cropping, or adding noise to the chosen
image m,,. The objective of CHiP is a combination of the hierarchical textual (Eq. 10) and visual

preference optimizations:
Lewyp = Lopoy + Lopo, + Appos +vLPpoy - (12)

Lovo, = —loga(Blog — Blog (1

Since the entire response and image encapsulate modality semantics, we assign a weight of 1
(fully consider) to response-level (Lppo,) and visual preference optimization (Lppe,). A and
v (< 1) (partially consider) adjust the contributions of segment- and token-level preference opti-
mizations. We refer to the model that only considers response-level and visual preference opti-
mization as Cross-modal Direct Preference Optimization (CMDPO), which can be formulated as:

Lempro = Lppoy + Lopoy -

Hierarchical textual preference optimization module tries to maximizes o (7 (x, m, ¥, ) —r(x, m, y;))
from different levels, while the visual preference optimization module tries to maximizes
o(r(z, My, Yw) — r(x, My, y)). The combination of the them allows MLLMs to choose prefer-
ences based on both fine-grained textual and visual modalities.

5 EXPERIMENT AND RESULTS
In this section, we empirically investigate the effectiveness of CHiP in reducing hallucination.

5.1 EXPERIMENTAL SETTINGS

Comparing Models. We consider applying CHiP to two different multimodal LLMs: LLaVA-
1.6 (Liu et al.l [2024b) and Muffin (Yu et al., [2023)). For LLaVA-1.6, we have chosen the model size
of 7B, using CLIP (Radford et al., 2021a) as the visual encoder and Vicuna-1.5-7B (Zheng et al.,
2023)) as the LLM backbone. For Muffin, we have chosen a model size of 13B, using BEiT3 (Wang
et al.,|2023b) as the visual module and 13B Vicuna v1.0 (Chiang et al.,|2023) as the LLM backbone,
and a version fine-tuned on the VQAv2 dataset (Goyal et al.,[2017)) (released by |Yu et al.| (2024a)).
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Training Data. There are several publicly available training datasets that include preference pairs
for multimodal hallucinations. Here, we choose to use the RLHF-V-Dataset (Yu et al.,[2024a:b) with
5k training samples as our training dataset.

Baselines. We primarily compare CHiP with standard DPO based on the same models. While
other multimodal LLMs cannot be directly compared due to differences in base models, preference
data, and alignment methods, we provide these results for reference. LLaVA (Liu et al. 2024c),
Muffin (Yu et al.,[2023)), LRV (Liu et al.,[2023a), LLaVA-RLHF (Sun et al.,|2023)), InstructBLIP (Da1
et al., [2023), Qwen-VL-Chat (Bai et al.| [2023), LLaVA 1.5 (Liu et al., 2023c), RLHF-V (Yu et al.,
20244), HALVA (13B) (Sarkar et al., [2024b).

Benchmarks and Evaluation Metrics.

* Object HalBench (ObjHal) (Rohrbach et al., [2018) is a widely used benchmark for evaluating
object hallucination. To improve evaluation stability, the benchmark includes 8 diverse prompts
and is tested on 300 instances. Metrics: Following [Yu et al.| (2024a); Wang et al.| (2024), we
report both the response-level hallucination rate (R.) and mention-level hallucination rate (M. ).

« MMHal-Bench (MMHal) (Sun et al., [2023) is a question-answering benchmark that covers 8
question categories and 12 object topics. Metrics: It uses GPT-4 to assess response quality
(Ova.) and hallucination rates (R.).

* HallusionBench (Guan et al., 2024)) evaluates visual illusions and knowledge hallucinations, fea-
turing 346 images and 1129 questions. It was the GPT4-assisted evaluation. Metrics: Question
Pair Accuracy (gA), Figure Accuracy (£2), and All Accuracy (a2).

* AMBER (Wang et all 2023a) was designed to be evaluated without LLM assistance. Fol-
lowing previous works (Wang et al., 2024), we only consider the generative tasks. Metrics:
(a) CHAIR (Rohrbach et al., |2018)) (CHAIR); (b) Object coverage of responses (Cover); (c)
Response-level hallucination (Ha1l); (d) Human cognition hallucination (Cog).

Implementation Details. We train the Muffin (13B) (Yu et al., 2023 and LLaVA-1.6 (7B) (Liu
et al.| [2024b)) with CHiP for 3 epochs, with learning rate of Se-7 and a batch size of 32. For the
training time, LLAVA-1.6 took about three hour to train with CHiP on 4 H100 GPUs, while Muffin
took approximately five hours. Hyperparameter: Since our training dataset is RLHF-V dataset | Yu
et al| (20244), we followed [Yu et al.| (2024a)) to set the hyperparameter 5 = 0.5 and followed
(Zeng et al., |2024) to set v = 0.1 for token-level preference optimization. As for the weight of
segment-level preference optimization, namely A\, we set to A = 1 and A = 3 for the Muffin and
LLava dataset set (Sec. 5.3). How to Identify Hallucinated Segments? Our training dataset, RLHF-V
contains both pre-correction (hallucinated) and post-correction (non-hallucinated) descriptions. We
enumerate all segments longer than two tokens in rejected responses and classify those absent in
accepted responses as hallucinations. How to construct the rejected images? The rejected images
are built based on the chosen image of the forward diffusion process at 7' = 500 steps (Sec. 6.2).

5.2 RESULTS AND OBSERVATIONS

presents the experimental results of applying CHiP to the LLaVA-1.6 and Muffin on four
popular hallucination benchmarks. The main findings are listed below: (1) CHiP significantly re-
duces hallucinations of base models Muffin and LLaVA-1.6. Compared to the base model Muffin
(LLaVA), CHiP reduced response- (R.) and mention-levels (M. ) hallucinations by 71.2% (65.3%)
and 66.4% (56.7%) relative point on the ObjHal dataset and human cognitive hallucinations (Cog)
by 57.1% (61.9%) and Hal by 45.2% (49.6%) relative point on the AMBER dataset. Furthermore,
the consistent improvements of CHiP in question pairs (g2&) and visual understanding types (£A)
on the HallucinationBench, as well as in overall object hallucinations (Overall) on the MMHal
dataset. (2) Based on Muffin and LLaVA, CHIP consistently outperforms DPO in reducing hallu-
cination on the four benchmarks. This indicates that CHiP, which includes the visual preference
optimization module and the hierarchical textual preference optimization module, can effectively
improve preference alignment performance. (3) LLaVA and Muffin with CHiP achieve fewer hallu-
cinations compared to GPT-4 on the ObjHal and AMBER datasets. Compared to GPT-4, LLaVA
(Muffin) with CHiP reduced hallucination rates at the response level and mention level by 64.0%
(54.4%) and 56.2% (46.6%) relative point respectively on the Object HalBench. On the AMBER
dataset, the hallucination rate for the Cog metric decreased by 42.3% (38.5%) relative point, with
continuous reductions observed across several other categories as well.
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Table 1: The results of hallucination evaluation on the Object HalBench (ObjHal), MMHal-Bench
(MMHal), HallusionBench, and AMBER datasets. Values in bold indicate the best performance
under the same setting. “1” indicates that a higher value is better for this metric, while “|” indicates
that a lower value is better. The baseline results are reported in (Yu et al., 2024a) for ObjHal and
MMHal, in (Guan et al., 2024)) for HallucinationBench, and in (Wang et al.,[2024) for AMBER.

ObjHal MMHal  HallusionBench AMBER
Model R.. M. Oval R.. gAT fAT aAT CHAIR| Coverf Hall Cogl
Referenced Results (Not Directly Comparable)
LLaVA-1.0 (Liu et al.}[2024c)  63.0 295 - 708 - - - - - - -
Muffin (Yu et al.[|2023) 50.5 245 - 688 - - - - - - -
LRV (Liu et al.;[2023a)) 323 223 - 78.1 88 13.0 42.8 - -

LLaVA-RLHF (Sun et al.,[2023) 38.1 189 25 570 - - - 7.7 52.1 39.0 44
InstructBLIP (Dai et al.,2023) 259 143 2.1 58.0 95 10.1 453 8.8 522 382 44
Qwen-VL-Chat (Bai et al.}|2023) 43.8 20.0 29 430 59 6.7 392 6.6 532 31.0 29
LLaVA-1.5 (Liuetal|[2023c) 463 226 24 52.1 10.6 249 469 78 51.0 364 42

RLHF-V (Yu et al.|[2024a) 122 75 25 51.0 - - - 6.3 46.1 25.1 2.1
HALVA (Sarkar et al.,|2024b) - - - - 13.9 20.1 49.1 - - - -
GPT-4V (OpenAlL 2023) 13.6 7.3 - 31.3 28.8 39.9 65.3 4.6 67.1 30.7 2.6
Muffin (13B) 215 11.6 24 6042 16.0 20.8 50.9 8.0 483 32.1 35
+DPO 13.1 6.6 25 521 17.4 234 525 6.2 469 265 25
+CHiP 62 39 26 49.0 19.1 249 54.0 4.4 453 17.6 1.5
LLaVA-1.6 (7B) 14.1 74 28 427 15.8 20.8 51.6 8.3 61.0 48.6 4.2
+DPO 11.0 6.6 2.7 438 222 28.3 56.6 5.9 61.0 389 3.0
+CHiP 49 32 29 39.6 23.5 26.0 58.5 3.7 57.8 245 1.6

5.3 ABLATION STUDY

Effect of Component Combination. To evaluate the contribution of each component in CHiP
and the effect of their combinations, we conducted a comprehensive ablation study on CHiP based
on LLaVA. The experimental results are shown in The main observations are as follows:
(1) Both hierarchical textual preference optimization (HDPO) and visual preference optimiza-
tion (CMDPO) are effect. On the ObjHal and MMHal datasets, both HDPO (CHiP-Lppe,,) and
CMDPO (Lppos-Lpe:) outperform DPO. This suggests that: (a) more granular preference signals
can reduce label ambiguity at the response level (DPO), helping the model learn more effectively;
(b) The introduction of visual preference optimization enhances the model’s alignment between the
image and text. (2) The combination of visual preference optimization and hierarchical preference
optimization strategies makes DPO the most powerful. On both evaluation datasets, CMDPO in-
troduced segment-level (Lppe,), token-level (Lpo;), or both segment- and token-levels (CHiP),
resulting in a consistent and significant reduction in hallucination rates across different evaluation
perspectives, such as response level and mention level. Specifically, when CMDPO incorporates
both segment-level and token-level optimization (CHiP), the response- and mention-level hallucina-
tion rate on ObjHal datasets decreased by 49.6% and 41.3%, respectively.

Human Evaluation. Due to incomplete text annota-

CHiP Loses{ 4| 12.5
tions on the MMHal, GPT-4 couldn’t reliably detect hal- chip wine FT 24 0
lucinations. To make the results more reliable, we invited ~  — |~ 1 63.5
experts to manually annotate the data to compare CHiP Tie !
with DPO based on LLaVA. As shown in Figure[3| CHiP 0 10 20 30 40 50 60

and DPO performed equally on 63.5% of samples, with Figure 3: Human evaluation results on
CHiP winning 24%. In the 36.5% of samples where a dis- MMHal-Bench (MMHal).
tinction was possible, CHiP outperformed DPO in 31.6%.

Strength of Hierarchical Textual Preference Optimization. Hierarchical text preference opti-
mization includes preference optimization at the response, segment, and token levels. Here, we
discuss the impact of their weights. We fully consider response-level since its global textual se-
mantics by setting its parameter to 1 (Eq. 12)). and following [Touvron et al. (2023), we set the
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token-level weight v = 0.1. As for segment-level, given its crucial role in providing fine-grained
feedback on the preference of hallucinations, we fully explore the range of its weight A\ (as shown
in[Eq. T0). From the results of we found that the best performance was achieved when A = 1
and A = 3 for the Muffin and LLaVA frameworks, respectively, and we adopted these settings in all
the experiments presented in this paper.

Table 2: The ablation results of CHip Table 3: Results of training or freezing the visual en-
based on LLaVA. Values in bold denote  coder (VE) in LLaVA during preference optimization.
x and v'denote the visual encoder states of training and

the best performance. ¢ .
freezing, respectively.

ObjHal MMHal

Model R1 ML Ovat R. MMHal AMBER ObjHal
. . va. .
Model VE' . % R.| CHAIR| Cover Hal| R.| M.|
DPO 11.03 6.61 2.73 43.75
: LLaVA - 275 427 830 61.0 486 14.1 7.4
CHiP 492 321 2.89 39.63
-LDPOw 9.19 5.77 2.70 42.40 +DPO x 2.73 43.8 594 610 38911.0 6.6
Lopos 855 5.16 2.69 40.63 +DPO v 271 448 588 61.6 38.310.1 5.7
-Lroq 6.08 3.77 2.71 40.75 +CHIiP x 2.89 39.6 372 57.8 245 4.9 32
-Lopos-Lroy 976 547 278 41.71 +CHiP v 2.68 438 3.74 549 22.1 53 3.3
5.6 8 23 7% 8 36 T <
5.4 g22 5.5 &34
x 5.2 821 % 5.0 532
% 5.0 820 % as 230" %
4.8 S19 N : 528,
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(2) Muffin+CHAIR (b) Muffin+Hal Rate (c) LLaVA+CHAIR (d) LLaVA+Hal Rate

Figure 4: Results of Muffin+CHiP and LLaVA+CHiP evaluated on the AMBER dataset with differ-
ent choices of weight A to control the strength of segment-level preference optimization. Findings:
When A = 1 (A = 3), the best performance of the CHAIR and Hallucination Rate metric is achieved
on AMBER based on Muffin (LLaVA-1.6).

Impact of Training Paradigm. The misalignment between image and text semantics is a signifi-
cant cause of hallucinations in MLLMs (Liu et al.|[2024a). However, most approaches (Wang et al.,
2024) freeze the visual encoder and train only the connector and LLM during preference optimiza-
tion. There raises a scientific question: Can full-model training during MLLM preference optimiza-
tion reduce hallucinations? To investigate this, we explored the impact of freezing versus training the
visual backbone on LLaVA enhanced by CHiP and DPO. The results are shown in[Tab. 3] Results:
DPO achieves a lower hallucination rate when the visual encoder is trained, whereas CHiP, which
incorporates multi-level textual preference and visual preference optimization, does not achieve the
expected reduction in hallucination rate when the visual encoder is trained. A possible reason is that
the multiple optimization objectives may dilute the model’s focus on image-text semantic alignment
during the joint training of the visual encoder.

6 FURTHER ANALYSIS

6.1 GENERAL CAPABILITY ANALYSIS

Preference learning may compromise a model’s general understanding capabilities. In this section,
we evaluate and analyze the general capability performance of an MLLM enhanced by our CHiP.
Specifically, we selected several popular general capability evaluation datasets, including MMMU
(val) (Yue et al., 2024), MMMU (test), MMB-ENG (Liu et al.| [2025), MMB-CN, ScienceQA (Lu
et al.} 2022), and LLaVA-Wild (Liu et al., 2024c). We compared the performance of LLaVA and
LLaVA+CHiP on these datasets, with the results shown in{lab. 4]
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Observation: We observe that LLaVA+CHiP outperforms LLaVA on five out of the six datasets.
This indicates that CHiP slightly improves performance on the MMMU, LLaVA-Wild, and MMB-
CN while maintaining comparable performance on others.

Table 4: The general capability evaluation results. Values in black indicate the best performance,
in red show improvement with CHiP, and in green indicate a decline. Values with * are reproduced
results. For LLaVA-Wild, we used gpt-40-2024-05-13 as evaluator due to GPT-4-03 14 was outdated;
for MMMU-test, there was a lack of official LLaVA-1.6 reports.

MMMU(val) MMMU(test)y MMB-ENG MMB-CN ScienceQA LLaVA-Wild

Num Samples 900 10500 6666 6666 4241 90
LLaVA 35.80 31.70% 67.40 60.60 70.10 74.90
LLaVA+CHiP  36.87'° 32,1704 66.6 60.827°-22 70.1510-95 762113

6.2 IMPACT OF REJECTION IMAGE CONSTRUCTION STRATEGY

Preference sample quality depends on rejection image quality and its gap from the chosen image. In
this section, we explore various strategies for constructing rejection images.

Strategies. The construction rejection images are listed below: (1) Diffusion: Following the for-
ward diffusion process in image generation (Ho et al., 2020), small amounts of Gaussian noise are
gradually added to the chosen image for T=500 steps. (2) Blackness: set all the RGB values of
the chosen image to 0. (3) Crop: random cropping strategy is utilized to the chosen image. (4)
Rotation: randomly rotate the chosen image by 10 to 80 degrees. (5) Randomness: select an image
from the training set randomly.

\ 2 0
O™
b = .
Sl P
v, \VJ Py
T /
] e )

(a) Chosen (b) Diffusion  (c) Blackness (d) Crop (e) Rotation  (f) Randomness

Figure 5: Examples of rejection images constructed by different strategies. (a) is the chosen image.

Results. The experimental results of CHiP under different construction strategies of rejection images
are shown in Observations: The high similarity between the rejection and chosen images
can lead to better preference optimization with CHiP. The di ffusion and cropping strate-
gies represent blurred and sub-images of the chosen image, respectively, both retaining a significant
amount of the chosen image’s visual information, resulting in better performance. However, the
blackness and randomness strategies by completely masking and replacing the chosen image

Table 5: Results of CHiP under different re-

jection image construction strategies. The adb _55

bold values indicate the best performance. fu’, 9 £5.0

Observation: CHiP achieves the best per- g8 Sas

formance with the diffusion strategy con- a ’ 3 4.0

structed rejection images. = g L 35
Stratogy ObjHal MMHal A @0@%00\900 N 59%0%0“\9@

R.] M.] Ovat R.} Noise Steps T Noise Steps T

Diffusion 49 32 29 39.6 Figure 6: Results of LLaVA+CHIiP evaluated on the
Black 94 50 24 438 ObjHal dataset with different values of noise step T.
Cropping 5.8 3.6 2.8 406 “Response” represents the response-level hallucina-
Random 109 59 29 417 tion rate, while “Mention” represents the mention-
Rotate 7.8 44 28 438 level hallucination rate.




Published as a conference paper at ICLR 2025

4 0 -.“ Ot w B vy
SR 4 ; e o BIGS. 1Y
~2 v U -3 ey e _a M iK%}
-3 -3 h Ao —ad Te N S vl LA
; ) (LK S ) R,
-4 117 -4 ™ T - KL 3 - Tay
5123 512 é:;..* % —02 LAY i :E A
PC21Y PC219 PC220 PC239)
0 20 20 30
30 30 20
3 20 0 50
40 20 o -20 -40 40 20 0 -20 -40 60 40 20 0 -20 -40 60 40 20 0 -20 -40 -60
pC1 PC1 PC1 PC1
(a) LLaVA (b) LLaVA+DPO (¢) LLaVA+CMDPO (d) LLaVA+CHiP

Figure 7: The visualization of representation distributions of various preference optimization strate-
gies. Findings: our CHiP makes more alignment between images and non-hallucination descriptions
and improves the model’s ability to distinguish between hallucinatory and non-hallucinatory text.

almost do not retain the information of the chosen image, leading to poorer performance. Although
rotation preserves much of the chosen image’s information, it creates significant differences in
visual tokens after tokenization, resulting in poor performance.

Impact of Noise Step T. We further explored the impact of noise steps T on the performance of
CHiP, as shown in for the ObjHal dataset. CHiP performs best at T=500. Possible reasons:
(1) Fewer noise steps make the rejected image too similar to the chosen one, causing label ambiguity
and weakening optimization. (2) Too many noise steps erase image details, making distinctions too
easy and limiting the module’s use of visual information.

6.3 REPRESENTATION VISUALIZATION

Ideally, a MLLM with a low hallucination rate should ensure that the representations of the textual
description for the image are as close as possible to the representations of the image itself, while
keeping the representations of hallucinated and non-hallucinated texts as far apart as possible. We
analyze the effectiveness of CHiP compared to DPO and several ablation preference optimization
strategies from a representational perspective. Specifically, we sampled 150 image-ground truth
description pairs from the COCO-2017 (Lin et al,, [2014) validation set, and GPT-4 was used to
generate more detailed non-hallucinated descriptions (manually verified), as well as hallucinated
descriptions. We then input the images, non-hallucinated texts, and hallucinated texts into LLaVA
separately, and took the representation of the last token of the LLM (in this case, LLaMA) as the
representation of the text or the image. We applied Principal Component Analysis (PCA)E]to reduce
the dimensionality of the high-dimensional representations, and the results are shown in|Fig. 7}

Observations: Compared to LLaVA, DPO struggles with aligning image and text representations
but can distinguish hallucinated from non-hallucinated text. After introducing image preference op-
timization based on DPO, namely CMDPO, the model not only distinguishes between hallucinated
and non-hallucinated texts but also brings the representations of the image and the ground-truth de-
scription closer. With the introduction of more fine-grained text and image preference optimization,
namely CHiP, the alignment between the image and ground-truth descriptions becomes even closer,
while maintaining the ability to distinguish between hallucinated and non-hallucinated texts.

7 CONCLUSION

In this paper, we tackle the issue of hallucinations in multimodal large language models (MLLMs) by
proposing Cross-Modal Hierarchical DPO (CHiP). CHiP integrates visual and hierarchical textual
preference optimization, facilitating cross-modal preference capture and finer-grained distinctions.
Experiments on four widely-used datasets demonstrate that CHiP effectively reduces hallucinations.
We visualized the representations of images, non-hallucinatory descriptions, and hallucinatory de-
scriptions. The results show that CHiP, compared to standard multimodal DPO, more effectively
bridges the semantic gap between images and non-hallucinatory descriptions while enhancing the
distinction between hallucinatory and non-hallucinatory descriptions.

https://en.wikipedia.org/wiki/Principal_component_analysis
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A DIFFERENCES BETWEEN TOKEN- AND RESPONSE-LEVEL OPTIMIZATION

Here, we first summarize the differences between token-level optimization and response-level op-
timization (in[Sec. A.1). For clarity, the following two subsections provide detailed derivations of

response-level (in|Sec. A.2) and token-level (in[Sec. A.3) optimization for reference.

A.1 OVERVIEW

The preference optimization function can be divided into two components: (1) the reward function,
which quantifies user preferences and drives the optimization direction; and (2) KL divergence,
which controls the difference between the output distributions of the policy model and the preference
model.

Given the input instruction x, image m, and response ¥, the Response-level Preference Optimiza-
tion can be formulated as below:

H}T%X ELmN'D,ywﬂe(y\w) [T(Iv m, y)] - BDKL [71'9 (y | Zz, m) || ﬂ-fef(y | Z, m)]v (13)
where the reward function can be denoted as:
r(z,m,y) = flog UL 4 5100 2(2,m), (14)
Wref(y|x7 m)

And, the Token-level Preference Optimization can be defined as below:
H}T%X Ew,m,y<t~D,yt~ﬂ'9(‘|[1;,7n,y<t]) [T(l‘, m, y)} - DSQC{KL (Iv m,y;me ||7T7’8f))3 (15)

where the reward function can be denoted as:

T
r(@,m,y) =Y 7' R([z,m,y<", ) (16)
t=1

where Dseqkr, (2, m, y; mg||mre s ) denotes the sequential KL divergence, and it can be defined as:

T
Dseqir.(z,m, y; mo|mres) = Y Dicr(mo(-|[@,m, y =) | mres (-|[z,m, y=1])). (17)
t=1

Comparison:

(1) Reward Function For response-level preference optimization, the reward function is calcu-
lated based on the generation probabilities of a response by the policy model and the reference
model (as shown in [Eq. 14). The probability of the entire response is first obtained, and then the
reward for the entire response is calculated.

For token-level preference optimization, the reward function calculates the reward for each token
individually (for example, 3¢, based on the = and m, and y<!) and then sums up the rewards of all
tokens to obtain the reward for the entire response, as shown in[Eq. 16]

(2) KL Divergence For response-level optimization (as shown in[Eq. 13), KL divergence is calcu-
lated as the distance between the distributions of the response y given x and m, as modeled by the
policy model and the reference model (note: this is based on the response distribution).

For token-level optimization, KL divergence is computed as the distance between the distributions
of y* given x and m, and iy <%, as modeled by the policy model and the reference model. The overall
distance between the policy and reference models is obtained by summing these distances across all
tokens. [Eq. T7]formulate this process.

A.2 RESPONSE-LEVEL PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (Rafailov et al., 2024) is primarily a preference optimization
method that focuses on aligning language models with human preferences without the need for
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explicit reward modeling or reinforcement learning. Given a model to be optimized 7y, and the
reference policy 7., Which is a supervised fine-tuning model, the RL optimization of RLHF can be
formulated as:

H;%XEx,mND,warg(ym) [T(Z‘,m, y)} - ﬁDKL [7’(’9(:1/ | €, m) || ﬂ-ref(y | x,m)} . (18)

By maximizing the KL-constrained reward objective to obtain the optimal solution and establishing a
mapping between the reward model and the optimal policy, the representation of the reward function
is derived as follows:

mo(ylz, m)

eyl ) + Blog Z(z,m), (19)

where  is the input instruction, m is the image, y is the response, (3 is a constant, and Z(x,m) is
the partition function.

Given the chosen response y,,, where the evaluator preferred it over the rejected response y;, DPO
is expected to learn to maximize the reward difference between chosen (y,,) and rejected responses
(y1). The preference optimization objective becomes:

Lro = —E(zm.yu.m) [log o(r(x,m,yy) — r(z,m, yl))]

o (Yu|z, m) mo(yilz, m) (20)
=-E, logo(flog ——F—= — flog ————= )|,
(z,m,Yw,y1) [ g ( g 77ref(2/w|$, m) Blog Wref(yl |x7 m) )}
where DPO learns preferences based on the ranking of the entire response, and the action score can
be formulated as:
log m(ylz,m) =Y log p(yila, m, y<i), @1
Yi€Y

where y; denotes the i-th token of the response y. During DPO training, the reference model
Tref(y|x, m) is usually kept fixed while the policy model 7y (y|x, m) is updated.

A.3 TOKEN-LEVEL PREFERENCE OPTIMIZATION

The objective function of DPO operates at the sentence level, as shown in The principle
of token-level preference optimization is similar to sentence-level preference optimization. The
difference between them lies in the reward function. In token-level preference optimization, the
reward function is token-wise, which can be viewed as the cumulative reward for generating the
text.

Given a response composed of 7' tokens y = [y', 42, ...,y”], where y' € ), and ) represents the
vocabulary. Additionally, we define y<! = []. Given a prompt x, a image m, and model-generated
response y’s first £ — 1 tokens, the LM predicts the probability distribution of the next token can be
formulated as g (-|[z, m, y<!]). Therefore, the objective of token-level preference optimization can
be denoted as below:

T

H}T%X Em,m,y<t~'D,y‘~7rg(-|[x,m,y<‘}) [Z ’Yt_lR([% m, y<t]a yt)] - DSquL (l‘, m,y; e ||7Tr6f))7
t=1

(22)
where Dseqkr. (T, m, y; || Tres) denotes the sequential KL divergence, and it can be defined as:

T

Dseqir.(z,m, y; mo|mref) = Y Dicr(mo(-|[@,m, y="]) | mres (-|[z,m, y=1])). (23)
t=1

where 1, 4' " R([x, m, y<*],y") is the accumulate reward, and  represents a weight and is a
constant.

We can follow a similar approach to response-level preference optimization by maximizing the KL-
constrained reward objective to obtain the optimal solution, thereby deriving a reward function simi-
lar to And further derive the token-level preference optimization function like sentence-level
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shown in|Eq. 20| However, Z([z, m,y5']; B) # Z([x, m,y;~"]; B), which means that optimization
at the sentence-level preference pairs can result in the cancellation of policies, while the cancellation
does not occur in token-level preference optimization.

Here, we directly employ the Bradley-Terry model to represent the probability of human preferences
based on the optimal policy. In the KL-constrained advantage maximization problem associated
with [Eq. 22| the Bradley-Terry model takes the optimal policy ¢ and the reference policy myef to
expresses human preference probabilities:

PBT(yw -~ yl ‘I7 m) = U(A(CL‘? m7 yw7 yl) - 6(‘7“7 m7 y’wa yl))’ (24)
where, A\(x, m, y,, y;) refers to the difference in rewards implicitly defined by the language model
my and the reference model 7.¢ (Rafailov et al.,[2024), represented as

7o (Yw | 2, m)
71'ref(yw I T, m)

mo(y | 2, m)
71Fref(yl | CL’,m)’

A(%"MZUU}:M) :/Blog —610 (25)

and §(x, m, yw, y;) is the difference in sequential forward KL divergence between the preference
pairs (z,m, y,,) and (z,m, y;).
5($, m,Yw, yl) = 5DSquL (LC, m, Yw; 7Tref||7r0) - ﬁDSquL ({I?, m,yi; 7TrefH7T0) 9 (26)

where [ is the weight. Put them together, we obtain the loss function for token-level preference
optimization:

['TDPO = _E(r,m,yw,yl) |:10g g <)\((E, my Yw, yl) - 5($a my Yw, yl)>:| )

mo(yu | @, m)
7T-ref(yl ‘ x7m>

To(Yw | ©, M)
7Tref(yw |x,m)

— Blog 27)

= B myu.m) [10g0<5 log
- a(/BDSquL (377 m, Y2; 7Tref||779) - Sg(ﬁDSquL(JU, m,yY1; ﬂ'ref||7-r9))>)] )

Token-level Preference Optimization (Lpp,). The difference in reward A(x, m, y.,, y;) appears
in both the response-level and segment-level preference optimizations in this work. Therefore, we
consider solely on sequential KL divergence, which serves as the optimization term for token-level
preference optimization:

'C'T)Ok =59 (5DSquL (iE, m, Yw; 7rref||7r0)) - BDSquL (xv m,yi; Wref”’”@) 3 (28)

where sg represents the stop-gradient operator, and

T
DSquL(xa m,y; 7TrefH7r6) = Z DKL(ﬂ'ref(mxv m, y<t)||779(y|xa m, y<t)) . (29)
t=1

B FURTHER ANALYSIS

B.1 DoESs CHIP MAKE THE MODEL LESS TALKATIVE?

Why does CHiP lower performance on the metric of Cover (Object coverage of responses)?
The results in show that while CHiP reduces the hallucination rate, it also decreases object
coverage on the AMBER dataset. This raises a question: does CHiP reduce hallucinations by limit-
ing the amount of text generated? To answer this question, we calculated the average output length
of LLaVA, LLaVA+DPO, and LLaVA+CHiP across three generative datasets, namely AMBER,
MMHal, and ObjHal. Since HallusionBench is a multiple-choice task, calculating response length
is not meaningful, so we have omitted it here. The results are presented in We can observe
that the output lengths of the three models are comparable. Therefore, CHiP lowers the hallucination
rate without making the model less talkative. Furthermore, a manual analysis of LLaVA+CHiP’s re-
sponses reveals that when an image contains ambiguous or uncertain objects or attributes, CHiP
tends to omit to mention them, effectively reducing hallucinations.
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Why does CHiP lower performance in £A (Figure Accuracy)?

The f£A metric is designed to evaluate the model’s logical consistency, specifically ensuring that
responses to questions are not based on random guesses. From [Tab. I| we observe that on LLaVA-
7B, CHiP achieves a lower £A compared to DPO, but higher than the original LLaVA-7B. A possible
reason is that DPO directly targets response-level preference optimization, focusing on aligning the
model’s outputs with human preferences at the response level, which makes it better at maintaining
logical consistency. In contrast, CHiP’s optimization objectives include segment-level, token-level,
and image preference optimization. This additional complexity may dilute the focus on logical
consistency during the optimization process, resulting in CHiP’s slightly lower £fA compared to
DPO.

Table 6: Average output length statistics of different models.

Model AMBER MMHal ObjHal
LLaVA 131 44 164
LLaVA+DPO 127 40 160
LLaVA+CHiP 124 43 151

B.2 ANNOTATOR BACKGROUND IN HUMAN EVALUATION

To mitigate the errors in GPT evaluations caused by incomplete annotations in the MMHal dataset,
we introduced human experts for manual evaluation to ensure more reliable conclusions: CHiP has
a lower hallucination rate compared to traditional DPO. Details about the annotators: We invited
three human experts who specialize in multimodal hallucination tasks. These experts are well-
versed in various types of hallucinations, such as object hallucinations, attribute hallucinations, and
environment hallucinations. We consider object hallucinations to be more severe than attribute and
environment hallucinations. This prioritization allows the expert to efficiently classify and label
hallucination types during the annotation process, enabling them to assign reasonable and accurate
scores.

B.3 EFFECT OF TOKEN-LEVEL PREFERENCE OPTIMIZATION

In this section, we explored whether using token-level preference optimization independently as an
optimization objective would still allow the model to work effectively. The evaluation results on four
datasets are presented in the It can be observed that solely using token-level preference opti-
mization results in lower hallucination rates compared to traditional DPO and the original LLaVA,
which holds for the four datasets.

Table 7: Performance comparison of LLaVA after token-level preference optimization (TDPO) and
direct preference optimization (DPO). Values in bold indicate the best performance.

ObjHal MMHal HallusionBench AMBER
Resp.] Mention| Overallf Resp.l (qAcc) T (fAcc)T (aAcc)t CHAIR] Covert Hal] Cogl

TDPO 9.56 5.50 273 4271 22.64 2832 57.22 590 61.30 37.60 3.10
DPO 11.03 6.61 273 4375 2220 2832  56.60 590 61.00 38.90 3.00

Model

B.4 FINE-GRAINED ANALYSIS

Here, we conducted a fine-grained evaluation of the base model (i.e., Muffin and LLaVA), DPO, and
CHiP on the AMBER, MMHal-Bench (MMHal), and Object HalBench (ObjHal) datasets. The
results are shown in [Tab. 8] [Tab. 9] and[Tab. 10} The main finding is that CHiP performed well on
many fine-grained evaluation metrics across these three datasets.
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Table 8: Fine-grained results on AMBER. Bold values indicates the best performance. 1 indicates
that a higher value represents better performance, while | indicates that a lower value is better.
Findings: Our CHiP achieves the best AMBER Score under both the base model Muffin and the

LLaVA model.
Model Generative Discriminative AMBER
ode
CHAIR| Coverf Hal| Cogl| FI11 F1ET F1A1T FIRT Scoref
Muffin (13B) 8.0 483 321 35 864 950 793 714 89.20
+DPO 6.2 46.9 265 2.5 869 959 799 704 90.35
+CHiP 4.4 453 176 1.5 87.6 96.1 80.5 733 91.60
LLaVA-1.6 (7B) 8.3 61.0 48.6 42 87.0 951 81.5 69.6 89.35
+DPO 5.9 61.0 389 30 874 978 813 634 90.75
+CHiP 3.7 57.8 245 1.6 869 983 803 62.0 91.60

Table 9: Fine-grained results on MMHal-Bench (MMHal). Bold values indicates the best perfor-
mance. T indicates that a higher value represents better performance, while | indicates that a lower
value is better. Findings: Our CHiP achieves the best Overall score and Hallucination
rate under both the base model Muffin and the LLaVA model.

Score in Each Question Type T

Model OverallT Hallu] - - - - - - —
Attribute Adversarial Comparison Counting Relation Environment Holistic Other
Muffin 241 6042  2.67 317 2.83 2.83 2.42 3.00 2.08 0.25
+DPO 249 52.08 3.50 2.33 2.92 2.08 2.50 2.67 233 1.58
+CHiP 2.58 48.96 3.58 2.58 2.08 3.42 2.83 2.58 1.50 2.08
LLaVA 278 4271 3.75 3.50 3.50 1.50 1.92 4.08 1.75 2.83
+DPO  2.73 4375 417 292 3.00 2.67 2.67 4.25 1.17  1.00
+CHiP 2.84 39.58 4.17 3.33 2.67 2.67 2.25 4.08 1.67 192

Table 10: Fine-grained results on Object HalBench (ObjHal). Bold values indicates the best per-
formance. 1 indicates that a higher value represents better performance, while | indicates that a
lower value is better. Findings: Our CHiP performs best on all the fine-grained evaluation metrics
(except for the Object Recall) under the base model Muffin and the LLaVA model.

Model Response HallT Object Hall{ Response Correct? Object Correct] Object Recallf

Muffin 21.53 11.61 78.47 88.39 56.29
+DPO 10.65 5.18 89.35 94.82 51.78
+CHiP 6.17 3.91 93.83 96.09 40.99
LLaVA 14.08 7.37 85.92 92.63 55.03
+DPO 11.03 6.61 88.97 93.39 52.83
+CHiP 4.92 3.21 95.08 96.79 48.95

19



Published as a conference paper at ICLR 2025

Your task consists of two parts: one is to provide a more detailed and accurate description of no less than 100
wordsbased on the ground truth caption of the image. Secondly, modify the description you generated in the
first step to create a similar but incorporate many elements of hallucination.

Here are three examples for your reference:

—Start of examples—

Example-1:

Ground Truth Caption:

A white plate with a sandwich and sides on it.

Non-Hallucinative Caption:

A white plate with a sandwich and sides on it. The sandwich is made of two slices of bread with a filling inside.
The sides are a small bowl of white creamy dip and some fried onions. There is also a side dish of sliced
oranges in a clear glass bowl.

Hallucinative Caption:

A white plate with a sandwich and sides on it. The sandwich is made of two slices of bread with a filling of
ham and cheese inside. The sides are a small bowl of creamy dill dip and some crunchy onions. There is also a
side dish of sliced oranges in a clear glass bowl, served with a glass of wine. The plate is placed on a table with
a placemat made of woven reeds.

Example-2:

Ground Truth Caption:

An orange truck driving down a street full of men in the back.

Non-Hallucinative Caption:

An orange dump truck is driving down the street with several men standing in the back of the truck bed. All
the men are wearing red caps and white shirts. There is a smaller yellow bus to the left of the truck, and there
is a light pole in the middle of the frame.

Hallucinative Caption:

An orange dump truck is driving down a street full of people in the back, all of them wearing red caps and white
shirts. The truck is driving past a yellow bus that is full of people and is about to pass a fire hydrant on the side
of the road. The truck is driving very fast and there are police cars chasing it. The men in the back of the truck
are holding their hands in the air and yelling, ”We’re not gonna stop! We’re gonna take back the streets!”.
Example-3:

Ground Truth Caption:

A pizza sitting on top of a pizza box covered in cheese.

Non-Hallucinative Caption:

A pizza with cheese, tomato sauce and toppings sits inside a cardboard pizza box. The pizza appears to be cut
into 6 slices and the box has some grease stains.

Hallucinative Caption:

A perfectly cooked pizza sits inside a cardboard pizza box. The pizza is covered in melted cheese and pepper-
onis and there are traces of red pepper flakes around the edges. A small, green pepper rests on top of the pizza.
The box is stained with a sauce that is most likely marinara.

—End of examples—

Ground Truth Caption:
{caption}

Please output in this format:
[Non-Hallucinative Caption:]
[Hallucinative Caption:]

Table 11: The prompt used to generate hallucinated and non-hallucinated descriptions for a given
input image.

B.5 PROMPT

To reveal the limitations of existing multimodal DPO from the representation perspective and
demonstrate how our method, CHiP, effectively mitigates these limitations, we extracted 150 images
and their ground-truth descriptions from the COCO-2017 (Lin et al., 2014) validation set. Gemini
(The version we choose to use is gemini-1.5-flash-latest) was then used to generate more
detailed non-hallucinated and hallucinated descriptions, with the non-hallucinated descriptions man-
ually verified. presents the prompts we used to guide Gemini in generating these detailed
non-hallucinated and hallucinated descriptions.
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LLaVA

There are six oysters visible in the photo.

LLaVA+ DPO

There are six oysters in the photo.

Question: What can you
see in the reflection from
the sunglasses?

\

L i LLaVA + CHiP

Question: How many oysters can There are 5 oysters in the photo.
you see in the photo?

N

-

LLaVA

In the reflection from the sunglasses, you can see a blurred image
of what appears to be a person wearing a top hat and sunglasses. The
person in the reflection seems to be wearing a similar outfit to the person
in the foreground, which includes a top hat and sunglasses, but the
details are not clear due to the blur.

LLaVA + DPO

In the reflection from the sunglasses, you can see the person
wearing the sunglasses and the person in the background. The person in
the background appears to be wearing a white shirt.

LLaVA + CHiP

In the reflection from the sunglasses, you can see what appears to
be the upper part of another person's head and shoulders, suggesting that
the person wearing the sunglasses is not alone in the image. The
reflection is somewnhat blurred, indicating that the sunglasses may have a
reflective surface that distorts the image being reflected. The details of
the other person's appearance are not clear due to the reflection's
distortion.

/

Figure 8: Qualitative results of LLaVA+CHiP compared with LLaVA+DPO and LLaVA on MMHal-
Bench dataset. Correct answers and hallucinations are highlighted in green and red, respectively.

C QUALITATIVE RESULT

To demonstrate the effectiveness of our approach, we present qualitative results on the MMHal-
Bench dataset in this section, as shown in LLaVA+CHiP demonstrates a significant reduction
in hallucinations in text generation tasks. This improvement can be attributed to the multi-level
preference optimization, which enables the model to capture image-text relationships across varying
granularities. Additionally, the visual preference optimization module enhances semantic alignment
between the two modalities, further contributing to the reduction in hallucinations.
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