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6 APPENDIX

6.1 VISUALIZATION OF MUTUAL INFORMATION-BASED DENOISING MECHANISM

To further demonstrate the efficacy of the proposed Mutual Information-Based Denoising Mechanism,
we visualize the denoised trajectory and future predicted trajectory on the ETH dataset. As shown in
Figure 4(a), optimizing solely for mutual information leads to the destruction of structural information.
However, as depicted in the Figure 4(b), when we incorporate the reconstruction loss Lrec, the
structure of the trajectory is preserved, and more accurate future trajectory predictions based on these
well-structured observations. This underscores the effectiveness of our proposed method.

(a) Results of applying LMI (b) Results of applying LMI + Lrec

Figure 4: Visualization of trajectories on ETH dataset by employing (a) LMI and (b) LMI + Lrec.
The clean, noisy, and denoised observations are shown in green, blue, and red, respectively. The
ground-truth and predicted future trajectories are shown in orange and cyan, respectively.

6.2 MORE ANALYSIS OF NOISYTRAJ

Performance under low/no noise settings. We evaluate NoisyTraj under low or no noise by setting
the Gaussian noise σ to 0.05 and 0. The results presented in Table 6 indicate that after integrating
NoisyTraj into EqMotion, the performance is still superior to baselines when at a low noise level
(σ = 0.05). Additionally, NoisyTraj+EqMotion performs comparably to EqMotion when σ = 0.
This demonstrates NoisyTraj does not degrade the performance when noise is not introduced.

Table 6: Comparison of different methods under different noise setting on the SDD dataset. The
evaluation metrics are ADE and FDE (Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.05

EqMotion 8.48 13.49
Wavelet+EqMotion 8.39 13.37
EMA+EqMotion 8.42 13.36

NoisyTraj+EqMotion 8.32 13.28

Noise Method SDD
ADE FDE

σ = 0

EqMotion 8.08 13.12
Wavelet+EqMotion 8.16 13.42
EMA+EqMotion 8.22 13.57

NoisyTraj+EqMotion 8.11 13.08

Table 7: Comparison with baselines using MID backbone. The evaluation metrics are ADE and FDE
(Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

MID 12.86 18.35
Wavelet+MID 12.26 17.88
EMA+MID 12.45 18.01

NoisyTraj+MID 11.97 17.41

Performance on diffusion-based backbones. In addition to GraphTern and EqMotion, we integrate
NoisyTraj into MID, a diffusion-based model for trajectory prediction. Specifically, we first use
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TDM to denoise the noisy observations Xobs, obtaining X̂obs . Then, using both the denoised and
original observations, we sample normal noise from a standard Gaussian distribution to generate
Ŷfut and Ỹfut, respectively. To optimize the model, We apply Lpred and Lrank alongside the MID
loss . The results shown in Table 7 show that NoisyTraj still outperforms the baselines, which further
underscores its adaptability.

Comparison with frozen predictor. We conduct an experiment where we freeze the predictor and
only train the denoiser. We first load the predictor trained on clean observations, freeze its parameters,
and then integrate NoisyTraj, training only the denoiser. The results, shown in Table 8, reveal a
performance decrease when the predictor’s parameters are frozen. This indicates the necessity of
jointly learning the denoiser and predictor.

Table 8: Comparison with NoiseTraj where the predictor is freezed. The best results are highlighted
in bold

Noise Method SDD
ADE FDE

σ = 0.4
EqMotion 13.46 19.60

NoisyTraj+EqMotion (freeze) 12.19 17.95
NoisyTraj+EqMotion 11.92 17.65

Comparison with Learning-based baseline. To our knowledge, our work is the first to address
trajectory prediction with noisy observations, with no existing learning-based baselines for this
problem. We use Noise2Void [1], a learning-based denoiser originally for image denoising, as
another baseline. We first denoise the observed trajectories, and then perform future trajectory
prediction based on the observations. The results in Table 9 of the attached PDF show that NoisyTraj
outperforms Noise2Void, demonstrating the effectiveness of our method.

Table 9: Comparison with baselines on SDD dataset. The evaluation metrics are ADE and FDE (Unit:
pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

EqMotion 13.46 19.60
Wavelet+EqMotion 12.38 18.25
EMA+EqMotion 12.79 18.64

Noise2Void+EqMotion 12.46 18.52
NoisyTraj+EqMotion 11.92 17.65

6.3 PROOF OF THEOREM 3.1

Theorem 6.1 (Theorem 3.1 restated). Given two random variables x and y, the mutual information
I(x; y) has the following upper bound

I(x; y) ≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (19)

Proof. The definition of mutual information between variables x and y is

I(x; y) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
= Ep(x,y)[log p(y|x)]− Ep(x,y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)] (20)

By the definition of the marginal distribution, we have:

p(y) =

∫
p(y|x)p(x)dx = Ep(x)[p(y|x)]. (21)
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By substituting Equation (21) to , we have:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]] (22)

Note that the log(·) is a concave function, by Jensen’s Inequality, we have

−Ep(y)[logEp(x)[p(y|x)]] ≤ −Ep(y)Ep(x)[log p(y|x)]
= Ep(x)Ep(y)[log p(y|x)] (23)

By applying this inequality to Equation (22), we obtain:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]]
≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (24)

6.4 PROOF OF THEOREM 3.2

Theorem 6.2 (Therorem 3.2 restated). Given two probability distributions P, Q. The Kullback
Liebler Divergence admits the following dual representation:

DKL(P||Q) = sup
T :Ω→R

EP[T ]− logEQ[e
T ], (25)

Proof. The proof comprises two steps. Firstly, we prove the existence of the supremum in the dual
representation. Subsequently, we demonstrate that this representation serves as the lower bound of
the Kullback-Liebler Divergence.

Lemma 1. There exist a function T ∗ : Ω → R, such that:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (26)

Proof. We choose a function T ∗ = log P
Q , then we have:

EP(T
∗)− logEQ[e

T∗
] = EP

[
log

P
Q

]
− logEQ[e

log P
Q ] (27)

= DKL(P||Q)− logEQ

[
P
Q

]
(28)

= DKL(P||Q)− log

∫
Ω

Q
P
Q
dω (29)

= DKL(P||Q)− log

∫
Ω

Pdω (30)

= DKL(P||Q)− log 1 (31)
= DKL(P||Q) (32)

Lemma 2. For any function T : Ω → R, the following equality holds:

DKL(P||Q) ≥ EP[T ]− logEQ[e
T ] (33)

Proof. We define the probability density function G as:

G ≜
QeT

EQ[eT ]
(34)
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Note that G satisfies the non-negativity and the integral of its probability density function (PDF) over
the input space equals 1: ∫

Ω

Gdω =

∫
Ω

QeT

EQ[eT ]
dω =

∫
Ω

EQ[e
T ]

EQ[eT ]
dω = 1 (35)

Then, we calculate the difference between the two sides of 42 to obtain:

DKL(P||Q)− EP[T ] + logEQ[e
T ] = EP

[
log

P
Q

− T

]
+ logEQ[e

T ] (36)

= EP

[
log

P
QeT

+ logEQ[e
T ]

]
(37)

= EP

[
log

PEQ[e
T ]

QeT

]
(38)

= EP

[
log

P
G

]
(39)

= DKL(P||G) ≥ 0 (40)

Based on the Lemma 1 and Lemma 2, we show that by choosing T ∗ = log P
Q , we obtain:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (41)

Additionally, for any function T : Ω → R,

DKL(P||Q) ≥ EP[T ]− logEQ[e
T ] (42)

holds. Hence,
DKL(P||Q) = sup

T :Ω→R
EP[T ]− logEQ[e

T ], (43)

6.5 IMPLEMENTATION DETAILS

The trajectory denoise model ΦTDM is implemented using a 3-layer Transformer with a feature
dimension of 256 and the attention head is set to 4. The number of masked locations is set to 2 in
our experiments. We empirically set the trade-off parameter β to 0.01 and the margin ∆ to 0.05.
Additionally, we set the trade-off parameters α, δ, and γ to 0.01, 1 and 0.01, respectively. For the
Wavelet denoising method, we utilize the Daubechies wavelet to decompose the signals, and the level
is set to 2. We employ the soft-threshold method, with a threshold value set to 0.2. Regarding the
EMA method, we empirically determine the Weighted parameter to be 0.75. It is worth noting that
these parameter selections are based on experiments aimed at ensuring optimal performance. All
experiments are conducted on the PyTorch platform with 4 NVIDIA RTX3090 GPUs.

6.6 BROADER IMPACTS

This work addresses the challenge of trajectory prediction based on noisy observations. It enhances
robustness against noise in the trajectory prediction task, benefiting various applications including
autonomous driving, robotic navigation, and surveillance systems, thereby contributing to safer
deployment.

6.7 TRAINING ALGORITHM OF NOISYTRAJ

We provide the training algorithm of NoisyTraj in the Algorithm 1.

6.8 DISCUSSSION AND LIMITATIONS

In this paper, we simplify the problem by assuming that only the observed trajectory is noisy, which
is a reasonable assumption in certain scenarios. For example, when using an autonomous vehicle
equipped with both cameras and LiDAR, we can treat camera-derived trajectories as noisy data and
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Algorithm 1: Training Procedure of NoisyTraj
Input: Noisy observations Xobs, ground-truth future trajectories Yfut. Four trade-off

hyper-parameters: α, β, δ and γ.
Output: Network parameters: ΦTDM, ΦTPB, ψ, and ϕ.
Initialize: Randomly initialize ΦTDM, ΦTPB, ψ, and ϕ.
while Model not converges do

Random mask the noisy observations using the mask vector: Xmask
obs = Xobs ⊙Mobs

Obtain the trajectories X̂mask
obs = ΦTDM(Xmask

obs )

Calculate reconstruction loss Lrec = ||X̂mask
obs ⊙ (1−Mobs)−Xobs ⊙ (1−Mobs)||2

Input noisy observations to ΦTDM for denoising: X̂obs = ΦTDM(Xobs)
Employ Mutual Information-based mechanism for further denoising:
LMI = αEp(Xobs,X̂obs)[log qϕ(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log qϕ(X̂obs|Xobs)]

− sup
ψ

Ep(X̂obs,Yfut)[Tψ] + logEp(X̂obs)p(Yfut)[e
Tψ ]

Obtain the future predictions based on denoised observations: {Ŷ kfut}Kk=1 = ΦTPB(X̂obs)

Obtain the future predictions based on noisy observation: {Ỹ kfut}Kk=1 = ΦTPB(Xobs)
Calculate ddenoise and dnoise:
ddenoise = min

1≤k≤K
||Ŷ kfut − Yfut||2, dnoise = min

1≤k≤K
||Ỹ kfut − Yfut||2

Calculate Lpred and Lrank as
Lpred = ||Ŷ bestfut − Yfut||2 + ||Ỹ bestfut − Yfut||, Lrank = max(0, ddenoise − dnoise +∆)

Optimizing L = Lpred + βLrank + δLrec + γLMI by gradient descent to update the ΦTDM
and ΦTPB.

end

LiDAR-derived trajectories as clean ground-truth for training. Once the model is trained on this
data, it can be deployed on a vehicle equipped with only cameras. This camera-only approach is
adopted by top industry Tesla to design the Autopilot system, which has been successfully deployed
in real-world scenarios [2].

While this work focuses on addressing trajectory prediction based on noisy observed trajectories, it is
important to acknowledge that the collected future ground-truth trajectories may also be contaminated
with noise. In such cases, the proposed mutual information-based denoising mechanism may not
be effective, as NoisyTraj assumes the future trajectories are noise-free and uses them as additional
information for denoising the observations. Future research could explore methods for predicting
future trajectories based on both noisy observations and noisy future ground-truths.
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