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ABSTRACT
In this paper, we introduce a novel multimodal camo-perceptive
framework (MMCPF) aimed at handling zero-shot Camouflaged
Object Detection (COD) by leveraging the powerful capabilities
of Multimodal Large Language Models (MLLMs). Recognizing the
inherent limitations of current COD methodologies, which predom-
inantly rely on supervised learning models demanding extensive
and accurately annotated datasets, resulting in weak generalization,
our research proposes a zero-shot MMCPF that circumvents these
challenges. Although MLLMs hold significant potential for broad
applications, their effectiveness in COD is hindered and they would
make misinterpretations of camouflaged objects. To address this
challenge, we further propose a strategic enhancement called the
Chain of Visual Perception (CoVP), which significantly improves
the perceptual capabilities of MLLMs in camouflaged scenes by
leveraging both linguistic and visual cues more effectively. We vali-
date the effectiveness of MMCPF on four widely used COD datasets,
containing CAMO, COD10K, NC4K and MoCA-Mask. Experiments
show that MMCPF can outperform all existing state-of-the-art zero-
shot COD methods, and achieve competitive performance com-
pared to weakly-supervised and fully-supervised methods, which
demonstrates the potential of our proposed MMCPF.

CCS CONCEPTS
• Computing methodologies → Scene understanding.

KEYWORDS
Zero-shot Camouflaged Object Detection, Multimodal Large Lan-
guage Models, Chain of Visual Perception.

1 INTRODUCTION
Aimed at accurately identifying objects that blend seamlessly into
their surroundings, Camouflaged Object Detection (COD) focuses
on detecting those that are deliberately disguised. Yet, the field is
hampered by a reliance on supervised learning models [1, 10, 11, 15,
19, 34, 36, 39, 47–49, 51, 56, 58], which demand extensive, accurately
annotated COD datasets. However, camouflaged objects can be di-
verse, ranging from animals in various environments to a variety of
man-made items. Some camouflaged objects may be rare or difficult
to gather sufficient labeled data for training. In practical applica-
tions, new types of camouflage may continually emerge. Therefore,
training models solely on fixed, small-scale datasets may limit their
generalizability, rendering them effective in certain scenarios but
ineffective in others. Specifically, as shown in Table. 1, when trans-
ferring the typical fully-supervised COD method ERRNet [18] to
the new camouflaged scene, such as video camouflaged object de-
tection (VCOD) scene, their performance significantly decreases,
even falling below that of the weakly-supervised COD method WS-
COD [13] and the zero-shot VCOD method MG [46]. Therefore,

Table 1: Comparison of MMCPF and other methods.
CAMO [25] and MoCA-Mask [5] are two different datasets
containing different camouflaged scenes. The method ERR-
Net may only achieve good performance in one certain scene
(CAMO) while failing in another scene (MoCA-Mask).

CAMO MoCA-Mask
Methods Setting

𝐹𝑤
𝛽

𝐹𝑤
𝛽

MG (ICCV2021) Zero-shot - 0.168
ERRNet (PR2022) Fully-supervised 0.679 0.094

WSCOD (AAAI2023) Weakly-supervised 0.641 0.121
Ours Zero-shot 0.680 0.196

how to design a novel COD framework in the zero-shot manner
with potential for generalizability is a matter worth exploring.

The first reason with the limited generalizability of current COD
network designs arises from the small scale of training data, which
tends to lead the networks to overfit in specific scenarios. This
overfitting restricts their ability to generalize effectively in new
environments. Additionally, existing COD network designs stem
from their limited model capacity, which restricts their ability to
perceive camouflaged objects across varied environments. In re-
cent years, natural language processing (NLP) has been profoundly
transformed by the advent of large language models (LLMs). These
foundational models have demonstrated exceptional generalizabil-
ity because they possess strong model capacity and millions or even
tens of millions of training data. The fusion of LLMs with vision
systems has led to the emergence of Multimodal Large Language
Models (MLLMs) [4, 6, 16, 26, 54, 55, 57], such as LLaVA [31] and
GPT-4V [37]. Leveraging the generalization capabilities of MLLMs,
many researchers have explored and designed various zero-shot
frameworks to address diverse visual tasks [24, 32, 40, 41, 53].

Therefore, in this paper, building upon the generalizability of
MLLMs in different scenarios, we are inspired to explore whether
MLLMs can maintain their efficacy in COD scenes and design a
novel MLLM-based zero-shot COD framework, namely multimodal
camo-perceptive framework (MMCPF). It is imperative to under-
score that the primary objective of this investigation is not to retrain
MLLMs using adapters or tuning mechanisms [35, 42, 50] on the
small-scale COD dataset, thereby compromising the generalizabil-
ity inherent in MLLMs [20]. What we aim to explore is whether it’s
possible to design a novel zero-shot framework that directly lever-
ages the inherent model capacity of MLLMs to perceive camouflage
scenarios without the annotated COD training dataset.

The development of zero-shot MMCPF faces two significant
challenges: The first is how to perceive and locate camouflaged
objects, and the second is how to generate the binary mask of
camouflaged objects. To preliminarily address these challenges,
MMCPF consists of two foundational models: one is MLLM, which
is responsible for perceiving and locating the coordinates of the
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Dose this image contain the camouflaged object?

The image dose not 
contain…

There is no 
camo...

The image dose not 
contain…

No, the image dose 
not contain…

The camo object is in 
[0.51,0.56,0.57,0.63]

GPT-4V GPT-4V GPT-4VGPT-4V GPT-4V

Figure 1: Querying results generated by GPT-4V in COD. GPT-4V would answer the question incorrectly or randomly guess
some wrong answers. The red mask is generated by ground-truth and The green box is generated by GPT-4V.

camouflaged object. The other is a promptable visual foundation
model (VFM) like SAM [21], which takes the coordinates outputted
by MLLM to generate a binary mask. However, when we attempt to
ask GPT-4V [37] about the presence of a camouflaged object in Fig.
1, we regret to find that the MLLM outputs some wrong contents.
Therefore, a question raised: Can even a powerful model like
GPT-4V not effectively handle camouflaged scenes? How can
we make zero-shot MMCPF work?

Upon identifying the aforementioned issues, we design the chain
of visual perception (CoVP)withinMMCPF, which can not only help
enhance MLLM’s perception of camouflaged scenes and correctly
output location coordinates, but also improve these coordinates to
prompt VFM for mask generation. Specifically, our proposed CoVP
improves the performance of MMCPF from both linguistic and
visual perspectives. For linguistic perspective, inspired by Chain
of Thought (CoT) techniques [12, 45] used in LLMs, we have en-
hanced the perceptual abilities of MLLMs for camouflaged scenes.
In general, CoT can effectively help LLMs solve some complex
downstream tasks under the zero-shot manner. However, how to
design these reasoning mechanisms effectively for MLLMs remains
an area to be explored. The work [3] attempts to facilitate visual
reasoning in MLLMs by artificially providing semantic information
about a given image in the text prompt. But in the COD task, the
semantic and location information of the camouflaged object needs
to be perceived and discovered by the model itself, rather than
being artificially provided. That is to say, the method presented in
paper [3] is not directly applicable to MMCPF. Therefore, in this
paper, we summarize three critical aspects when prompting the
MLLM to perceive the relationship between the camouflaged object
and its surroundings, thereby enhancing the accuracy of MLLMs
in locating camouflaged objects.

For visual perspective, considering the fact that the integration
of additional visual information into MLLMs introduces unique
challenges not encountered with text-only LLMs. These challenges
are particularly pronounced in visually complex scenarios involving
camouflage. While we have implemented a reasoning mechanism

within the text input to assist MLLMs in recognizing camouflaged
objects, this does not entirely assure the accuracy of their visual lo-
calization capabilities. Therefore, in MMCPF, it is crucial to consider
how to improve the uncertain pixel location from MLLMs to better
prompt VFMs to generate accurate binary mask results. To address
this challenge, we design a mechanism called visual completion. As
illustrated in Table. 1, with the help of CoVP, MMCPF outperforms
those published in 2023 with weakly-supervised settings, demon-
strating remarkable potential for a zero-shot framework. Notably,
MMCPF also surpasses fully-supervised methods published in 2022.

In summary, the key contributions are listed as follows:

• We propose MMCPF to preliminarily explore the perfor-
mance cap of MLLMs to camouflaged scenes in the zero-
shot manner. We hope MMCPF can potentially inspire re-
searchers to design COD framework from a fresh perspec-
tive without the needing of training process and annotated
COD training datasets, which is more flexible.

• We introduce CoVP in MMCPF, which enhance MLLM’s
perception of camouflaged scenes from both linguistic and
visual perspectives and make MMCPF work.

• We validate the proposed MMCPF on three widely used
COD datasets CAMO [25], COD10K [11] and NC4K [34],
and one VCOD dataset MoCA-Mask [5]. Its effective zero-
shot performance verifies the effectiveness of our ideas.

2 RELATEDWORK
2.1 Multimodal Large Language Model
Prompted by the powerful generalized ability of LLMs [2, 7, 33, 52]
in NLP, VFMs [22, 29, 38, 43] have emerged. The integration of
LLMs and VFMs has facilitated the advancement of MLLMs [4,
6, 16, 26, 28, 31, 37, 54, 55, 57]. MLLMs show case impressive vi-
sual understanding through end-to-end training techniques that
directly decode visual and text tokens in a unified manner. These
foundational models, like GPT, SAM and LLaVA, demonstrated the
immense potential of these large-scale, versatile models, trained on
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extensive datasets to achieve unparalleled adaptability across a wide
range of tasks. This paradigm shift, characterized by significant
strides in representation learning, has spurred the exploration of
task-agnostic models, propelling research into both their adaptation
methodologies and the intricacies of their internal mechanisms.

In the field of NLP, to migrate LLMs to downstream tasks without
impacting the LLM’s inherent performance, In-context learning [8]
is a widely used technique. A particularly influential approach
within In-context learning is the CoT [12, 23, 45]. CoT, by designing
a series of reasoning steps, guides the LLM to focus on specific
content at each step, thereby further stimulating the model’s in-
nate logical reasoning capabilities. Specifically, these works have
discovered that by prompting LLMs with designed directives, such
as “let’s think step by step", the reasoning abilities of the LLMs can
be further improved and enhanced.

As a field that is more mature than MLLM, LLM has shown
that models can be effectively migrated to various downstream
tasks in a zero-shot manner, provided that the correct prompting
mechanisms are in place. Therefore, to further advance the devel-
opment of MLLM, our paper explores the upper limits of MLLM
performance in visually challenging tasks, specifically COD. Unlike
existing methods that use re-training or tuning to migrate MLLMs
to downstream tasks [24, 40, 41], our paper aims to explore how
to prompt the MLLMs to stimulate its inherent perception abilities
for camouflaged scenes. To this end, we propose CoVP, which first
identifies key aspects to consider when inputting language text
prompts to enhance MLLM’s understanding of camouflaged scenes.
Further, we highlight how to utilize MLLM’s uncertain visual out-
puts and, from a visual completion standpoint, enhance MLLM’s
capability to capture camouflaged objects.

2.2 Camouflaged Object Detection
In the past years, there has been significant effort in the COD
task [1, 10, 11, 15, 19, 34, 36, 39, 47, 48, 51, 56, 58]. The technical
frameworks for these COD methods can be categorized into two
types: CNN-based and Transformer-based approaches. Although
the structures of these methods may differ, their core lies in design-
ing advanced network modules or architectures capable of explor-
ing discriminative features. While these methods have achieved
impressive performance, the networks lack generality and are task-
specific, which limits their generalizability. This means that while
they are highly effective for specific tasks, their adaptability to a
wide range of different tasks is constrained.

The emergence of a series of foundational models in recent times
has signaled to computer vision researchers that it is possible to
solve a variety of downstream vision tasks using a single, large-scale
model. This trend highlights the potential of leveraging powerful,
versatile models that have been trained on extensive datasets, en-
abling them to handle diverse and complex visual challenges. In line
with the trend of technological advancement, this paper explores
the generalization capabilities of visual foundational models. We
design the MMCPF to generalize the foundational model to the
COD task in a zero-shot manner. It’s important to highlight that
this paper does not employ methods such as re-training, adapters,
or tuning to update the parameters of the visual foundational model
for adaptation to the COD task. Instead, we explore how to enhance

the perception abilities of the visual foundational model in camou-
flaged scenes through prompt engineering from both linguistic and
visual perspectives, without altering its inherent capabilities.

Existing works like ZSCOD [27] and GenSAM [14] are also at-
tempting to design a zero-shot COD framework. The pipline of
ZSCOD may seem somewhat contrived, potentially limiting its
adaptability to real-world scenarios. Specifically, this method artifi-
cially divides the COD10K dataset into seen and unseen categories
and then trains the network. This undoubtedly leads to the risk of
information leakage, thus preventing a true evaluation of whether
the network has generalizability. Moreover, its performance to un-
known scenarios is very weak, raising concerns among researchers
about the robustness of their networks. GenSAM [14] also leverages
MLLM and VFM to design a zero-shot COD framework. However,
a flaw of this framework is that it makes additional modifications
to the foundation model (Clip-Surgery [30]) used in the framework.
Specifically, to enhance the network’s ability to filter noise from
camouflaged images and accurately identify foreground pixels, Gen-
SAM introduces an additional attention mechanism to the existing
well-established framework. This approach is somewhat similar
to an Adapter operation. This could potentially affect the general-
izability that the foundation model originally had to some extent.
Compared to these two methods, our MMCPF is more flexible in its
setup. In MMCPF, we do not make any structural modifications to
the MLLM and VFM. Instead, we enhance the MLLM’s perceptual
capabilities for camouflaged scenes through the design of the CoVP.
This approach ensures the maximal preservation of the MLLM’s
inherent generalization ability, and achieve superior performance.

3 METHOD
3.1 Framework Overview
In Fig. 2, our proposed MMCPF is a promptable framework, which
is the first framework to successfully generalize the MLLM to the
camouflaged scene. Given an image I containing the camouflaged
scene, prompting the MMCPF with the text T , such as “Please find
a camouflaged object in this image and provide me with its exact
location coordinates", the MMCPF would locate the camouflaged
object at position P𝐼 and generate the corresponding maskM.

To achieve the above purpose, we state that MMCPF needs two
foundational models. The first is the MLLM, which can accept the
user instruction and output the corresponding result, such as the
coordinate information of the target object. To further quantita-
tively evaluate the performance of MLLM, the second foundational
model is the promptable VFM, which can accept the output from
MLLM as the prompt, and generate the final maskM. Note that, in
MMCPF, both MLLM and VFM are frozen.

In MMCPF, only having MLLM and VFM, despite their power-
ful capabilities, may still be insufficient to handle the COD task
effectively. Specifically, in Fig. 2, using just vanilla text prompts
to query the MLLM might yield meaningless results, contributing
nothing to the accurate location of camouflaged objects. Addition-
ally, in Fig. 3, the positional coordinates output by the MLLM may
carry a degree of uncertainty, encompassing only a part of the cam-
ouflaged object. Specifically, for the localization of camouflaged
objects, MLLM typically outputs the coordinates of the top-left and
bottom-right corners. We have observed that these coordinates do
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Figure 2: Our multimodal camo-perceptive framework (MMCPF). MMCPF mainly contains chain of visual perception (CoVP),
which is to enhance the perceptual abilities of the MLLM in camouflage scenarios from linguistic aspect and visual aspect.
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Image Point Prompt 𝒫! Point Prompt 𝒫"

Figure 3: Second column visualizes coordinates generated
by MLLM, which are somewhat uncertain and cannot com-
pletely locate the camouflaged object. Third column displays
coordinates generated by our visual completion mechanism.
P𝐼 and P𝐶 are initial and completed points respectively.

not always fall within the interior of the camouflaged object and
their central point only lands on the edge of the camouflaged object
sometimes. Consequently, if these coordinates are directly used as
point prompts for the VFM, the resulting mask might be incom-
plete or fragmented. Therefore, to address the above problems, we
propose CoVP, which enhance MLLM’s perception of camouflaged
scenes from both linguistic and visual perspectives.

3.2 Chain of Visual Perception
Images in camouflaged scenes obviously present visual challenges,
making it difficult for MLLMs to detect camouflaged objects. The
challenges primarily encompass two aspects. Firstly, for MLLM, we

stimulate its understanding of visual content in an image through
language. However, designing language prompts suitable for camou-
flaged scenes remains an area to be explored. The existing work [3]
attempts to enhance the visual perception capabilities of MLLM by
providing semantic information about an image, which contradicts
the definition of the COD task, and thus cannot be directly applied.
Therefore, our first task is to design how language can be used to
enhance the visual perception ability of MLLM.

Secondly, promptingMLLM to visually perceive an image through
language represents a challenging cross-modal task, especially
when we attempt to generalize MLLM to visually the challenging
COD scene. As visualized in Fig. 3, it’s difficult to completely ensure
the accuracy of MLLM’s output. Consequently, we design a visual
completion (VC) to further enhance the localization capability of
MLLM. Unlike the CoT, which only designs mechanisms at the text
input of the LLM to enhance its language reasoning ability, CoVP
attempts to improve MLLM’s perception of camouflaged scenes
more comprehensively, working at both the input and output and
from linguistic and visual perspectives.

3.2.1 Perception Enhanced from Linguistic Aspect.

We attempt to design an effective text prompt mechanism from
three perspectives to further enhance the ability of MLLM to per-
ceive camouflaged objects. This primarily includes the following
aspects: description of the attributes of the target camouflaged
object, the angle of polysemy, and the perspective of diversity.
Description of the attribute. When prompting the MLLM to
discover a specific camouflaged object, we should encourage the
MLLM to pay attention to the potential attributes of that object.
This includes two perspectives: internal attributes and external
interaction. For the internal attributes of camouflaged objects, we
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Figure 4: Prompts with attribute, polysemy and diversity.

aim to focus the MLLM on their physical and dynamic character-
istics. Physical properties might include the camouflaged object’s
color, shape, and texture information, which are static attributes.
For example, as shown in Fig. 4 and Fig. 5, when we try to include
descriptions of these aspects, we find that the MLLM’s ability to
perceive camouflaged objects is significantly enhanced.

Dynamic characteristics include the camouflaged object’s pat-
terns and motion information, which might also cause it to blend
with its surrounding environment. In Fig. 5, when we attempt to di-
rect the MLLM’s attention to descriptions of these dynamic aspects,
its ability to perceive camouflaged objects is further enhanced. It’s
important to note that our text prompts do not explicitly give away
information about the camouflaged object. For example, we do
not use prompts like “The camouflaged object in the image is an
orange fox." Instead, our prompts are designed to subtly guide the
MLLM in identifying and understanding the characteristics of the
camouflaged object without directly revealing it.
Polysemy of the description. It’s important to consider polysemy
when designing prompts. For example, the term “camouflage" can
have different interpretations sometimes, where it can also refer
to a soldier wearing camouflage clothing. Therefore, we would
also design the text prompt such as “This image may contain a
concealed object...". In Fig. 5, when we design text prompts with
consideration for polysemy, the ability to perceive camouflaged
objects is improved. This observation underscores the importance
of crafting prompts that account for different meanings and inter-
pretations, thereby enabling the MLLM to more effectively process
and understand the complexities inherent in camouflaged scenes.
Diversity of the description. It’s essential to focus on the diversity
of prompts. Given the uncertainty about which type of prompt
is most suitable for an MLLM, prompts should be as varied as
possible. Moreover, in maintaining diversity, we suggest leveraging
the LLM itself to generate prompts with similar meanings. This
approach ensures that the prompt texts are as close as possible
to the data distribution that the MLLM can effectively process. In
Fig. 5, when we take into account the diversity of text prompts,
the ability to perceive camouflaged objects is further enhanced.
This improvement suggests that incorporating a variety of prompts,
which cover different aspects and perspectives, can significantly
aid the MLLM in more effectively detecting camouflaged objects.

3.2.2 Perception Enhanced from Visual Aspect.

Through the text prompt we designed, we significantly enhance
the MLLM’s visual perception ability in challenging camouflaged

Figure 5: Performance improvement inCOD10Kwhen adding
2.physical attribute description, 3.dynamic attribute descrip-
tion, 4.polysemous description, 5.diverse description and 6.vi-
sual completion compared to 1.baseline.

scenes, enabling us to preliminarily identify the location of camou-
flaged objects. However, it’s important to note that the MLLM is
initially designed for understanding image content, not for highly
precise object localization. As a result, the MLLM’s positioning of
camouflaged objects is generally approximate and fraught with
uncertainty. This is evident in Fig. 3, where the visualization of
the MLLM’s positioning results shows its limitations in accurately
locating the entire camouflaged object. Using the MLLM’s output
coordinates as direct point prompts for the VFM in segmentation of-
ten leads to incomplete results. To tackle this challenge, we explore
a solution: enhancing the initial, uncertain coordinates provided
by the MLLM to improve its localization accuracy.

In Fig. 3, our goal is to generate additional points similar to
the initial central point coordinate P𝐼 in terms of semantics. Prior
studies [38, 44] have shown that self-supervised vision transformer
features, such as those fromDINOv2, hold explicit information bene-
ficial for semantic segmentation and are effective as KNN classifiers.
DINOv2 particularly excels in accurately extracting the semantic
content from each image. Hence, we utilize the features extracted by
the foundational model DINOv2 to represent the semantic informa-
tion of each image, denoted as F . This approach enables us to more
precisely expand upon the initial point coordinates, leveraging the
semantic richness of DINOv2’s feature extraction capabilities.

After generating the feature representation F of the input im-
age I, we obtain the feature vector F𝐼 corresponding to the point
P𝐼 . We then facilitate interaction between the feature vector F𝐼
and other point features in F to calculate their correlation ma-
trix. Specifically, in the image feature F , which contains 𝑁 pixels,
the feature representation of each pixel is denoted as F 𝑖

𝐶
, where

𝑖 ∈ [1, 𝑁 ]. The correlation score between F𝐼 and F 𝑖
𝐶
is determined

using cosine similarity. Subsequently, we employ a Top-k algorithm
to identify the points most semantically similar to F𝐼 . These points
are located at position 𝑃 :

𝑆𝑖𝑚 = F𝐶 × F𝐼 , 𝑃 = Top-k(𝑆𝑖𝑚) ∈ R𝐾 , (1)

where × means matrix multiplication. Finally, we further refine the
𝑃 into 𝑐 clustering centers as the positive point prompts P𝐶 for
VFM. The point prompts P𝐶 and the image I are sent to VFM to
predict segmentation resultsM.
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Table 2: Comparison of MMCPF and other methods. “F" means fully-supervised methods. “ZS" means zero-shot methods. “WS"
means weakly-supervised methods. Red font represent the top performance under the ZS setting. Gray Background indicates
the metrics fully-supervised and weakly-supervised approaches under-perform MMCPF.

CAMO (250 Images) COD10K (2026 Images) NC4K (4121 Images)
Methods Setting

𝐹𝑤
𝛽

𝑆𝛼 MAE 𝐹𝑤
𝛽

𝑆𝛼 MAE 𝐹𝑤
𝛽

𝑆𝛼 MAE

FSPNet (CVPR2023) F 0.799 0.856 0.050 0.735 0.851 0.026 0.816 0.879 0.035
NCHIT (CVIU2022) F 0.652 0.784 0.088 0.591 0.792 0.049 0.710 0.830 0.058
ERRNet (PR2022) F 0.679 0.779 0.085 0.630 0.786 0.043 0.737 0.827 0.054

WSCOD (AAAI2023) WS 0.641 0.735 0.092 0.576 0.732 0.049 0.676 0.766 0.063

ZSCOD (TIP2023) ZS * * * 0.144 0.450 0.191 * * *
GenSAM (AAAI2024) ZS 0.655 0.730 0.117 0.584 0.731 0.069 0.665 0.754 0.087
Ours (Shikra+SAMHQ) ZS 0.680 0.749 0.100 0.592 0.733 0.065 0.681 0.768 0.082
Ours (LLaVA+SAMHQ) ZS 0.677 0.747 0.103 0.595 0.734 0.067 0.682 0.766 0.081
Ours (Shikra+SAM) ZS 0.677 0.747 0.103 0.589 0.732 0.069 0.677 0.766 0.087
Ours (LLaVA+SAM) ZS 0.675 0.751 0.102 0.590 0.735 0.066 0.678 0.769 0.084

Table 3: Comparison of MMCPF and other methods in the
VCOD scene. Abbreviations and symbols have the samemean-
ing as in Table. 2.

MoCA-Mask
Methods Setting

𝐹𝑤
𝛽

𝑆𝛼 MAE

SLTNet (CVPR2022) F 0.292 0.628 0.034
PFSNet (CVPR2023) F 0.060 0.508 0.017
ERRNet (PR2022) F 0.094 0.531 0.052

WSCOD (AAAI2023) WS 0.121 0.538 0.041

MG (ICCV2021) ZS 0.168 0.530 0.067
GenSAM (AAAI2024) ZS 0.141 0.523 0.070
Ours (Shikra+SAMHQ) ZS 0.196 0.569 0.031
Ours (LLaVA+SAMHQ) ZS 0.192 0.571 0.030
Ours (Shikra+SAM) ZS 0.188 0.560 0.034
Ours (LLaVA+SAM) ZS 0.189 0.562 0.035

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
We employ three public benchmark COD datasets to evaluate the
perceptual capabilities of MMCPF in camouflaged scenes. These
datasets include CAMO [25], COD10K [11] and NC4K [34]. CAMO
is a subset of the CAMO-COCO, specifically designed for camou-
flaged object segmentation. COD10K are collected from various
photography websites and are classified into 5 super-classes and
69 sub-classes. NC4K features more complex scenarios and a wider
range of camouflaged objects. To further demonstrate the gen-
eralization capability of our proposed MMCPF, we extend our
validation to another dataset which may contain different
camouflaged scene, MoCA-Mask [5], to assess our method’s
performance. We adopt three widely used metrics to evaluate our
method: structure-measure (𝑆𝛼 ) [9], weighted F-measure (𝐹𝑤

𝛽
), and

mean absolute error (MAE).

4.2 Implementation Details
To ensure the reproducibility of our MMCPF, thereby positively
impacting the community, we select open-source models for both
the MLLM and VFM. For the MLLM, we choose Shikra-7B [4] and

LLaVA1.5-7B [31]. We do not opt for the potentially more powerful
GPT-4V [37] as it is not open-source, and thus, its use would not
guarantee the reproducibility of our framework. For the VFM, we
selecte the SAM-HQ [20] and SAM [21].

4.3 Comparison COD and VCOD Methods
Selecting appropriate comparisonmethods is crucial to demonstrate
the contribution of our proposed MMCPF to the community. The
core of our MMCPF is to generalize MLLM and VFM to camouflaged
scenes in a zero-shot manner. Since the MLLM and VFM we chose
are not specifically designed for camouflaged scenes, we first com-
pare our method with the zero-shot COD method ZSCOD [27] and
GenSAM [14]1. Secondly, as we do not retrain the MLLM and VFM
on camouflaged datasets when generalizing them to camouflaged
scenes, it is appropriate to compare our approachwith unsupervised
COD methods. Unfortunately, we could not find any unsupervised
methods specifically designed for the COD task, so we opt for a
comparison with the weakly-supervised method WSCOD [13]. Fi-
nally, we also compare our method with three fully-supervised
approaches, including NCHIT [49], ERRNet [18], and FSPNet [17].
This comparison not only helps researchers understand the perfor-
mance level of our paper but also further clarifies our contribution
to the field. By setting our work against a backdrop of various su-
pervisory approaches, we provide a comprehensive view of where
MMCPF stands in the context of current COD methodologies and
highlight its potential advantages. In addition to comparisons with
current state-of-the-art COD methods, we also benchmark against
two VCOD methods, SLTNet [5] and MG [46], which can demon-
strate the generalization capability of MMCPF.

4.4 Quantitative and Qualitative Evaluation
COD Evaluation. From Table. 2, it is evident that the performance
of our MMCPF significantly surpasses the zero-shot method ZS-
COD [27]. This observation preliminarily reflects the generaliza-
tion capabilities of MLLM in camouflaged scenes. Compared to
another zero-shot method GenSAM [14], based on MLLM/VFM,
1The primary reason for the discrepancy in GenSAM’s performance compared to the
original paper is that we are unable to directly run the code provided by GenSAM. We
make some debugging and modifications based on their code.
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Figure 6: Qualitative results of the proposed MMCPF framework.

Table 4: Ablation studies of MMCPF. PA means physical attribute. DA means dynamic attribute. VC means visual completion.

CAMO (250 Images) COD10K (2026 Images) NC4K (4121 Images)
Methods

𝐹𝑤
𝛽

↑ 𝑆𝛼 ↑ MAE ↓ 𝐹𝑤
𝛽

↑ 𝑆𝛼 ↑ MAE ↓ 𝐹𝑤
𝛽

↑ 𝑆𝛼 ↑ MAE ↓

1. Baseline 0.410 0.519 0.199 0.366 0.507 0.188 0.402 0.520 0.185

2. Baseline+PA 0.554 0.629 0.157 0.482 0.615 0.127 0.565 0.651 0.143
3. Baseline+PA+DA 0.573 0.649 0.149 0.501 0.640 0.120 0.580 0.681 0.126
4. Baseline+PA+DA+Polysemy 0.603 0.671 0.134 0.521 0.663 0.107 0.605 0.701 0.121
5. Baseline+PA+DA+Polysemy+Diverse 0.635 0.707 0.118 0.558 0.701 0.081 0.639 0.737 0.105

6. Baseline+PA+DA+Polysemy+Diverse+VC 0.680 0.749 0.100 0.592 0.733 0.065 0.681 0.768 0.082

our method’s performance can still surpass this method. A major
reason for this is the unique nature of camouflaged objects. Al-
though the GenSAM also designes some text prompts to guide the
MLLM to detect camouflaged objects, the effectiveness of these
prompts is not as comprehensive as the approach summarized in
our paper, which prompts theMLLM from three distinct dimensions
to identify camouflaged objects. Note that, under our framework,
replacing the MLLM/VFM with any other does not significantly
affect the performance of MMCPF. This adaptability to different
MLLMs/VFMs without a significant performance drop highlights
the flexibility and future potential of MMCPF. Furthermore, MM-
CPF outperforms the weakly-supervised method WSCOD [13] in
terms of 𝐹𝑤

𝛽
and 𝑆𝛼 , an undoubtedly exciting performance indica-

tion. This suggests that with the design of appropriate enhancement
mechanisms, MLLM can effectively perceive camouflaged objects.
Finally, on the CAMO and COD10K datasets, the 𝐹𝑤

𝛽
metric even

surpasses some fully-supervised methods. This demonstrates the
superiority of MMCPF in the localization capability of camouflaged
objects. However, when compared with the current state-of-the-art
fully-supervised method like FSPNet [17], there is still a noticeable
performance gap. Also, the shortcomings in the MAE metric indi-
cate that there is room for improvement in the absolute accuracy

of pixel-level predictions by MLLM/VFM, perhaps due to the lack
of specific optimizations for downstream segmentation tasks in
these foundational models. The visualization results in the Fig. 6
also show that MMCPF can better locate the camouflaged objects
in different camouflage scenarios.
VCOD Evaluation. As shown in Table. 3, MMCPF not only com-
pletely surpasses the weakly-supervised method and unsupervised
video COD methods, but it also achieves competitive results com-
pared to some fully-supervised methods. This performance on the
video data further underscores the versatility and adaptability of
our approach. We can further find that GenSAM has limited gen-
eralizability on the new camouflaged scene. The primary reason
causing this is that GenSAM modifies the structure of the original
foundational model, which is like Adapter operation and might
undermine the generalizability of the foundational model itself.

4.5 Ablation Studies
Herein, we use the Shikra + SAMHQ setting to conduct the ablation
studies on CAMO, COD10K and NC4K datasets.
Main Component. In Table. 4, Baseline represents our use of the
vanilla text prompt, “Please find a camouflaged object in this image
and provide me with its exact location coordinates", to query MLLM,
without incorporating visual completion. The results in the first
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Figure 7: The comparison between generated masks when using P𝐼 and P𝐶 as prompt points.

Table 5: Hyperparameters setting of 𝑘 and 𝑐 in this paper.

CAMO (250 Images) COD10K (2026 Images) NC4K (4121 Images)
Methods

𝐹𝑤
𝛽

↑ 𝑆𝛼 ↑ MAE↓ 𝐹𝑤
𝛽

↑ 𝑆𝛼 ↑ MAE↓ 𝐹𝑤
𝛽

↑ 𝑆𝛼 ↑ MAE↓

Ours(Without VC) 0.635 0.707 0.118 0.558 0.701 0.081 0.639 0.737 0.105

Ours(k=16,c=4) 0.679 0.750 0.101 0.591 0.734 0.064 0.680 0.766 0.081
Ours(k=16,c=3) 0.680 0.749 0.100 0.592 0.733 0.065 0.681 0.768 0.082
Ours(k=16,c=2) 0.675 0.740 0.102 0.588 0.732 0.068 0.678 0.766 0.084
Ours(k=16,c=1) 0.670 0.745 0.105 0.585 0.728 0.070 0.676 0.764 0.087

Ours(k=4,c=3) 0.672 0.744 0.106 0.581 0.723 0.070 0.673 0.758 0.088
Ours(k=8,c=3) 0.676 0.747 0.102 0.588 0.729 0.066 0.677 0.762 0.084
Ours(k=16,c=3) 0.680 0.749 0.100 0.592 0.733 0.065 0.681 0.768 0.082
Ours(k=32,c=3) 0.678 0.751 0.099 0.590 0.735 0.064 0.681 0.767 0.081

row indicate that using vanilla text prompt alone is insufficient to
enable MLLM to perceive camouflaged scenes effectively. Subse-
quently, we enhance the text descriptions by including attributes
of the camouflaged objects, and the text prompt is “This image
may contain a camouflaged object whose shape, color, texture, pattern
and movement closely resemble its surroundings, enabling it to blend
in. Can you identify it and provide its precise location coordinates?".
The results from the second and third rows demonstrate a further
improvement. After that, considering the issue of polysemy in de-
scriptions, we modify the text prompts as “This image may contain
a concealed object whose shape, color, texture, pattern and movement
closely resemble its surroundings, enabling it to blend in. Can you
identify it and provide its precise location coordinates?". Using these
two types of prompts in tandem to cue the MLLM, we observe
an additional enhancement in performance. Finally, we generate
synonymous prompts based on the first two text types to further
cue the MLLM, thereby improving performance. The diverse text
prompt is “This image may contain a camouflaged object whose shape,
color, pattern, movement and texture bear little difference compared
to its surroundings, enabling it to blend in. Please provide its precise
location coordinates.".

In MMCPF, we also implement visual completion to further en-
hance the MLLM’s ability to perceive camouflaged objects. The
results in the sixth row demonstrate that incorporating visual com-
pletion can lead to further performance improvements. Fig. 7 visu-
ally illustrates the effectiveness of visual completion, showcasing

how this component of our approach significantly aids in the accu-
rate detection and delineation of camouflaged objects.
Hyperparameters Setting. In VC, we use the Top-k algorithm
to select the Top-k most similar points, followed by the clustering
algorithm to group these points into 𝑐 cluster centers. As shown
in Table. 5, the choice of different 𝑘 and 𝑐 can all help improve the
performance. Finally, in this paper, we choose 𝑘 = 16 and 𝑐 = 3.

5 CONCLUSION
This study successfully demonstrates that the MLLM can be effec-
tively adapted to the challenging realm of zero-shot COD through
our novel MMCPF. Despite themisinterpretation issues and localiza-
tion uncertainties associatedwithMLLM in processing camouflaged
scenes, our proposed CoVP significantly mitigates these challenges.
By enhancing MLLM’s perception from both linguistic and visual
perspectives, CoVP not only reduces misinterpretation but also im-
proves the precision in locating camouflaged objects. The validation
of MMCPF across four major COD datasets confirms its efficacy,
indicating that MLLM’s generalizability extends to complex and
visually demanding scenarios. This research not only marks a pi-
oneering step in MLLM application but also provides a valuable
blueprint for future endeavors aiming to enhance the perceptual ca-
pabilities of MLLMs in specialized tasks, paving the way for broader
and more effective applications in the vision-language processing.
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