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1 Notation

The following notation pertains to all the considered algorithms, where t is a given training round:

• Let Ti(t) denote the set of training round indices where the advice of expert i was queried
and let Ti(t) := |Ti(t)|.

• Let Tij(t) denote the set of training round indices where the advice of experts i and j where
jointly queried and let Tij(t) := |Tij(t)|.

• Let R̂ij(j, t) denote the empirical loss of expert j calculated using only the Tij(t) samples
queried for (i, j) jointly:

R̂ij(j, t) :=
1

Tij(t)

∑
s∈Tij(t)

l(Fj,s, Ys).

• R̂i(t) denote the empirical loss of expert i calculated using the Ti(t) queried samples:

R̂i(t) :=
1

Ti(t)

∑
s∈Ti(t)

l(Fi,s, Ys).

• Define αij(t, δ) :=
√

log(4Kδ−1)
Tij(t)

if Tij(t) > 0 and αij(t) =∞ otherwise.

• Define αi(t, δ) :=
√

log(4Kδ−1)
Ti(t)

if Ti(t) > 0 and αi(t) =∞ otherwise.

• Let d̂ij(t) denote the empirical L2 distance between experts i and j based on the Tij(t)
queried samples:

d̂2
ij(t) :=

1

Tij(t)

∑
s∈Tij(t)

(Fi,s − Fj,s)2
.

• Define ∆′ij(t, δ) := R̂ij(j, t)− R̂ij(i, t)− 6αij(t, δ) max
{
Ld̂ij(t), Bαij(t, δ)

}
.

• Let dij denote the L2 distance between experts i and j:

dij := E
[
(Fi − Fj)2

]
.

• We denote R(.) the expected risk function: R(.) = E[l(., Y )], and define Ri = R(Fi) for
i ∈ JKK.
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2 Some preliminary results

The lemma below shows that for a set Y and a convex set X ⊆ Rd, if there exists a function
l : X ×Y → R that is Lipschitz and strongly convex on its first argument, then the function l and the
set X are bounded.
Lemma 1. Let X ⊆ Rd be a non-empty convex set, let Y be an arbitrary set and l : X × Y → R be
a function such that for all y ∈ Y : l(., y) is L-Lipschitz and ρ-strongly convex, then we have:

• supx,x′∈X ‖x− x′‖ ≤ B
L = 8 L

ρ2 .

• supx,x′∈X ,y∈Y |l(x, y)− l(x′, y)| ≤ B := 8L
2

ρ2

Proof. Let y ∈ Y and x0, x ∈ X , using the ρ-strong convexity of l(., y) we have:

l

(
x+ x0

2
, y

)
− ρ2

2

∥∥∥∥x+ x0

2

∥∥∥∥2

≤ 1

2

(
l(x0, y)− ρ2

2
‖x0‖2

)
+

1

2

(
l(x, y)− ρ2

2
‖x‖2

)
Which implies:

ρ2

2

(
1

4
‖x0 + x‖2 − 1

2
‖x0‖2 −

1

2
‖x‖2

)
≤ l
(
x+ x0

2
, y

)
− l(x, y) + l(x0, y)

2
.

Using the parallelogram law and the assumption that l is L-Lipschitz we have:
ρ2

8
‖x− x0‖2 ≤ L‖x− x0‖,

which proves that diam(X ) ≤ 8 L
ρ2 . Now using the assumption that l(., y) is L-Lipschitz, we have:

|l(x, y)− l(x0, y)| ≤ L‖x− x0‖

≤ 8
L2

ρ2
,

which proves the second claim.

For any y ∈ Y , let l∗(y) = minx∈X l(x, y), which exists since l is continuous in x and X is a closed
bounded set by the previous lemma, and let l̃(x, y) := l(x, y) − l∗(y). By the previous lemma,
l̃(x, y) ∈ [0, B]; also, note that the proposed algorithms remain unchanged if we replace the loss l by
l̃, since the algorithms only depend on loss differences for different predictions x, x′ and the same
y. Similarly, the excess loss of any predictor remains unchanged when replacing l by l̃. Therefore,
without loss of generality we can assume that the loss function always takes values in [0, B], which
we do for the remainder of the paper.

The following lemma is technical, it will be used in the proof of the instance dependent bound
(Theorem M-5.3).
Lemma 2. Let x ≥ 1, c ∈ (0, 1) and y > 0 such that:

log(x/c)

x
> y. (1)

Then:

x <
2 log

(
1
cy

)
y

.

Proof. Inequality (1) implies

x <
log(x/c)

y
,

and further
log(x/c) < log(1/yc) + log log(x/c) ≤ log(1/yc) +

1

2
log(x/c),

since it can be easily checked that log(t) ≤ t/2 for all t > 0. Solving and plugging back into the
previous display leads to the claim.
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3 Some concentration results

In this section, we present concentration inequalities for the key quantities used in our analysis. Recall
that Lemma 1 shows that under assumption M-1, without loss of generality we can assume that the
loss function takes values in [0, B], B := 8L2/ρ2.

The following lemma gives the main concentration inequalities we need:
Lemma 3. Suppose Assumption M-1 holds. For any integer t ≥ 1, and δ ∈ [0, 1], with probability at
least 1− 3δ, for all i, j ∈ JKK:∣∣∣(R̂ij(i, t)− R̂ij(j, t))− (Ri −Rj)

∣∣∣ ≤ √2L d̂ij αij(t, δ) + 3B α2
ij(t, δ)∣∣∣d̂2

ij − d2
ij

∣∣∣ ≤ max

{
2
B

L
αij(t, δ) dij ; 6

(
B

L

)2

α2
ij(t, δ)

}
∣∣∣R̂i(t)−Ri∣∣∣ ≤ 2Bαi(t, δ).

Proof. The first inequality is a direct consequence of the empirical Bernstein inequality (Theorem 4
in [3]). Recall that l is L-Lipschitz in its first argument. Hence, we have the following bound on the
empirical variance of the variable: l(Fi, Y )− l(Fj , Y ).

V̂ar[l(Fi, Y )− l(Fj , Y )] :=
2

Tij(t)(Tij(t)− 1)

∑
u,v∈Tij(t)

(l(Fi,u, Yu)− l(Fj,u, Yu)− l(Fi,v, Yv) + l(Fj,v, Yv))
2

≤ 1

Tij(t)

∑
u∈Tij(t)

(l(Fi,u, Yu)− l(Fj,u, Yu))
2

≤ L2 d̂2
ij .

The second inequality is a consequence of Bernstein inequality applied to d̂2
ij , we used the following

bound on the variance of the variable (Fi − Fj)2:

Var
[
(Fi − Fj)2

]
≤ E

[
‖Fi − Fj‖4

]
≤ sup
i,j∈[K]

‖Fi − Fj‖2E
[
‖Fi − Fj‖2

]
≤
(
B

L

)2

d2
ij .

Finally, the last inequality stems from Hoeffding’s inequality.

Corollary 4. Let T > 0 be fixed. In the full information case (m = K), with probability at least
1− 2δ, it holds:

For all i, j ∈ JKK : ∆ij ≤ (Rj −Ri) ≤ ∆ij + 32αmax(Ldij , Bα). (2)

Proof. In the full information case, since all experts are queried at each round we have Tij(T ) =
Ti(T ) = T and αij(T, δ) = α(T, δ) = α for all i, j. Applying Lemma 3 in that setting, using the
first inequality we obtain that with probability at least 1− 3δ:

∆ij ≤
(
R̂(i, T )− R̂(j, T )

)
−
√

2Ld̂ijα− 3Bα2 ≤ Ri −Rj ,
giving the first inequality in (2); and

Ri −Rj ≤
(
R̂(i, T )− R̂(j, T )

)
+
√

2Ld̂ijα+ 3Bα2 ≤ ∆ij + 9αLd̂ij + 9Bα2. (3)

From the second inequality in Lemma 3 we get, putting β := B/L:

d̂2
ij − d2

ij ≤ max
{

2βαdij , 6β
2α2
}

≤ max

{
6β2α2 +

1

6
d2
ij , 6β

2α2

}
≤ 6β2α2 +

1

6
d2
ij ,
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from which we deduce d̂2
ij ≤ 12αmax(β2α2, d2

ij). Taking square roots and plugging into (3), we
obtain the claim.

For t ≥ 1, define: δt := δ
t(t+1) . Define the event A:

(A) : ∀t ≥ 1,∀ i, j ∈ JKK :



∣∣∣(R̂ij(i, t)− R̂ij(j, t))− (Ri −Rj)
∣∣∣ ≤ 3 max

{
Ld̂ij αij(t, δt);Bα

2
ij(t, δt)

}
(4a)∣∣∣R̂i(t)−Ri∣∣∣ ≤ 2B αi(t, δt) (4b)

d̂2
ij ≤ 12 max

{
d2
ij ;

(
B

L

)2

α2
ij(t, δt)

}
(4c)

d2
ij ≤ 12 max

{
d̂2
ij ;

(
B

L

)2

α2
ij(t, δt)

}
(4d)

Using a union bound over t ≥ 1 and i, j ∈ JKK, we have: P(A) ≥ 1− 4δ.

4 Proof of Theorem M-5.1 and Corollary M-5.2

Let t ≥ 1, denote by St the set of non-eliminated experts in Algorithm M-2 at round t. The lemma
below shows that conditionally to event A, the best experts S∗ are never eliminated.

Lemma 5. If A defined in (4) holds, ∀t ≥ 1 we have: S∗ ⊆ St, where we recall S∗ :=
Arg Mini∈JKKR(Fi).

Proof. Let t ≥ 1, assume for the sake of contradiction that: i∗ ∈ S∗ but i∗ /∈ St. Then, at some
point, i∗ was eliminated by an expert j. More specifically: ∃s ∈ JtK, ∃j ∈ JKK \ {i∗}, such that
∆′ji∗(t, δt) > 0. It follows by definition of ∆′ji∗ that:

R̂ji∗(i
∗, s) > R̂ji∗(j, s) + 6 max

{
Lαji∗(s, δs)d̂ji∗ , Bα

2
ji∗(s, δs)

}
which contradicts (4a) since we have: R∗ ≤ Rj .

The lemma below gives a high probability deviation rate on the excess of any expert in St when
combined with an appropriate expert. Recall that for i ∈ JKK: Ri = R(Fi).

Lemma 6. If event A defined in (4) holds, ∀t ≥ 1, for all i ∈ St, let j ∈ argmaxl∈St d̂il(t), then we
have:

R

(
Fi + Fj

2

)
≤ R∗ + c B

log(Kδ−1
t )

Tij(t)
,

where c is an absolute constant.

Proof. Suppose that A is true. Let t ≥ 1, i ∈ St and i∗ ∈ S∗. Let j ∈ argmaxSt d̂il.

Lemma 5 shows that : i∗ ∈ St, we therefore have by construction of Algorithm M-2:

R̂ij(j, t) ≤ R̂ij(i, t) + 6 max
{
Lαij(t, δt)d̂ij(t), Bα

2
ij(t, δt)

}
R̂ii∗(i, t) ≤ R̂ii∗(i∗, t) + 6 max

{
Lαii∗(t, δt)d̂ii∗(t), Bα

2
ii∗(t, δt)

}
.

Using inequalities (4a) for (i, j) and (i, i∗) respectively and d̂ii∗(t) ≤ d̂ij(t), we have:

Rj ≤ Ri + 9 max
{
Lαij(t, δt)d̂ij(t), Bα

2
ij(t, δt)

}
(5)

Ri ≤ Ri∗ + 9 max
{
Lαii∗(t, δt)d̂ij(t), Bα

2
ii∗(t, δt)

}
. (6)
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We have:

R

(
Fi + Fj

2

)
≤ 1

2

(
Ri −

ρ2

2
E
[
F 2
i

])
+

1

2

(
Rj −

ρ2

2
E
[
F 2
j

])
+
ρ2

2
E

[(
Fi + Fj

2

)2
]

=
1

2
Ri +

1

2
Rj −

ρ2

8

(
2E
[
F 2
i

]
+ 2E

[
F 2
j

]
− E[(Fi + Fj)

2
]
)

=
1

2
Ri +

1

2
Rj −

ρ2

8
d2
ij

≤ 1

2
Ri +

1

2
Ri +

9

2
max

{
Lαij(t, δt)d̂ij(t), Bα

2
ij(t, δt)

}
− ρ2

8
d2
ij

= Ri +
9

2
max

{
Lαij(t, δt)d̂ij(t), Bα

2
ij(t, δt)

}
− ρ2

8
d2
ij

≤ R∗ +
27

2
max

{
Lαij(t, δt)d̂ij(t), Bα

2
ij(t, δt)

}
− ρ2

8
d2
ij .

We used the strong convexity of R in the first inequality and we injected (5) to bound R(Fj) in the
fourth line and (6) to bound R(Fi) in the last line. Now we use inequality (4b) for (i, j) and obtain:

R

(
Fi + Fj

2

)
−R∗ ≤ 162 max

{
Lαij(t, δt)dij , Bα

2
ij(t, δt)

}
− ρ2

8
d2
ij

≤ c Bα2
ij(t, δt)

≤ c Bα2
ij(t, δt),

where c is an absolute constant. In the final step, we upper bounded the right-hand-side of the first
inequality with a parabolic function in dij , then we replaced dij with the expression achieving the
maximum (recall that B := 8(L/ρ)2).

Proof of Theorem M-5.1. Let T ≥ 2K2, when Algorithm M-2 is halted at T . Let k̂ ∈ ST and
l̂ ∈ argmaxj∈ST d̂k̂j(T ).

Let q̂ denote the empirical risk minimizer on ST :

q̂ ∈ Arg Min
j∈ST

R̂j(T ).

We consider two cases. If Tk̂l̂(T ) >
√
Tq̂(T ) log

(
Kδ−1

T

)
, then the output of Algorithm M-2 is

Fk̂+Fl̂
2 and we can apply the bound of Lemma 6.

If Tk̂l̂(T ) ≤
√
Tq̂(T ) log

(
Kδ−1

T

)
, then the output of Algorithm M-2 is Fq̂ . We have:

Rq̂ −Ri∗ = Rq̂ − R̂q̂(T ) + R̂q̂(T )− R̂i∗(T ) + R̂i∗(T )−Ri∗

≤ 2B

√
log
(
Kδ−1

T

)
Tq̂(T )

+ 2B

√
log
(
Kδ−1

T

)
Ti∗(T )

≤ 2B

√
log
(
Kδ−1

T

)
Tq̂(T )

+ 2B

√
log
(
Kδ−1

T

)
Tq̂(T )−K

≤ 5B

√
log
(
Kδ−1

T

)
Tq̂(T )

,

where we used inequalities (4c) for q̂ and i∗, and the fact that the allocation strategy leads to
|Ti∗(T )− Tq̂(T )| ≤ K and Ti(T ) > 2K for all i.

As a conclusion we have:

R(ĝ)−Ri∗ ≤ c Bmin

{
log(KTδ−1)

Tk̂l̂(T )
;

√
log(KTδ−1)

Tq̂(T )

}
, (7)

5



where c is an absolute constant.

5 Proof of Theorem M-5.3

In this section, we prove instance dependent bounds on the number of rounds required to achieve a
risk at least as good as the best expert up to ε > 0.

The following lemma gives an instance dependent upper and lower bound on the quantities Tij(t),
for i, j ∈ JKK.
Lemma 7. Let i, j ∈ JKK such that Ri 6= Rj . If A holds, for all t ≥ 1, if

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
;

B

|Ri −Rj |

}
,

then we have either ∆′ij > 0 or ∆′ji > 0.

Furthermore, if

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
;

B

|Ri −Rj |

}
,

then we have ∆′ij ≤ 0 and ∆′ji ≤ 0.

Proof. We start by proving the first claim of the lemma. Let i, j ∈ JKK and t ≥ 1 such that:

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
;

B

|Ri −Rj |

}
. (8)

Inequality (8) implies:

αij(t, δt) ≤
1

17
min

{
|Ri −Rj |
Ldij

;

√
|Ri −Rj |

B

}
.

By simple calculus, we see that:

17 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
≤ |Ri −Rj |.

Now we use inequality (4a) from event A to upper bound |Ri −Rj |:

17 max
{
Lαij(t, δt)dij ;Bα

2
ij(t, δt)

}
≤
∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣+3 max

{
Lαij(t, δt)d̂ij(t);Bα

2
ij(t, δt)

}
.

(9)
Using inequality (4b), we have:

max

{
d̂ij(t);

B

L
αij(t, δt)

}
≤ 2
√

3 max

{
dij ;

B

L
αij(t, δt)

}
.

We plug in the inequality above in (9) and obtain:

6 max
{
Lαij(t, δt)d̂ij(t);Bα

2
ij(t, δt)

}
<
∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣,

implying that we have either ∆′ij(t) > 0 or ∆′ji(t) > 0.

For the second claim, Let i, j ∈ JKK and t ∈ JT K such that:

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|Ri −Rj |2
;

B

|Ri −Rj |

}
. (10)

If Tij(t) = 0, then ∆′ij = ∆′ji = −∞.

Otherwise, inequality (10) implies that:

|Ri −Rj | ≤ 3 max
{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
.
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Now we use inequality (4a) from event A to lower bound |Ri −Rj |. We have:∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣−3 max
{
Lαij(t, δt)d̂ij(t) ; Bα2

ij(t, δt)
}
≤ 3 max

{
Lαij(t, δt)dij ; Bα2

ij(t, δt)
}
.

We plug in inequality (4d) to upper bound dij . We conclude that:∣∣∣R̂ij(i, t)− R̂ij(j, t)∣∣∣ ≤ 6 max
{
Lαij(t, δt)d̂ij(t);Bα

2
ij(t, δt)

}
,

implying that we have: ∆′ij(t) ≤ 0 and ∆′ji(t) ≤ 0.

Now we turn to the proof of Theorem M-5.3. Recall the following notations: for i ∈ JKK define:

Λi := min
i∗∈S∗

max

{
L2d2

ii∗

|Ri −Ri∗ |2
;

B

Ri −Ri∗

}
.

Denote the corresponding reordered values:

Λ(1) ≤ Λ(2) ≤ · · · ≤ Λ(K) = +∞,

and Λ∗ := min{Λi; Λi < +∞}.

Proof of Theorem M-5.3. By Lemma 6, in order to show that R(ĝ) ≤ R∗ + cBε, it suffices to
prove that for any i, j ∈ ST , it holds Tij(T ) ≥ B log(Kδ−1

T )/ε.

Let ε > 0, define the following sequences, for N ∈ JK − 1K:{
φN := 289(K −N)2

(
Λ(N) − Λ(N−1)

)
log
(
δ−1Cε

)
;

τN :=
∑N
k=1 φk,

where we define Λ(0) = 0 and

Cε := K
∑
i∈Scε

Λi + 2|Sε|2 min

{
1

ε
,Λ∗

}
.

Claim 1. If event A holds, for any N ∈ JKK after round dτNe, all experts i satisfying Λi ≤ Λ(N)

are necessarily eliminated.

Proof. Recall that the number of queries required to eliminate an expert i ∈ JKK is upper bounded
by the number of data points needed to have: ∆i∗i > 0 for any i∗ ∈ S∗, which would lead to the
elimination of i by i∗.

Let i∗ be an arbitrary element of S∗. We use an induction argument, for N = 1 the claim is a direct
consequence of the definition of τ1 and Lemma 7. Let N < K and suppose that the claim is valid
for all i ≤ N . Let j denote an expert such that Λj = Λ(N+1) and j was not eliminated before dτNe.
For i ≤ N , the induction hypothesis suggests that between round dτie and dτi+1e there was at most
K − i non-eliminated experts. Since the allocation strategy is uniform over the pairs of experts in
S × S, we have:

Tji∗(τN+1) ≥ 2

N∑
i=0

τi+1 − τi
(K − i)(K − i+ 1)

, (11)

where τ0 = 0. Recall that the definition of τi implies that:

τi+1 − τi = 289(K − i− 1)2 log
(
Cεδ
−1
)(

Λ(i+1) − Λ(i)

)
. (12)

We plug in the lower bound given in (12) into (11) to obtain:

Tji∗(τN+1) ≥ 289 log
(
Cεδ
−1
)
Λ(N+1).

Using Lemma 7 we conclude that expert j is eliminated before round τN+1, which completes the
induction argument.

7



Claim 2. We have for any N ∈ JKK:

τN = 289 log
(
Cεδ
−1
)(N−1∑

i=1

(2(K − i) + 1)Λ(i) + (K −N)2Λ(N)

)
.

Proof. We have by definition of τN :

τN =

N∑
i=1

φi

=

N∑
i=1

289(K − i)2
(
Λ(i) − Λ(i−1)

)
log
(
δ−1Cε

)
=

N∑
i=1

289(K − i)2Λ(i) log
(
δ−1Cε

)
−

N∑
i=1

289(K − i)2Λ(i−1) log
(
δ−1Cε

)
= 289 log

(
δ−1Cε

)(N−1∑
i=1

(2(K − i) + 1)Λ(i) + (K −N)2Λ(N)

)
.

Conclusion: Let Nε denote the integer satisfying (we do not consider the trivial case where all the
expert have the same risk):

Λ(Nε) <
1

ε
< Λ(Nε+1).

Recall that we suppose that T satisfies:

T ≥ 578Cε log(Cεδ
−1).

Observe that (using Claim 2):

T ≥ τNε + 289 log(Cεδ
−1)

(
2|Sε|2 min

{
1

ε
; Λ∗

}
− (K −Nε)2Λ(Nε)

)
(13)

≥ τNε + 289 log(Cεδ
−1)

(
2|Sε|2 min

{
1

ε
; Λ∗

}
− |Sε|2Λ∗

)
(14)

≥ τNε + 289 log(Cεδ
−1)|Sε|2 min

{
1

ε
; Λ∗

}
. (15)

Claims 1 and 2 show that after dτNεe rounds only elements i ∈ JKK satisfying: Λi ≤ Λ(Nε) are
eliminated. Therefore, if 1/ε > Λ∗, we have : Λ(Nε) = Λ∗ and all the remaining experts are optimal
(i.e. in S∗). Hence the mean of any two experts in S satisfies: R(ĝ) ≤ R∗.
Now suppose that 1/ε < Λ∗. We have for the last T − dτNεe rounds all the experts in Scε were
eliminated (hence there was at most |Sε| non-eliminated experts). Let (k̂, l̂) denote the pair output by
algorithm M-2 after T rounds, we have:

Tk̂l̂(T ) ≥ log(Cεδ
−1)

T − τNε
|Sε|2

≥ 289
log(Cεδ

−1)

ε

≥ c log(KTδ−1)
1

ε
,

where c is a numerical constant, we used (15) for the second line, and a simple calculation to obtain
the last line. Using Lemma 6, we obtain the desired conclusion.
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6 Proof of Theorem M-4.1

In this section we will show that for C large enough, if A holds, we have:

R(ĝ)−R∗ . ε. (16)

Let i∗ be an arbitrary element of S∗. Denote Ti the number of queries required to eliminate an expert
i ∈ JKK. Ti is upper bounded by the number of data points needed to have: ∆i∗i > 0, which would
lead to the elimination of i by i∗. The following claim, which is a consequence of Lemma 7, provides
this upper bound.
Claim 3. If A holds, let i ∈ JKK be a suboptimal expert (Λi < +∞). We have:

Ti ≤ 289 log
(
KCδ−1

)
Λi.

Proof. Lemma 5 shows that experts i∗ ∈ S∗ are never eliminated if A is true. Using Lemma 7, the
number of queries required for the elimination of a suboptimal expert i by expert i∗, satisfies:

Ti ≤ 289 log
(
KCδ−1

)
Λi.

Let ε ≥ 0. Recall that Sε is defined by:

Sε :=

{
i ∈ JKK : Λi >

1

ε

}
Suppose that we have:

C > 578

∑
i∈Scε

Λi + |Sε|min

{
1

ε
; Λ∗

} log

Kδ−1

∑
i∈Scε

Λi + |Sε|min

{
1

ε
; Λ∗

},
We therefore have using Lemma 2:

C > 289 log
(
KCδ−1

)∑
i∈Scε

Λi + |Sε|min

{
1

ε
; Λ∗

}.
Let us denote by C1 the total number of queries received by all the experts in Sε and by C2 the total
number of queries received by the remaining experts. We therefore have: C = C1 + C2. In order to
show that at a certain round, all the experts in Scε were eliminated, it suffices to prove that:

C1 ≥ |Sε|max
i∈Scε

Ti,

since the inequality above shows that the budget is not totally consumed after round maxi∈Scε Ti
where all elements in Scε where eliminated.

Claim 3 provides the following upper bound for C2:

C2 ≤ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi.

We therefore have:

C1 = C − C2

≥ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi + |Sε|min

{
1

ε
; Λ∗

}− C2

≥ 289 log
(
KCδ−1

) ∑
i∈Scε

Λi + |Sε|min

{
1

ε
; Λ∗

}− 289 log
(
KCδ−1

) ∑
i∈Scε

Λi.
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Hence:

C1 ≥ 289 log
(
KCδ−1

)
|Sε|min

{
1

ε
; Λ∗

}
(17)

Recall that by definition of Sε, using Claim 3 we have:

max
i∈Scε

Ti ≤ 289 log
(
KCδ−1

)
min

{
1

ε
; Λ∗

}
,

hence:
C1 ≥ |Sε|max

i∈Scε
Ti.

This shows that S ⊆ Sε. We have two possibilities: if 1
ε < Λ∗, the selected pair (Fk̄, Fl̄) ∈ S × S

satisfies:
Tk̄l̄ = min{Tk̄, Tl̄} ≥

C1

|Sε|
.

Using (17), we have:

Tk̄l̄ ≥ 289 log
(
KCδ−1

)1

ε
. (18)

Observe that Lemma 6 applies in this setting. In particular, the total number of rounds T of
algorithm M-1, satisfy: T ≤ C. Hence, it holds

R

(
Fk̂ + Fl̂

2

)
−R∗ ≤ c B log(KCδ−1)

Tk̄l̄
.

We conclude by injecting inequality (18) in the bound above. We therefore have:

R(ĝ)−R∗ ≤ cB ε,

where c is an absolute constant.

If 1
ε > Λ∗, by definition of Λ∗ and the fact that S ⊆ Sε, we conclude that only the optimal experts

(i.e. the experts i such that Ri = R∗) remain when the budget is totally consumed. Hence combining
any 2 of these expert will lead to the bound: R(ĝ) ≤ R∗.

7 Proof of lower bounds

The lemma below gives a lower bound for the problem of estimating the parameter describing a
Bernoulli random variable.
Lemma 8 ([1], Lemma 5.1). Suppose that α is a random variable uniformly distributed on {α−, α+},
where α− = 1/2−ε/2 and α+ = 1/2+ε/2, with 0 < ε < 1. Suppose that ξ1, . . . , ξm are i.i.d {0, 1}-
valued random variables with P(ξi = 1) = α for all i. Let f be a function from {0, 1} → {α−, α+}.
Then it holds:

P(f(ξ1, . . . , ξm) 6= α) >
1

4

(
1−

√
1− exp

(
−2dm/2eε2

1− ε2

))
.

7.1 Proof of Lemma M-6.1

Let T > 0 and consider an convex combination of experts ĝ output after full observation of T training
rounds. We will construct two experts F1 and F2 and a target variable Y and we will show that, for
these variables, a strategy for our problem (m = 2 and p = 1) gives a solution to the problem in
Lemma 8. Finally we will use the lower bound from this lemma.

For θ ∈ [0, 1], let Pθ denote the probability distribution of T i.i.d. draws Y1, . . . , YT of Bernoulli
variables or parameter θ, while F1,t = 0 and F2,t = 1 almost surely for t ∈ JT K. Let α be a variable
that is uniformly distributed on {α−, α+} with α± = 1

2 ±
ε
2 , and ε ∈ (0, 1) is a parameter to be

tuned subsequently; let the training obervations be drawn according to Pα. Since p = 1, the output
ĝ is either F1 or F2. Define f : {0, 1}T → {α−, α+} such that given (Y1, . . . , YT ), f outputs
1
2 −

ε
2 if ĝ = F1 and 1

2 + ε
2 if ĝ = F2. By construction we have that the events {f = α} and
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{R(ĝ) = min{R1, R2}} are equivalent. Using Lemma 8 and setting ε = c0√
T

where c0 is a constant
such that the lower bound in Lemma 8 is equal to 0.1, we have:

P
(
R(ĝ)−min{R1, R2} ≥

c0√
T

)
> 0.1.

Due to the randomization of α, the above probability is the average of the corresponding event under
Pα− and Pα+ . Therefore, under at least one of these two training distributions, the deviation event
has a probability at least 0.05.

7.2 Proof of Lemma M-6.2

The gist of the proof is the following. We will construct a distribution with two experts that are very
correlated. In this situation, going from a weighted average of the two experts to a single expert with
the largest weight does not change the prediction risk much, and so we could find a single expert with
small risk if the weighted average has small risk. On the other hand, since the agent only observes
one expert per training round, from their point of view the observational distribution is identical as if
the experts were independent – the correlation cannot be observed. Therefore the same strategy could
be used to find the best expert in the independent case. This contradicts the lower bounds in this case
(which is a standard bandit setting), therefore it is impossible to pick consistently a weighted average
with small risk in a situation where the correlations cannot be observed.

Let T > 0 be fixed. We consider the particular setting where the target variable Y is identically 0,
and the expert predictions F1 and F2 are two (non independent) Bernoulli random variables. We
define a distribution P− for (F1, F2) such that:

• the marginal distribution of F1 is Bernoulli of parameter α− = 1
2 −

ε
2 ;

• the marginal distribution of F2 is Bernoulli of parameter α+ = 1
2 + ε

2 ;

• it holds that P−(F1F2 = 1) = α−.

Note that this can be easily constructed as F1 = 1{U ≤ α−};F2 = 1{U ≤ α+}, where U is a
uniform variable on [0, 1]. Let P+ be defined similarly with the role of F1 and F2 reversed. Here, ε is
a positive parameter to be tuned later. We denote R−, R+ for the prediction risks under distributions
P−,P+. We have R−(F1) = R+(F2) = α−, R−(F2) = R+(F1) = α+, and R∗ = α− is the same
under P− and P+.

Let us be given an arbitrary training observation strategy π (prescribing at each training round which
expert to observe based only on past observations), and output a convex combination of experts ĝ.
This output is a convex combination of F1 and F2, hence it is characterized by the weight of F1,
which we denote α̂. The parameter α̂ depends on the observed data. We also define f̂ associated
to this training strategy, that outputs F1 if α̂ > 1

2 and F2 otherwise. Finally, let us denote Q+
π the

distribution of the training data observed by the agent when the T experts opinions are drawn i.i.d.
from P− and the agent observes the expert advices following strategy π; and define Q−π similarly.

Define the event A+ :=
{
R+(ĝ)−R∗ ≥ 1

4ε
}

and similarly A−. In the remainder of the proof,
we will show, using Bretagnolle-Hubert inequality (Theorem 14.2 in [2]), that either Q−π (A−) or
Q+
π (A+) is lower bounded by a positive constant.

We have under the distribution P−:

R−(ĝ)−R−(f̂) = E−
[
(α̂F1 + (1− α̂)F2)

2
]
− E−

[(
1

(
α̂ >

1

2

)
F1 + 1

(
α̂ ≤ 1

2

)
F2

)2
]

= ε(1− α̂)2 − ε
(

1− 1
(
α̂ >

1

2

))
≥ −3

4
ε.

Note that the above estimate crucially depends on the fact that F1, F2 are not independent under P−.
In view of the above, the event A− is implied by R−(f̂) − R∗ = ε. Similarly, A+ is implied by
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R+(f̂)−R∗ = ε. Hence:

Q−π (A−) + Q+
π (A+) ≥ Q−π

(
R−(f̂)−R∗ = ε

)
+ Q+

π

(
R+(f̂)−R∗ = ε

)
= Q−π

(
f̂ = F2

)
+ Q+

π

(
f̂ 6= F2

)
.

Now we use Bretagnolle-Hubert inequality:

Q−π (f = F2) + Q+
π (f 6= F2) ≥ 1

2
exp
(
−D

(
Q−π ,Q+

π

))
,

where D(Q−π ,Q+
π ) is the relative entropy between Q−π and Q+

π . In order to conclude, we need an
upper bound on D(Q−π ,Q+

π ). Since the agent only observes one expert in each round according
to strategy π, the distribution of the observed data Q−π or Q+

π is unchanged if we replace the
generating distributions P− or P+ by distributions having the same marginals, but for which F1 and
F2 are independent. Therefore, the observational distributions Q−π ,Q+

π are equivalent to that of the
observational distributions, under the same strategy, of a canonical bandit model with two arms. We
can then use the divergence decomposition formula (Lemma 15.1 of [2]) to upper bound D(Q−π ,Q+

π );
denoting P(1)

− , P(2)
− the marginals of P− and similarly for P+, it holds

D
(
Q−π ,Q+

π

)
= E−[T1]D(P(1)

− ,P(1)
+ ) + E−[T2]D(P(2)

− ,P(2)
+ ),

where the expectation E−[.] is with respect to the probability distribution Q−π and Ti denotes the
total number of rounds where the advice of expert Fi was queried using the strategy π. We have:
T1 + T2 = T almost surely, and D(P(1)

− ,P(1)
+ ) = D(P(2)

− ,P(2)
+ ) ≤ 4ε2 provided ε ≤ 1

2 . Therefore:

Q−π (A−) + Q+
π (A+) ≥ 1

2
exp
(
−4ε2T

)
.

This shows that there exists a probability distribution P ∈ {P−,P+} for the experts advices and the
target variable such that the prediction ĝ satisfies:

P(R(ĝ)−R∗ ≥ ε) ≥ exp
(
−4ε2T

)
,

We conclude by choosing ε = 1
2
√
T

.

8 Intermediate case: m ≥ 3, p = 2

In this section we assume that the learner is allowed to access more than two experts advices per
round. We show that this leads to an improvement of the bound in Theorem M-5.2. We consider the
following extension of Algorithm M-2:

Algorithm 1 Intermediate case
Input m, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do

Sample a subsetM of size m from JKK uniformly at random.
Query the advice of experts inM and update the corresponding quantities.
For all i, j: If ∆′ij > 0: S ← S \ {j}.

end for
On interrupt: Let k̂ ∈ S and let l̂← argmax

j∈S
d̂k̂j .

Return 1
2

(
Fk̂ + Fl̂

)
.

Theorem 9. (Instance independent bound) Suppose Assumption M-1 holds. Let T ≥ 1, and denote
ĝ the output of Algorithm 1 with inputs (m,L, ρ) in round T . If m ≥ 3, then with probability at least
1− δ:

R(ĝ) ≤ min
i∈JKK

Ri + cB
(K/m)2 log

(
2TKδ−1

)
T

,

where c is an absolute constant.
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Proof. Let i, j ∈ JKK, denote Tij(T ) the total number of rounds where the advice of expert i and
j were jointly queried. We have: Tij(T ) =

∑T
t=1 1{i and j were jointly queried at round t}. We

conclude that Tij(T ) is the sum of T independent and identically distributed Bernoulli variables
with parameter: m(m−1)

K(K−1) . We therefore have the following consequence of Bernstein concentration
inequality, with probability at least 1− δ, for all i, j ∈ JKK and T ≥ K:

|Tij(T )− E[Tij(T )]| ≤

√
2T

m(m− 1)

K(K − 1)
log(2KT/δ) +

1

3
log(2KT/δ). (19)

Suppose that δ satisfies:

log(2KT/δ) ≤ 1

16

m2

K2
T.

Then we have: √
2T

m(m− 1)

K(K − 1)
log(2KT/δ) +

1

3
log(2KT/δ) ≤ 1

2

m(m− 1)

K(K − 1)
T, (20)

Observe that the result of Lemma 6 still holds in this setting for non-eliminated elements (experts
in ST ), since the elimination criterion for an expert j, which consists of the existence of i such that
∆′ij > 0, is the same as in Algorithm M-2. Let ĝ denote the output of Algorithm 1, we conclude that
if A and (19) hold for all i, j and T , we have:

R(ĝ)−Ri∗ ≤ κ
log
(
KTδ−1

)
Tk̂l̂(T )

, (21)

where κ is a constant depending only η, L and ρ. Finally, we use (20). We therefore have with
probability at least 1− 4δ:

R(ĝ) ≤ min
i∈JKK

Ri + c B
(K/m)2 log

(
2TKδ−1

)
T

.

Now suppose that δ satisfies:

log(2KT/δ) ≥ 1

16

m2

K2
T,

then it holds:
(K/m)2 log

(
2TKδ−1

)
T

≥ 1

16
.

We conclude that for c̄ = max{c, 16} we have:

R(ĝ)− min
i∈JKK

Ri ≤ B ≤ c̄B
(K/m)2 log

(
2TKδ−1

)
T

.
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