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6 APPENDIX

6.1 VISUALIZATION OF MUTUAL INFORMATION-BASED DENOISING MECHANISM

To further demonstrate the efficacy of the proposed Mutual Information-Based Denoising Mechanism,
we visualize the denoised trajectory and future predicted trajectory on the ETH dataset. As shown in
Figure[d|(a), optimizing solely for mutual information leads to the destruction of structural information.
However, as depicted in the Figure Ekb), when we incorporate the reconstruction loss L,..., the
structure of the trajectory is preserved, and more accurate future trajectory predictions based on these
well-structured observations. This underscores the effectiveness of our proposed method.

(a) Results of applying Lasr (b) Results of applying L1 + Lree

Figure 4: Visualization of trajectories on ETH dataset by employing (a) L7 and (b) Lps1 + Lyec-
The clean, noisy, and denoised observations are shown in green, blue, and red, respectively. The
ground-truth and predicted future trajectories are shown in orange and cyan, respectively.

6.2 MORE ANALYSIS OF NOISYTRAJ

Performance under low/no noise settings. We evaluate NoisyTraj under low or no noise by setting
the Gaussian noise o to 0.05 and 0. The results presented in Table[6]indicate that after integrating
NoisyTraj into EqMotion, the performance is still superior to baselines when at a low noise level
(o = 0.05). Additionally, NoisyTraj+EgMotion performs comparably to EqQMotion when o = 0.
This demonstrates NoisyTraj does not degrade the performance when noise is not introduced.

Table 6: Comparison of different methods under different noise setting on the SDD dataset. The
evaluation metrics are ADE and FDE (Unit: pixels). The best results are highlighted in bold.

. SDD . SDD
Noise Method ADE FDE Noise Method ADE FDE
EqMotion 8.48 13.49 EqMotion 8.08 13.12
o = 0.05 Wavelet+EqMotion |8.39 13.37 =0 Wavelet+EqMotion |8.16 13.42
' EMA+EqMotion |8.42 13.36 EMA+EqMotion |8.22 13.57
NoisyTraj+EqMotion|8.32 13.28 NoisyTraj+EqMotion|8.11 13.08

Table 7: Comparison with baselines using MID backbone. The evaluation metrics are ADE and FDE
(Unit: pixels). The best results are highlighted in bold.

SDD
ADE FDE
MID 12.86 18.35
4 Wavelet+MID [12.26 17.88

EMA+MID [12.4518.01
NoisyTraj+MID|11.97 17.41

Noise Method

c=0.

Performance on diffusion-based backbones. In addition to GraphTern and EqMotion, we integrate
NoisyTraj into MID, a diffusion-based model for trajectory prediction. Specifically, we first use
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TDM to denoise the noisy observations X, obtaining X obs - Then, using both the denoised and
original observations, we sample normal noise from a standard Gaussian distribution to generate
qut and Y7, respectively. To optimize the model, We apply £, eq and L,y alongside the MID
loss . The results shown in Table[7]show that NoisyTraj still outperforms the baselines, which further
underscores its adaptability.

Comparison with frozen predictor. We conduct an experiment where we freeze the predictor and
only train the denoiser. We first load the predictor trained on clean observations, freeze its parameters,
and then integrate NoisyTraj, training only the denoiser. The results, shown in Table [§] reveal a
performance decrease when the predictor’s parameters are frozen. This indicates the necessity of
jointly learning the denoiser and predictor.

Table 8: Comparison with NoiseTraj where the predictor is freezed. The best results are highlighted
in bold

. SDD
Noise Method ADE FDE
EqMotion 13.46 19.60

o = 0.4|NoisyTraj+EqMotion (freeze)|12.19 17.95
NoisyTraj+EqMotion 11.9217.65

Comparison with Learning-based baseline. To our knowledge, our work is the first to address
trajectory prediction with noisy observations, with no existing learning-based baselines for this
problem. We use Noise2Void [1], a learning-based denoiser originally for image denoising, as
another baseline. We first denoise the observed trajectories, and then perform future trajectory
prediction based on the observations. The results in Table[0]of the attached PDF show that NoisyTraj
outperforms Noise2Void, demonstrating the effectiveness of our method.

Table 9: Comparison with baselines on SDD dataset. The evaluation metrics are ADE and FDE (Unit:
pixels). The best results are highlighted in bold.

. SDD
Noise Method ADE IDE
EqMotion 13.46 19.60

Wavelet+EqMotion |12.38 18.25
o =04 EMA+EgqMotion [12.79 18.64
Noise2Void+EgMotion|12.46 18.52
NoisyTraj+EqMotion (11.92 17.65

6.3 PROOF OF THEOREM [3.1]

Theorem 6.1 (Theorem [3.T|restated). Given two random variables = and y, the mutual information
I(x;y) has the following upper bound

I(z;y) < Epeyllog p(ylz)] — Epa)Epy [log p(y|z)] (19)

Proof. The definition of mutual information between variables x and y is

I(239) = Epgoy) {1 P(”fy))} B, {log P(yx)]

og
p(z)p(y p(y)
= Ep(m,y) [IOg p(y|x)] - IE:p(m,y) [log p(y)}
= Bz, [log p(ylx)] — Epyy [log p(y)] (20)

By the definition of the marginal distribution, we have:

p(y) = / p(y]2)p(@)de = By [p(y2)]. @1
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By substituting Equation (Z) to , we have:
I(z;y) = Ep(a,y) log p(ylx)] — Epy) [log p(y)]
= Ep(ayllogp(ylz)] — Epy)llog Epa) [p(yl2)]]
Note that the log(-) is a concave function, by Jensen’s Inequality, we have
—Epy) [10g Epa) [p(y|2)]] < —Ep(y) Ep(x) [log p(yl)]
= Ep@)Ep(y) log p(ylz)]
By applying this inequality to Equation (22)), we obtain:
I(z3y) = Ep(a,) [log p(y|2)] — Epy [p(y)]
= IE:p(aﬁ,y) [Ing(yM)} - IE:p(y) [IOng(m)[p(y‘x)H
< IEp(ac,y) [lng(y|I)} - ]Ep(w)Ep(y) [logp(mx)]

6.4 PROOF OF THEOREM [3.2]

(22)

(23)

(24)

Theorem 6.2 (Therorem [3.2] restated). Given two probability distributions P, Q. The Kullback

Liebler Divergence admits the following dual representation:

Dkr(P||Q) = sup Ep[T]—logEgle’],
T:Q—R

(25)

Proof. The proof comprises two steps. Firstly, we prove the existence of the supremum in the dual
representation. Subsequently, we demonstrate that this representation serves as the lower bound of

the Kullback-Liebler Divergence.

Lemma 1. There exist a function T* : Q) — R, such that:

Dk (P||Q) = Ep[T"] — log Egle”]
Proof. We choose a function 7% = log %, then we have:
* P

Ep(T*) — logEgle” | = Ep [log Q} — log Eg[e'*® %]

P

= D1 (P||Q) — logEg L@}

P
— Dics(Pl|Q) -~ log | Qi

o Q

— Dic1(P||Q) — log /Q Pdw

= Dir(P||Q) —log 1
= Dk (P||Q)

Lemma 2. For any function T : QQ — R, the following equality holds:
Dk r(P||Q) 2 Ep[T] — log Eq[e”]

Proof. We define the probability density function G as:

Qe”
Eqle”]

(26)

27)

(28)

(29)

(30)

€1y
(32)

(33)

(34)
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Note that G satisfies the non-negativity and the integral of its probability density function (PDF) over
the input space equals 1:

T E T
/de: Qe dw:/ ole 1,1 (35)
Q o Eqle”] o Eqle”]
Then, we calculate the difference between the two sides of 2] to obtain:
[ P
Dk (P||Q) — Ep[T] + log EQ[eT} = Ep |log 0 — T} + log EQ[@T] (36)
=E _10 £ + log Egle’] (37)
— Lp i g QBT g Q
[, PEgle”]
= E[P _log W (38)
[ P
_ Ry }og(}} (39)
— Dis(P|[G) > 0 (40)

Based on the Lemma 1 and Lemma 2, we show that by choosing 7 = log %, we obtain:

Dk (P||Q) = Ep[T"] — log Egle”"] (41)
Additionally, for any function 7" : } — R,
Dir(P||Q) > Ee[T] — log Egle”] (42)
holds. Hence,
Dkr(P||Q) = sup Ep[T]— log EQ[eT], (43)
T:Q—R

6.5 IMPLEMENTATION DETAILS

The trajectory denoise model ®tpy is implemented using a 3-layer Transformer with a feature
dimension of 256 and the attention head is set to 4. The number of masked locations is set to 2 in
our experiments. We empirically set the trade-off parameter 5 to 0.01 and the margin A to 0.05.
Additionally, we set the trade-off parameters «, J, and y to 0.01, 1 and 0.01, respectively. For the
Wavelet denoising method, we utilize the Daubechies wavelet to decompose the signals, and the level
is set to 2. We employ the soft-threshold method, with a threshold value set to 0.2. Regarding the
EMA method, we empirically determine the Weighted parameter to be 0.75. It is worth noting that
these parameter selections are based on experiments aimed at ensuring optimal performance. All
experiments are conducted on the PyTorch platform with 4 NVIDIA RTX3090 GPUs.

6.6 BROADER IMPACTS
This work addresses the challenge of trajectory prediction based on noisy observations. It enhances
robustness against noise in the trajectory prediction task, benefiting various applications including

autonomous driving, robotic navigation, and surveillance systems, thereby contributing to safer
deployment.

6.7 TRAINING ALGORITHM OF NOISYTRAJ

We provide the training algorithm of NoisyTraj in the Algorithm 1]

6.8 DISCUSSSION AND LIMITATIONS
In this paper, we simplify the problem by assuming that only the observed trajectory is noisy, which

is a reasonable assumption in certain scenarios. For example, when using an autonomous vehicle
equipped with both cameras and LiDAR, we can treat camera-derived trajectories as noisy data and
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Algorithm 1: Training Procedure of NoisyTraj

Input: Noisy observations X, ground-truth future trajectories Y. Four trade-off
hyper-parameters: «, 3, § and 7.

Output: Network parameters: ®tpy, Prps, 1, and ¢.

Initialize: Randomly initialize ®tpm, Prpg, ¥, and ¢.

while Model not converges do

Random mask the noisy observations using the mask vector: X(’EZS]“ = Xops © Mgps

Obtain the trajectories X745k = By (X 7ask)

obs obs
Calculate reconstruction 10ss Lyc. = || X7%* © (1 — Mops) — Xops © (1 — Mops)| |2

Input noisy observations to ®rpwm for denoising: Xops = Prom(Xops)
Employ Mutual Information-based mechanism for further denoising:

Lyr=aE,x, %, log a6 (Xobs| Xobs)] — Ep(xon0) Ep(x,,.) 108 0 (Xobs| Xobs)]
_SipmewﬁmunH@V*ngmegmymukn”

Obtain the future predictions based on denoised observations: {Yfkm}szl = Dypp(Xops)

Obtain the future predictions based on noisy observation: {?fk;t}szl = Orpp(Xops)
Calculate dgenoise and dpoise:

ddgenoise = 13}211( ||Yfkut —Yrutlle, dnoise = 1?;13<K \

Y = Yiatll2
Calculate Epre_d and L,anp as
‘Cpred = Hyﬁzit - qutH2 + HYFZ? - qutH7 ['rank = maX(O, ddenoise - dnoise + A)

Optimizing £ = Lyreq + BLrank + 0Lrec + vLas1 by gradient descent to update the Prpm
and (I)TPB-

end

LiDAR-derived trajectories as clean ground-truth for training. Once the model is trained on this
data, it can be deployed on a vehicle equipped with only cameras. This camera-only approach is
adopted by top industry Tesla to design the Autopilot system, which has been successfully deployed
in real-world scenarios [2].

While this work focuses on addressing trajectory prediction based on noisy observed trajectories, it is
important to acknowledge that the collected future ground-truth trajectories may also be contaminated
with noise. In such cases, the proposed mutual information-based denoising mechanism may not
be effective, as NoisyTraj assumes the future trajectories are noise-free and uses them as additional
information for denoising the observations. Future research could explore methods for predicting
future trajectories based on both noisy observations and noisy future ground-truths.
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