
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

6 APPENDIX

6.1 VISUALIZATION OF MUTUAL INFORMATION-BASED DENOISING MECHANISM

To further demonstrate the efficacy of the proposed Mutual Information-Based Denoising Mechanism,
we visualize the denoised trajectory and future predicted trajectory on the ETH dataset. As shown in
Figure 4(a), optimizing solely for mutual information leads to the destruction of structural information.
However, as depicted in the Figure 4(b), when we incorporate the reconstruction loss Lrec, the
structure of the trajectory is preserved, and more accurate future trajectory predictions based on these
well-structured observations. This underscores the effectiveness of our proposed method.

(a) Results of applying LMI (b) Results of applying LMI + Lrec

Figure 4: Visualization of trajectories on ETH dataset by employing (a) LMI and (b) LMI + Lrec.
The clean, noisy, and denoised observations are shown in green, blue, and red, respectively. The
ground-truth and predicted future trajectories are shown in orange and cyan, respectively.

6.2 MORE ANALYSIS OF NOISYTRAJ

Performance under low/no noise settings. We evaluate NoisyTraj under low or no noise by setting
the Gaussian noise σ to 0.05 and 0. The results presented in Table 6 indicate that after integrating
NoisyTraj into EqMotion, the performance is still superior to baselines when at a low noise level
(σ = 0.05). Additionally, NoisyTraj+EqMotion performs comparably to EqMotion when σ = 0.
This demonstrates NoisyTraj does not degrade the performance when noise is not introduced.

Table 6: Comparison of different methods under different noise setting on the SDD dataset. The
evaluation metrics are ADE and FDE (Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.05

EqMotion 8.48 13.49
Wavelet+EqMotion 8.39 13.37
EMA+EqMotion 8.42 13.36

NoisyTraj+EqMotion 8.32 13.28

Noise Method SDD
ADE FDE

σ = 0

EqMotion 8.08 13.12
Wavelet+EqMotion 8.16 13.42
EMA+EqMotion 8.22 13.57

NoisyTraj+EqMotion 8.11 13.08

Table 7: Comparison with baselines using MID backbone. The evaluation metrics are ADE and FDE
(Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

MID 12.86 18.35
Wavelet+MID 12.26 17.88
EMA+MID 12.45 18.01

NoisyTraj+MID 11.97 17.41

Performance on diffusion-based backbones. In addition to GraphTern and EqMotion, we integrate
NoisyTraj into MID, a diffusion-based model for trajectory prediction. Specifically, we first use

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

TDM to denoise the noisy observations Xobs, obtaining X̂obs . Then, using both the denoised and
original observations, we sample normal noise from a standard Gaussian distribution to generate
Ŷfut and Ỹfut, respectively. To optimize the model, We apply Lpred and Lrank alongside the MID
loss . The results shown in Table 7 show that NoisyTraj still outperforms the baselines, which further
underscores its adaptability.

Comparison with frozen predictor. We conduct an experiment where we freeze the predictor and
only train the denoiser. We first load the predictor trained on clean observations, freeze its parameters,
and then integrate NoisyTraj, training only the denoiser. The results, shown in Table 8, reveal a
performance decrease when the predictor’s parameters are frozen. This indicates the necessity of
jointly learning the denoiser and predictor.

Table 8: Comparison with NoiseTraj where the predictor is freezed. The best results are highlighted
in bold

Noise Method SDD
ADE FDE

σ = 0.4
EqMotion 13.46 19.60

NoisyTraj+EqMotion (freeze) 12.19 17.95
NoisyTraj+EqMotion 11.92 17.65

Comparison with Learning-based baseline. To our knowledge, our work is the first to address
trajectory prediction with noisy observations, with no existing learning-based baselines for this
problem. We use Noise2Void [1], a learning-based denoiser originally for image denoising, as
another baseline. We first denoise the observed trajectories, and then perform future trajectory
prediction based on the observations. The results in Table 9 of the attached PDF show that NoisyTraj
outperforms Noise2Void, demonstrating the effectiveness of our method.

Table 9: Comparison with baselines on SDD dataset. The evaluation metrics are ADE and FDE (Unit:
pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

EqMotion 13.46 19.60
Wavelet+EqMotion 12.38 18.25
EMA+EqMotion 12.79 18.64

Noise2Void+EqMotion 12.46 18.52
NoisyTraj+EqMotion 11.92 17.65

6.3 PROOF OF THEOREM 3.1

Theorem 6.1 (Theorem 3.1 restated). Given two random variables x and y, the mutual information
I(x; y) has the following upper bound

I(x; y) ≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (19)

Proof. The definition of mutual information between variables x and y is

I(x; y) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
= Ep(x,y)[log p(y|x)]− Ep(x,y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)] (20)

By the definition of the marginal distribution, we have:

p(y) =

∫
p(y|x)p(x)dx = Ep(x)[p(y|x)]. (21)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By substituting Equation (21) to , we have:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]] (22)

Note that the log(·) is a concave function, by Jensen’s Inequality, we have

−Ep(y)[logEp(x)[p(y|x)]] ≤ −Ep(y)Ep(x)[log p(y|x)]
= Ep(x)Ep(y)[log p(y|x)] (23)

By applying this inequality to Equation (22), we obtain:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]]
≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (24)

6.4 PROOF OF THEOREM 3.2

Theorem 6.2 (Therorem 3.2 restated). Given two probability distributions P, Q. The Kullback
Liebler Divergence admits the following dual representation:

DKL(P||Q) = sup
T :Ω→R

EP[T]− logEQ[e
T], (25)

Proof. The proof comprises two steps. Firstly, we prove the existence of the supremum in the dual
representation. Subsequently, we demonstrate that this representation serves as the lower bound of
the Kullback-Liebler Divergence.

Lemma 1. There exist a function T ∗ : Ω → R, such that:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (26)

Proof. We choose a function T ∗ = log P
Q , then we have:

EP(T
∗)− logEQ[e

T∗
] = EP

[
log

P
Q

]
− logEQ[e

log P
Q] (27)

= DKL(P||Q)− logEQ

[
P
Q

]
(28)

= DKL(P||Q)− log

∫
Ω

Q
P
Q
dω (29)

= DKL(P||Q)− log

∫
Ω

Pdω (30)

= DKL(P||Q)− log 1 (31)
= DKL(P||Q) (32)

Lemma 2. For any function T : Ω → R, the following equality holds:

DKL(P||Q) ≥ EP[T]− logEQ[e
T] (33)

Proof. We define the probability density function G as:

G ≜
QeT

EQ[eT]
(34)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Note that G satisfies the non-negativity and the integral of its probability density function (PDF) over
the input space equals 1: ∫

Ω

Gdω =

∫
Ω

QeT

EQ[eT]
dω =

∫
Ω

EQ[e
T]

EQ[eT]
dω = 1 (35)

Then, we calculate the difference between the two sides of 42 to obtain:

DKL(P||Q)− EP[T] + logEQ[e
T] = EP

[
log

P
Q

− T

]
+ logEQ[e

T] (36)

= EP

[
log

P
QeT

+ logEQ[e
T]

]
(37)

= EP

[
log

PEQ[e
T]

QeT

]
(38)

= EP

[
log

P
G

]
(39)

= DKL(P||G) ≥ 0 (40)

Based on the Lemma 1 and Lemma 2, we show that by choosing T ∗ = log P
Q , we obtain:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (41)

Additionally, for any function T : Ω → R,

DKL(P||Q) ≥ EP[T]− logEQ[e
T] (42)

holds. Hence,
DKL(P||Q) = sup

T :Ω→R
EP[T]− logEQ[e

T], (43)

6.5 IMPLEMENTATION DETAILS

The trajectory denoise model ΦTDM is implemented using a 3-layer Transformer with a feature
dimension of 256 and the attention head is set to 4. The number of masked locations is set to 2 in
our experiments. We empirically set the trade-off parameter β to 0.01 and the margin ∆ to 0.05.
Additionally, we set the trade-off parameters α, δ, and γ to 0.01, 1 and 0.01, respectively. For the
Wavelet denoising method, we utilize the Daubechies wavelet to decompose the signals, and the level
is set to 2. We employ the soft-threshold method, with a threshold value set to 0.2. Regarding the
EMA method, we empirically determine the Weighted parameter to be 0.75. It is worth noting that
these parameter selections are based on experiments aimed at ensuring optimal performance. All
experiments are conducted on the PyTorch platform with 4 NVIDIA RTX3090 GPUs.

6.6 BROADER IMPACTS

This work addresses the challenge of trajectory prediction based on noisy observations. It enhances
robustness against noise in the trajectory prediction task, benefiting various applications including
autonomous driving, robotic navigation, and surveillance systems, thereby contributing to safer
deployment.

6.7 TRAINING ALGORITHM OF NOISYTRAJ

We provide the training algorithm of NoisyTraj in the Algorithm 1.

6.8 DISCUSSSION AND LIMITATIONS

In this paper, we simplify the problem by assuming that only the observed trajectory is noisy, which
is a reasonable assumption in certain scenarios. For example, when using an autonomous vehicle
equipped with both cameras and LiDAR, we can treat camera-derived trajectories as noisy data and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 1: Training Procedure of NoisyTraj
Input: Noisy observations Xobs, ground-truth future trajectories Yfut. Four trade-off

hyper-parameters: α, β, δ and γ.
Output: Network parameters: ΦTDM, ΦTPB, ψ, and ϕ.
Initialize: Randomly initialize ΦTDM, ΦTPB, ψ, and ϕ.
while Model not converges do

Random mask the noisy observations using the mask vector: Xmask
obs = Xobs ⊙Mobs

Obtain the trajectories X̂mask
obs = ΦTDM(Xmask

obs)

Calculate reconstruction loss Lrec = ||X̂mask
obs ⊙ (1−Mobs)−Xobs ⊙ (1−Mobs)||2

Input noisy observations to ΦTDM for denoising: X̂obs = ΦTDM(Xobs)
Employ Mutual Information-based mechanism for further denoising:
LMI = αEp(Xobs,X̂obs)[log qϕ(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log qϕ(X̂obs|Xobs)]

− sup
ψ

Ep(X̂obs,Yfut)[Tψ] + logEp(X̂obs)p(Yfut)[e
Tψ]

Obtain the future predictions based on denoised observations: {Ŷ kfut}Kk=1 = ΦTPB(X̂obs)

Obtain the future predictions based on noisy observation: {Ỹ kfut}Kk=1 = ΦTPB(Xobs)
Calculate ddenoise and dnoise:
ddenoise = min

1≤k≤K
||Ŷ kfut − Yfut||2, dnoise = min

1≤k≤K
||Ỹ kfut − Yfut||2

Calculate Lpred and Lrank as
Lpred = ||Ŷ bestfut − Yfut||2 + ||Ỹ bestfut − Yfut||, Lrank = max(0, ddenoise − dnoise +∆)

Optimizing L = Lpred + βLrank + δLrec + γLMI by gradient descent to update the ΦTDM
and ΦTPB.

end

LiDAR-derived trajectories as clean ground-truth for training. Once the model is trained on this
data, it can be deployed on a vehicle equipped with only cameras. This camera-only approach is
adopted by top industry Tesla to design the Autopilot system, which has been successfully deployed
in real-world scenarios [2].

While this work focuses on addressing trajectory prediction based on noisy observed trajectories, it is
important to acknowledge that the collected future ground-truth trajectories may also be contaminated
with noise. In such cases, the proposed mutual information-based denoising mechanism may not
be effective, as NoisyTraj assumes the future trajectories are noise-free and uses them as additional
information for denoising the observations. Future research could explore methods for predicting
future trajectories based on both noisy observations and noisy future ground-truths.

REFERENCE

[1] Krull, Alexander, Tim-Oliver Buchholz, and Florian Jug. Noise2void-learning denoising from
single noisy images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp.2129-2137, 2019.

[2] Tesla AI Day 2021, August 19, 2021, 3:03:20. https://www.youtube.com/watch?v=j0z4FweCy4M.

21

	Introduction
	Related Works
	Trajectory Prediction with Clean Observations
	Trajectory Anomaly Detection

	Methods
	Problem Formulation
	Overall Framework
	Trajectory Prediction with Noisy Observations
	Mutual Information-Based Denoising Mechanism.
	Trajectory Prediction Based on Ranking Loss.

	Optimization and Inference

	Experiments
	Experiment Settings
	Results and Analysis

	Conclusion
	Appendix
	Visualization of Mutual Information-Based Denoising Mechanism
	More analysis of NoisyTraj
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Implementation Details
	Broader Impacts
	Training algorithm of NoisyTraj
	Discusssion and Limitations

