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Figure 1: An updated illustration of our pipeline for text-to-audio alignment. The top part depicts the preference dataset

creation where three strategies are deployed to generate the undesirable audio outputs to the input prompts. These samples are

further filtered to form Audio-alpaca. This preference dataset is finally used to align Tango using DPO-diffusion loss, resulting

in Tango 2.

1 CODE, DEMO, AND DATASET

We plan to release the code and dataset on GitHub and Hugging
Face, respectively, upon acceptance. Meanwhile, for review pur-
poses we share the code anonymously at
https://github.com/339wef0493/tango2. The dataset is available
at https://huggingface.co/datasets/339wef0493/audio-alpaca.
Some comparative audio samples are also presented at https://
339wef0493.github.io.

2 ABLATIONS ON AUDIO-ALPACA
We conducted an ablation study on Audio-alpaca to gauge the
impact of different negative data construction strategies. As shown
in Table 1, excluding the data samples from by strategies 2 and 3
notably diminishes the performance of Tango 2. This underscores
the significance of event and temporal prompt perturbations.

3 IMPACT OF CONCEPT OR EVENT COUNT

We categorize prompts based on the presence of multiple concepts
or events, exemplified by phrases like “A woman speaks while cook-
ing”. As underlined, this prompt contains two distinct events i.e.,
“sound of a woman speaking” and “sound of cooking”. Through man-
ual scrutiny, we discovered that pinpointing prompts with such
multi-concepts is challenging using basic parts-of-speech or named
entity-based rules. Consequently, we task GPT-4 with extracting
the various concepts or events from the prompts using in-context
exemplars. The specific prompt is displayed in Table 2. To evaluate
GPT-4’s performance on this task, we randomly selected 30 unique
prompts and manually verified their annotations from GPT-4’s. No
errors attributable to GPT-4 were found. In general, Tango 2 outper-
forms AudioLDM2 and Tango across most objective and subjective
metrics, following Table 3. We proceed to visualize the CLAP scores

https://github.com/339wef0493/tango2
https://huggingface.co/datasets/339wef0493/audio-alpaca
https://339wef0493.github.io
https://339wef0493.github.io
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Table 1: Text-to-audio generation results on AudioCaps evaluation set. Due to time and budget constraints, we could only

subjectively evaluate AudioLDM 2-Full-Large and Tango-full-FT. Notably these two models are considered open-sourced SOTA

models for text-to-audio generation as reported in AudioBox.

Model #Parameters Objective Subjective
FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑

AudioLDM-M-Full-FT 416M 2.57 1.26 8.34 0.43 − −
AudioLDM-L-Full 739M 4.18 1.76 7.76 0.43 − −
AudioLDM 2-Full 346M 2.18 1.62 6.92 0.43 − −
AudioLDM 2-Full-Large 712M 2.11 1.54 8.29 0.44 3.56 3.19

Tango-full-FT 866M 2.51 1.15 7.87 0.54 3.81 3.77
Tango 2 866M 2.69 1.12 9.09 0.57 3.99 4.07

w/o Strategy 2 & 3 866M 2.64 1.13 8.06 0.54 − −
w/o Strategy 1 866𝑀 2.47 1.13 8.58 0.56 − −
w/o Strategy 2 866M 2.28 1.12 8.38 0.55 − −
w/o Strategy 3 866M 2.46 1.13 8.63 0.56 − −

Table 2: GPT-4 prompt used to extract events or concepts from prompts describing audios.

You are to extract all the indivisible events in the given text, labeled as input. Imagine experiencing the events in the
input as you are reading it and write down the indivisible events one by one. After writing your experience, list all the
events in the sequence you observed them as a python list. Think step-by-step. Do not directly give the answer. Please
refer to these following examples as reference for input and output:
Example 1 -
Input: An aircraft engine runs and vibrates, metal spinning and grinding occur, and the engine accelerates and fades
into the distance
Output: Firstly, an aircraft engine runs and vibrates. Then, I hear metal spinning and grinding. Then, the aircraft
engine accelerates. Finally, the aircraft fades into the distance.
So, here is the list of events that I observed:
["aircraft engine runs", "aircraft engine vibrates", "metal spinning", "metal grinding", "aircraft
engine accelerates", "aircraft fades into the distance"]
Example 2 -
Input: Bubbles gurgling and water spraying as a man speaks softly while crowd of people talk in the background
Output: Firstly, I hear bubble gurgling. Also, I hear water spraying. Simultaneously, a man is speaking softly. Also, a
crowd of people are talking in the background.
So, here is the list of events that I observed:
["bubble gurgling", "water spraying", "a man is speaking softly", "crowd talking"]
Example 3 -
Input: A man talking then meowing and hissing
Output: Firstly, I hear a man talking. Subsequently, I hear meowing. I also hear hissing.
So, here is the list of events that I observed:
["a man talking", "meowing", "hissing"]
**** Examples end here
Now, given the input text below extract all the indivisible events one by one as explained above with examples. Also,
remember to follow the exact format of the examples.
Input: {PROMPT}
Output:

of the models in Figure 2. This visualization illustrates that Tango
2 consistently outperforms the baselines as the number of events
or concepts per prompt increases. In particular, specifically, Tango
closely matches the performance of Tango 2 only when the textual
prompt contains a single concept. However, the disparity between
these two models widens as the complexity of the prompt increases

with multiple concepts. Another interesting observation is the rela-
tively low performance of Tango 2 on single-concept prompts. We
suppose this could be the ascribed to the relatively larger influence
of noise over concept presence and order on the CLAP-score for
single-concept prompts. This supposition is also backed by Tango
2’s poorer IS score—a reference-free measure of acoustic clarity
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Table 3: Evaluation results for audio generation in the presence of multiple or single concept(s)/event(s) in the text prompts of

the AudioCaps test set. Note: single event IS
∗
has been amended from the main manuscript due to an error in our code.

Model
Multiple Events/Concepts Single Event/Concept
Objective Subjective Objective Subjective

FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑ FAD ↓ KL ↓ IS∗ ↑ CLAP ↑ OVL ↑ REL ↑
AudioLDM 2-Full 2.03 1.64 7.88 0.43 − − 7.93 1.24 4.50 0.47 − −
AudioLDM 2-Full-Large 2.33 1.58 8.14 0.44 3.54 3.16 5.82 1.09 6.60 0.49 3.65 3.41
Tango-full-FT 2.69 1.16 7.85 0.54 3.83 3.80 7.52 1.01 6.41 0.51 3.67 3.49
Tango 2 2.60 1.11 8.98 0.57 3.99 4.07 5.48 1.00 4.95 0.52 3.95 4.10

and diversity across a set of samples—for single event prompts, as
shown in Table 3. More on this is explored in Section 5.

4 HUMAN EVALUATION SETUP

We setup a Gradio1 app (UI shown in Fig. 3) for human evaluation.
Each annotator was presented with 20 prompts, each prompt having
randomly ordered audios from AudioLDM2, Tango, and Tango 2.
The following instructions were given to the annotators:

Welcome username
# Instructions for evaluating audio clips

Please carefully read the instructions below.
## Task

You are to evaluate three 10 sec long audio outputs to each
of the 20 prompts below. These three outputs are from three
different models. You are to judge each output with respect
to two qualities:

• Overall Quality (OVL): Overall quality of the audio is
to be judged based on five grades:
– 1 : Completely Unnatural
– 2 : Mostly Unnatural
– 3 : Somewhat Natural
– 4 : Mostly Natural
– 5 : Completely Natural
Overall fidelity, clarity, and noisiness of the audio

is important here.

• Relevance (REL): The extent of alignment of the audio
with the prompt is to be judged based on five grades:
– 1 : Completely Irrelevant
– 2 : Mostly Irrelevant
– 3 : Somewhat Aligned
– 4 : Mostly Aligned
– 5 : Completely Aligned

You are to judge if the concepts from the prompt appear

in the audio in the correct temporal order.

## Listening guide

(1) Please use a head/earphone to listen to minimize ex-
posure the external noise.

(2) Please move to a quiet place as well, if possible.
## UI guide

(1) Each audio clip has two attributes OVL and REL be-
low. You may select the appropriate option from the
dropdown list.

1https://www.gradio.app

(2) To save your judgements, please click on any of the
save buttons. All the save buttons function identically.
They are placed everywhere to avoid the need to scroll
to save.

Hope the instructions were clear. Please feel free to reach
out to us for any queries.

5 ERROR ANALYSIS

In Table 3, the IS of Tango 2 appears to be worse than the other
models. This indicates a more prominent presence of noise and
less fidelity in the single concept outputs of Tango 2. Notably, the
subjective evaluation does not indicate this, as the among those 50
samples only six were with single event. However, upon further
inspection of a portion of the single event prompts in the entire
test set, the validity of the single-event IS score is further substanti-
ated. We reckon this is caused by the lack of focus on single event
generation in the preference dataset, as all three of the strategies
were inherently focused on multi-event scenarios. We present a
few of such single-event samples from Tango 2 and Tango in the
Single-Event Comparison section of the anonymized demo website
(https://339wef0493.github.io).

https://www.gradio.app
https://339wef0493.github.io
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Figure 2: CLAP score of the models vs the number of events or concepts in the textual prompt.

Figure 3: A sample of the UI for human evaluation.
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