
Appendix

A Consistent algorithms are not robust

In this section, we show that any learning-augmented algorithm for the (GSSP) problem must incur
some trade-off between robustness and consistency. Note that some impossibility results for general
objective functions of the form cost(S,J) = E(S)+F (S,J) given in Section 2 follow immediately
from [7], since the problem of speed scaling with deadline constraints was studied there is a special
case of (GSSP) (see Section 3.3).

We prove here some impossibility results for a different family of objective functions, where the
objective is to maximize the total energy plus flow time. This is one of the most widely studied
objectives of the form in cost(S,J) = E(S) + F (S,J) given in Section 2 (see for instance[2, 3, 12,
14]). Here, for all j ∈ J , we let cjS denote the completion time of job j while following schedule
S. The quality cost function studied in the remainder of this section is defined as: F (S,J) =∑

j∈J (cjS − rj) and the total objective is cost(S,J) = F (S,J) + E(S). We recall that for this
problem, the best possible online algorithm is the 2-competitive algorithm from [3].

A.1 Warm-up: no 1-consistent algorithm is robust

We show in this section that no algorithm that is perfectly consistent (i.e., achieves an optimal cost
when the prediction is totally correct) can have a bounded competitive ratio in the case the prediction
is incorrect. To show this property, we build an instance where a lot of jobs are predicted, but only
one of them arrives. To achieve consistency, any online algorithm must ‘burn’ a lot of energy during
the first few time steps; however, in the case where only one job arrives, the algorithm ends up
having wasted too much energy. This illustrates the necessity of a trade-off between robustness and
consistency.

Proposition A.1. For the objective of minimizing total energy plus (non-weighted) flow time, there
is no algorithm that is 1-consistent and o(

√
n)-robust, even if all jobs have unit-size work and if

J ⊆ Ĵ .

Proof. Set α = 2 and consider an instance (Ĵ ,J ′) where Ĵ contains n jobs of unit-size work such
that the first job arrives at time t = 0 and the remaining n− 1 jobs arrive at time t = 1√

n
, and J ′

contains only the job that arrives at time t = 0.

By using results from [2], the optimal offline schedule for Ĵ is to schedule each job i ∈ [n] at speed√
n− i+ 1. Moreover, processing the first job any slower leads to a strictly worse cost. Hence,

any algorithm that is 1-consistent (i.e, achieves an optimal competitive ratio when the realization is
exactly Ĵ) must process the first job at speed s1(t) =

√
n for all t ∈ [0, 1√

n
]. In this case, the total

objective is at least
√
n
2 · 1/

√
n+ 1/

√
n =
√
n+ 1/

√
n.

However, by using results from [2], the optimal objective for J ′ is 2 (with the speed of the single job
arriving at time t = 0 being set to 1). Hence, in the case where the realization is J ′, any algorithm
that schedules the first job at speed s1(t) =

√
n has a competitive ratio at least

√
n+1/

√
n

2 .

Therefore, any 1-consistent algorithm must have a robustness factor of at least
√
n+1/

√
n

2 .

A.2 Consistency-robustness trade-off

In this section, we quantify more precisely the necessary trade-off between robustness and consistency.
More precisely, we prove that there is a constant C > 0 such that for any λ small enough, any

algorithm that is at most (1 + λ) consistent must be at least C
√

1
λ + 1 robust. Moreover, letting

n≤t(J) = |{j ∈ J : rj ≤ t}| be the number of jobs of J that arrived before time t, we show that
for the following natural notion of error:

η̃(J ,J ′) =
1

max{|J |, |J ′|}
max
t≥0
{|n≤t(J)− n≤t(J ′)|},

13

which mimics the probability density function of the predicted and realized jobs, this property
remains true even if we assume a small prediction error η̃(J , Ĵ). Hence, one cannot obtain a smooth
algorithm relatively to this notion of error. This motivates the introduction of the more refined notion
of error from Section 2. More specifically, we show the following lemma.
Lemma A.2. For the objective of minimizing total energy plus (non-weighted) flow time, there are
λ′ ∈ (0, 1] and C > 0 such that for any ϵ > 0, there is M ∈ N such that for all λ ≤ λ′ and n ≥M ,
there is an instance (Ĵn,λ,ϵ,Jn,λ,ϵ) such that |Ĵn,λ,ϵ| = n and η̃(Ĵn,λ,ϵ,Jn,λ,ϵ) ≤ ϵ, and such that
for any algorithm A,

• either costA(Ĵ = Ĵn,λ,ϵ,J = Ĵn,λ,ϵ) > (1 + λ) · OPT(Ĵn,λ,ϵ) (large consistency factor)

• or costA(Ĵ = Ĵn,λ,ϵ,J = Jn,λ,ϵ) ≥ C
√

1
λ + 1 · OPT(Jn,λ,ϵ) (large robustness factor).

The rest of this section is dedicated to the proof of Lemma A.2.

We first describe our lower bound instance. In the remainder of this section, we set α = 2.

Lower bound instance. Let λ ∈ (0, 1], n ∈ N and ϵ > 0. We construct an instance (Ĵn,λ,ϵ,Jn,λ,ϵ)
where the jobs in Ĵn,λ,ϵ can be organized in three different groups.

1. Group An,λ,ϵ is composed of 4
3λϵn jobs that all arrive at time 0.

2. Group Bn,λ,ϵ is composed of ϵn jobs that all arrive at time tA := 4λϵn

3
√

ϵn(1+ 4
3λ)

.

3. Group Cn,λ,ϵ consists of n dummy jobs, where, for some t′ >> 0, each job j ∈ [n] arrives
at time t′ + j.

Next, we define Jn,λ,ϵ as the union of jobs in An,λ,ϵ and Cn,λ,ϵ. Note that by construction, we have
η̃(Ĵn,λ,ϵ,Jn,λ,ϵ) ≤ ϵ.

We now state and prove a few useful lemmas.
Lemma A.3. Let K be a set of n jobs that all arrive at some time t ≥ 0. Then, we have

4

3
n3/2 ≤ OPT(K) ≤ 4

3
n3/2 + o(n3/2).

Proof. By [2], the optimal schedule is to run each job i at speed si =
√
n− i+ 1. The total cost is

as follows:

cost(S∗(K)) = F (S∗(K)) + E(S∗(K))

=

n∑
i=1

i∑
j=1

1√
n− j + 1

+

n∑
i=1

1√
n− i+ 1

√
n− i+ 1

2

=

n∑
j=1

1√
n− j + 1

n∑
i=j

1 +

n∑
i=1

√
n− i+ 1

= 2

n∑
i=1

√
n− i+ 1

Hence we have

2

∫ n

0

√
xdx ≤ cost(S∗(K)) ≤ 2

∫ n+1

1

√
xdx

⇒ 4

3
n3/2 ≤ cost(S∗(K)) ≤ 4

3
[(n+ 1)3/2 − 1] =

4

3
[n3/2 + o(n3/2)]

14

Lemma A.4. Let K = {j1, . . . , j|K|} be a set of |K| jobs such that for all i ∈ [|K|], |ri+1 − ri| ≥ 1.
Then, we have

OPT(K) = 2|K|.

Proof. By using [2], the optimal solution is to run each job at speed 1. The result follows immediately.

Lemma A.5. Let λ ∈ (0, 1], n ∈ N. Then, the optimal cost for jobs in Ĵn,λ,ϵ is upper bounded as
follows:

OPT(Ĵn,λ,ϵ) ≤
4

3
(ϵn)3/2(1 + λ+ o(λ) + o(1))

as λ→ 0 (independently of ϵ), n→ +∞ (for a fixed ϵ).

Proof. Consider the schedule S which runs jobs in An,λ,ϵ at speed
√

ϵn(1 + 4
3λ), and jobs in Bn,λ,ϵ

at the optimal speeds for ϵn jobs arriving at the same time, and jobs in Cn,λ,ϵ at speed 1. Consider the
cost of S for all jobs in An,λ,ϵ. Note that all the jobs in An,λ,ϵ are finished by time tA = 4λϵn

3
√

ϵn(1+ 4
3λ)

.

Hence, we have

cost(S[0,tA], An,λ,ϵ) ≤ F (S[0,tA], An,λ,ϵ) + E(S[0,tA])

≤ tA
4

3
λϵn+ tA

(√
ϵn(1 +

4

3
λ)

)2

≤
4
3λϵn ·

4
3λϵn√

ϵn(1 + 4
3λ)

+
4

3
λϵn

√
ϵn(1 +

4

3
λ)

= (ϵn)3/2o(λ) + (ϵn)3/2(
4

3
λ

√
(1 +

4

3
λ))

= (ϵn)3/2[
4

3
λ+ o(λ)].

Let tB be the time at which S finishes all jobs in Bn,λ,ϵ. Recall that all n jobs in Bn,λ,ϵ arrive at time
tA. By Lemma A.3, we have

cost(S[tA,tB], Bn,λ,ϵ) ≤
4

3
(ϵn)3/2 + o((ϵn)3/2),

Since all jobs in Cn,λ,ϵ arrive at time t′ >> tB , we have

cost(S≥tB , Cn,λ,ϵ) = 2n = o((ϵn)3/2).

Therefore, when λ goes to 0 and n goes to +∞, the total cost of S is upper bounded as follows:

cost(S, Ĵn,λ,ϵ) = cost(S[0,tA], An,λ,ϵ) + cost(S[tA,tB], Bn,λ,ϵ) + cost(S≥tB , Cn,λ,ϵ)

≤ 4

3
(ϵn)3/2[1 + λ+ o(λ) + o(1)].

Lemma A.6. There is λ′ ∈ (0, 1] such that for any ϵ > 0, there is M ∈ N such that for all λ ≤ λ′

and n ≥ M , and for any schedule S for Ĵn,λ,ϵ which has at least λϵn units of jobs from An,λ,ϵ

remaining at time tA, we have

cost(S, Ĵn,λ,ϵ)
OPT(Ĵn,λ,ϵ)

>

(
1 +

1

4
λ

)
.

15

Proof. Let λ ∈ (0, 1] and ϵ > 0, and let S be a schedule for Ĵn,λ,ϵ which has at least λϵn units of
jobs from An,λ,ϵ remaining at time tA.

Note that the cost of S for times t ≥ tA is at least the cost of an optimal schedule for the remaining
λϵn units of jobs from An,λ,ϵ and the ϵn units of job from Bn,λ,ϵ. By Lemma A.3, we thus get that:

cost(S, Ĵn,λ,ϵ) ≥ cost(S,An,λ,ϵ ∪Bn,λ,ϵ) ≥
4

3
((1 + λ)ϵn)3/2.

Now, by Lemma A.5, we get that when λ goes to 0 (independently of ϵ) and n goes to +∞,

cost(S∗(Ĵn,λ,ϵ)) ≤
4

3
(ϵn)3/2(1 + λ+ o(λ) + o(1)).

Hence,
cost(S, Ĵn,λ,ϵ)

cost(S∗(Ĵn,λ,ϵ))
≥

4
3 ((1 + λ)ϵn)3/2

4
3 (ϵn)

3/2(1 + λ+ o(λ) + o(1))

=

(
1 +

3

2
λ+ o(λ)

)
· (1− λ− o(λ)− o(1))

= 1 +
1

2
λ− o(λ)− o(1).

Hence, there is λ′ ∈ (0, 1] and M ∈ N (note that λ′ ∈ (0, 1] is independent of ϵ while M depends on
it) such that if λ ≤ λ′ and n ≥M , then

cost(S, Ĵn,λ,ϵ)
cost(S∗(Ĵn,λ,ϵ))

>

(
1 +

1

4
λ

)
.

Lemma A.7. Let λ ∈ (0, 1], n ∈ N. Assume that S schedules at least 1
3λϵn units of jobs from An,λ,ϵ

from time 0 to tA. Then, there is a constant C > 0 such that
cost(S,Jn,λ,ϵ) ≥ C(ϵn)3/2λ

√
1 + λ.

Proof. For convenience of exposition, assume that S schedules exactly 1
3λϵn units of jobs from

An,λ,ϵ from time 0 to t (note that if S schedules more work from An,λ,ϵ, then the cost can only be

higher). By using [2], the optimal solution is to schedule each job i at speed si =
√

ϵλn
3 − i+ c+ 1,

where c is the unique constant such that
ϵλn
3∑

i=1

1√
ϵλn
3 − i+ c+ 1

= tA.

To lower bound c, note that we then have

tA ≥
ϵλn
3∑

i= 1
2

ϵλn
3

1√
ϵλn
3 −

1
2
ϵλn
3 + c+ 1

=
ϵλn

6

1√
ϵλn
6 + c+ 1

.

By definition of tA, we get
4λϵn

3
√
ϵn(1 + 4

3λ)
≥ ϵλn

6

1√
ϵλn
6 + c+ 1

⇐⇒ (
4

3
6)2(

ϵλn

6
+ c+ 1) ≥ (1 +

4

3
λ)ϵn

⇐⇒ c ≥ c2ϵn− c3ϵλn− 1. with c2 = 1
64 , c3 = − 1

48 + 1
6

16

And the corresponding energy consumption is:

ϵλn
3∑

i=1

√
ϵλn

3
− i+ c+ 1

≥
ϵλn
6∑

i=1

√
ϵλn

3
− ϵλn

6
+ c2ϵn− c3ϵλn

≥ ϵλn

6

√
ϵλn

3
− ϵλn

6
+ c2ϵn+ (

1

48
− 1

6
)ϵλn

=
ϵλn

6

√
c2ϵn+

1

48
ϵλn

≥ C(ϵn)3/2λ
√
1 + λ. (for some constant C > 0)

Therefore, any schedule S that completes λϵn jobs before time t has cost lower bounded as:

cost(S,Jn,λ,ϵ) ≥ C(ϵn)3/2λ
√
1 + λ.

We are now ready to present the proof of Lemma A.2.

Proof of Lemma A.2. By Lemma A.6, we have that there is a constant λ′ ∈ (0, 1] such that for
all ϵ > 0, there is M ∈ N such that for any algorithm A and n ≥ M , and when running A with
predictions Ĵ = Ĵn,λ,ϵ and realization J ∈ {Ĵn,λ,ϵ,Jn,λ,ϵ}, then either A schedules at least 1

3λϵn
units of jobs of An,λ,ϵ before time t, or the schedule S output by A satisfies:

cost(S, Ĵn,λ,ϵ)
cost(S∗(Ĵn,λ,ϵ))

>

(
1 +

1

4
λ

)
.

Hence, if A achieves a consistency of at most
(
1 + 1

4λ
)
, A must schedule at least 1

3λϵn units of jobs
of An,λ,ϵ before time t. However, we then have, by Lemma A.7, that for some constant C > 0,

costA(Ĵ = Ĵn,λ,ϵ,J = Jn,λ,ϵ) ≥ C(ϵn)3/2λ
√
1 + λ.

On the other hand, assuming that J = Jn,λ,ϵ, we get by Lemma A.3 and Lemma A.4 that

OPT(Jn,λ,ϵ) ≤
4

3
(λϵn)3/2 + o((ϵn)3/2) + 2n.

Hence, we get that for some constant C ′′ > 0 and n large enough,

costA(Ĵ = Ĵn,λ,ϵ,J = Jn,λ,ϵ)
OPT(Jn,λ,ϵ)

≥ C(ϵn)3/2λ
√
1 + λ

4
3 (λϵn)

3/2 + o((ϵn)3/2) + 2n
≥ C ′′

√
1

λ
+ 1.

B Missing analysis from Section 3

Lemma 3.1. Let J1 be a set of jobs and S1 be a feasible schedule for J1, let J2 be a set of
jobs and S2 be a feasible schedule for J2. Consider the schedule S := S1 + S2 for J1 ∪ J2
which, at each time t, runs the machine at total speed s(t) = s1(t) + s2(t) and processes each
job j ∈ J1 at speed s1,j(t) and each job j ∈ J2 at speed s2,j(t). Then, cost(S,J1 ∪ J2) ≤(

cost(S1,J1)
1
α + cost(S2,J2)

1
α

)α
.

17

Proof. We first upper bound the quality cost F (S,J1 ∪ J2) of the proposed schedule S. In each
infinitesimal time interval [t, t+ dt] and for all j ∈ J1, S processes s1,j(t)dt units of work of job j,
and for each j ∈ J2, S processes s2,j(t)dt units of work of job j. Hence S processes exactly the
same amount of work for each job j ∈ J1 (resp. j ∈ J2) as S1 (resp. S2). We thus get that for all
t ≥ 0,

wS
j (t) = wS1

j (t) for all j ∈ J1 and wS
j (t) = wS2

j (t) for all j ∈ J2. (1)

Therefore,

F (S,J1 ∪ J2) ≤ F (S,J1) + F (S,J2) (F is sub-additive)

= f
(
{(WS

j , j)}j∈J1

)
+ f

(
{(WS

j , j)}j∈J2

)
= f

(
{(WS1

j , j)}j∈J1

)
+ f

(
{(WS2

j , j)}j∈J2

)
(by (1))

= F (S1,J1) + F (S2,J2).

Next, we upper bound the energy consumption E(S) of the proposed schedule S.

E(S) =

∫
(s1(t) + s2(t))

αdt

=

α∑
i=0

(
α

i

)∫
(s1(t)

α)
i
α (s2(t)

α)
α−i
α dt

≤
α∑

i=0

(
α

i

)(∫
(s1(t))

αdt
) i

α
(∫

(s2(t))
αdt
)α−i

α

(Hölder’s inequality)

= E(S1) + E(S2) +

α−1∑
i=1

(
α

i

)
E(S1)

i
αE(S2)

α−i
α

≤ E(S1) + E(S2) +

α−1∑
i=1

(
α

i

)
cost(S1)

i
α cost(S2)

α−i
α .

Therefore, the total cost of schedule S can be upper bounded as follows:

cost(S,J1 ∪ J2) = F (S,J1 ∪ J2) + E(S)

≤ F (S1,J1) + E(S1) + F (S2,J2) + E(S2) +

α−1∑
i=1

(
α

i

)
cost(S1)

i
α cost(S2)

α−i
α

=
(

cost(S1,J1)
1
α + cost(S2,J2)

1
α

)α
.

Corollary 3.3. OPT(J ∩ Ĵ) ≥
(
1− η

1
α
2

)α
OPT(Ĵ), and, assuming that OFFLINEALG is γoff-

competitive, we have: if OFF(J) ≤ λOFF(Ĵ), then η2 ≥
(
1− (λγoff)

1
α

)α
.

Proof. We prove the first part of the Corollary by contradiction. Assume that OPT(J ∩ Ĵ) <(
1− η

1
α
2

)α
OPT(Ĵ). Next, by definition of the error η2, we have OPT(Ĵ \J) = η2 ·OPT(Ĵ). Hence,

by Lemma 3.1, there exists a schedule S for (J ∩ Ĵ) ∪ (Ĵ \ J) = Ĵ such that

cost(S, Ĵ) ≤
(
OPT(Ĵ \ J) 1

α + OPT(J ∩ Ĵ) 1
α

)α
<

(
(η2OPT(Ĵ))

1
α +

((
1− η

1
α
2

)α
OPT(Ĵ)

) 1
α

)α

= OPT(Ĵ),

18

which contradicts the definition of OPT(Ĵ) and ends the proof of the first result.

We now show the second part of the Corollary.

Assume that OFF(J) ≤ λOFF(Ĵ). Then, since OFFLINEALG is γoff-competitive, we have

OPT(J) ≤ OFF(J) ≤ λOFF(Ĵ) ≤ λγoffOPT(Ĵ).

In particular, OPT(J ∩ Ĵ) ≤ λγoffOPT(Ĵ). Next, assume by contradiction, that η2 <(
1− (λγoff)

1
α

)α
, which implies that OPT(Ĵ \J) <

(
1− (λγoff)

1
α

)α
OPT(Ĵ). Then, by Lemma 3.1,

there exists a schedule S for (J ∩ Ĵ) ∪ (Ĵ \ J) = Ĵ such that

cost(S, Ĵ) ≤
(
OPT(Ĵ \ J) 1

α + OPT(J ∩ Ĵ) 1
α

)α
<

(
((λγoff)OPT(Ĵ))

1
α +

((
1− (λγoff)

1
α

)α
OPT(Ĵ)

) 1
α

)α

= OPT(Ĵ),

which contradicts the definition of OPT(Ĵ). Hence, η2 ≥
(
1− (λγoff)

1
α

)α
.

Theorem 3.4. For any λ ∈ (0, 1], TPE with a γon-competitive algorithm ONLINEALG and a
γoff-competitive offline algorithm OFFLINEALG achieves a competitive ratio of

γon if OFF(J) ≤ λOFF(Ĵ)(
γ

1
α

off +γ
1
α

on ((λγoff)
1
α +η

1
α
1)

)α

max

{
λ

γoff
,η1+

(
1−η

1
α
2

)α} otherwise.

Proof. First, assume that that for all t ≥ 0, OFF(J≤t) ≤ λOFF(Ĵ) (i.e., TPE never goes through
lines 6-10). Then, the schedule S returned by the algorithm is obtained by running the γon-competitive
algorithm ONLINEALG on J , hence

cost(S,J) ≤ γon · OPT(J). (2)

Next, assume that there is tλ ≥ 0 such that OFF(J≤tλ) > λOFF(Ĵ). Since OFFLINEALG is
γoff-competitive, we immediately get:

OPT(J) ≥ OPT(J≤tλ) ≥
OFF(J≤tλ)

γoff
>

λ

γoff
OFF(Ĵ) ≥ λ

γoff
OPT(Ĵ).

By Corollary 3.3 and by definition of the error η1, we also get the following lower bound on the
optimal schedule:

OPT(J) ≥ OPT(J \ Ĵ) + OPT(J ∩ Ĵ) ≥ η1OPT(Ĵ) +
(
1− η

1
α
2

)α
OPT(Ĵ).

Therefore,

OPT(J) ≥ max

{
λ

γoff
, η1 +

(
1− η

1
α
2

)α}
OPT(Ĵ). (3)

Now, by Lemma 3.2, the cost of the schedule S output by TPE is always upper bounded as follows:

cost(S,J) ≤ OPT(Ĵ)
(
γ

1
α

off + γon
1
α ((λγoff)

1
α + η

1
α
1)
)α

. (4)

19

Hence, we get the following upper bound on the competitive ratio of TPE:

cost(S,J)
OPT(J)

= 1OFF(J)≤λOFF(Ĵ)

cost(S,J)
OPT(J)

+ 1OFF(J)>λOFF(Ĵ)

cost(S,J)
OPT(J)

≤ 1OFF(J)≤λOFF(Ĵ)γon + 1OFF(J)>λOFF(Ĵ)

(
γ

1
α

off + γon
1
α ((λγoff)

1
α + η

1
α
1)
)α

max
{

λ
γoff

, η1 +
(
1− η

1
α
2

)α} . by (2),(3),(4)

Corollary 3.5. For any λ ∈ (0, 1), TPE with a γon-competitive algorithm ONLINEALG and an
optimal offline algorithm OFFLINEALG is 1 + γon2

αλ
1
α competitive if η1 = η2 = 0 (consistency)

and max{γon,
1+γon2

2αλ
1
α

λ }-competitive for all η1, η2 (robustness). In particular, for any constant
ϵ > 0, with λ = (ϵ

γon2α
)α, TPE is 1 + ϵ-consistent and O(1)-robust.

Proof. We start by the consistency. Since we assumed that OFFLINEALG is optimal, by Corollary 3.3,
we have that for all λ ∈ (0, 1), OFF(J) > λOFF(Ĵ), when η2 = 0. The result follows by an
immediate upper bound on the competitive ratio in this case.

We now show the robustness. First note that if OFF(J) ≤ λOFF(Ĵ), then cost(S,J)
OPT(J) ≤ γon ≤

max{γon,
1+γon2

2αλ
1
α

λ } for any λ ∈ [0, 1]. Now, assume that OFF(J) > λOFF(Ĵ). We then have

cost(S,J)
OPT(J)

≤

(
1 + γon

1
α (λ

1
α + η

1
α
1)
)α

max
{
λ, η1 +

(
1− η

1
α
2

)α} ≤
(
1 + γon

1
α (λ

1
α + η

1
α
1)
)α

max{λ, η1}
.

If η1 ≤ λ, we get:

cost(S,J)
OPT(J)

≤

(
1 + γon

1
α (2λ

1
α)
)α

λ
≤ 1 + γon2

2αλ
1
α

λ
,

and if η1 ≥ λ, we get:

cost(S,J)
OPT(J)

≤

(
1 + γon

1
α (2η

1
α
1)
)α

η1
≤ 1 + γon2

2α max{η1, η
1
α
1 }

η1
.

Since the above function reaches its maximum value over [λ,+∞[for η1 = λ, this immediately
yields the result.

C The Extension with Job Shifts (Full version)

Note that in the definition of the prediction error η, a job j is considered to be correctly predicted
only if rj = r̂j and pj = p̂j . In this section, we consider an extension where a job is considered to be
correctly predicted even if the release time and processing time are shifted by a small amount. In
this extension, we also allow each job to have some weight vj > 0, that can be shifted as well. We
propose and analyze an algorithm that generalizes the algorithm from the previous section.

Motivating example. Consider the objective of minimizing energy plus flow time with α = 2. Let
(Ĵ ,J) be an instance where J has n jobs with weight w = 1.01 and processing time p = 0.99, all
released at time r = 0.1, and Ĵ has n jobs with weight w = 1 and processing time p = 1, all released
at time r = 0. Since Ĵ \ J = Ĵ , we have here that η1 = OPT(Ĵ \ J) = OPT(Ĵ) = Ω(n3/2) (by
Lemma A.3), whereas it seems reasonable to say that Ĵ was a ’good’ prediction for instance J , since
it accurately represents the pattern of the jobs in J .

20

In this section, we assume that the quality of cost function F is such that the total cost function E+F
satisfies a smoothness condition, which we next define.

Smooth objective function. Let J denote the collection of all sets of jobs. We say that a function
β : J −→ R is smooth if for all J ∈ J, {r′j}j∈J ≥ 0 and {ηj}j∈J ≥ 0, we have β(J ′) ≤
(1 +maxj ηj)β(J), where J ′ = {(j, r′j , pj(1 + ηj), vj(1 + ηj)}. β is monotone if for all J ′′ ⊆ J ,
we have β(J ′′) ≤ β(J).
We say that a cost function cost(., .) is β-smooth if there is a smooth monotone function β(.) ≥ 1
such that for all η, η′ ∈ [0, 1], J1,J2 with |J1| = |J2| and bijection π : J1 −→ J2, and for all S1

and S2 feasible for J1 and J2:

• (smoothness of optimal cost). If for all j ∈ J1, |rj − rπ(j)| ≤ η′, pj ≤ pπ(j)(1 + η) and
vj ≤ vπ(j)(1 + η), then

OPT(J1) ≤ (1 + β(J1)η)OPT(J2) + β(J1)|J1|η′.

• (shifted work profile for dominated schedule.) If for all j ∈ J , pj ≤ pπ(j), vj ≤ vπ(j),
rj ≥ rπ(j) − η′ and for all t ≥ rπ(j) + η′, wj

S1
(t) ≤ w

π(j)
S2

(t − η′), where wj
S1
(t) (resp.

wj
S2
(t)) denotes the remaining amount of work for j a time t for S1 (resp. S2), then

F (S1,J1) ≤ F (S2,J2) + β(J1)|J1|η′.

In other words, if J1 and J2 are close to each other, then the optimal costs for J1 and J2 are close,
and if schedules S1, S2 induce similar but slightly shifted work profiles for J1 and J2, then the
quality costs for S1 and S2 are close.

We show in Appendix D that for the classically studied energy plus weighted flow time minimization
problem with α ≥ 1, the cost function is max(4maxj vj , 2

α − 1)-smooth. Note that for energy
minimization with deadlines, the objective introduced in Section 3.3 is not smooth for any bounded
function β(.), since a small shift in the work profiles can induce a large increase in the objective
function (in the case we miss a job’s hard deadline). However, [7] (Section F.2) shows that it is also
possible to transform any prediction-augmented algorithm for the energy plus deadline problem into
a shift-tolerant algorithm.

Shift tolerance and error definition. In this extension, we allow each job in the prediction to be
perturbed by a small amount. Past this tolerance threshold, the perturbed job is treated as a distinct job.
We assume here that when a job arrives, it is always possible to identify which job of the prediction
(if any) it corresponds to. More specifically, for each job j, we write (j, rj , pj , vj) for the real values
of the parameters associated with j and (j, r̂j , p̂j , v̂j) for their predicted values (with the convention
that (j, rj , pj , vj) = ∅ if the job didn’t arrive and (j, r̂j , p̂j , v̂j) = ∅ if the job was not predicted).

Next, we let ηshift ∈ [0, 1) be a shift tolerance parameter, that is initially set by the decision-
maker, and we assume that the objective function is β-smooth for some smooth monotone function
β(.) ≥ 1. We now define the set of ’correctly predicted’ jobs as J shift = {(j, rj , pj , vj) : |rj − r̂j | ≤
ηshift

β(Ĵ)
· OPT(Ĵ)

|Ĵ | , |pj − p̂j | ≤ ηshift

β(Ĵ)
· p̂j , |vj − v̂j | ≤ ηshift

β(Ĵ)
· v̂j}, which is the set of jobs whose release

time, weights and processing times have only been slightly shifted as compared to their predicted
values. The amount of shift we tolerate depends on the smoothness function β(.) of the objective
function F and on the predicted instance Ĵ . In addition, note that the allowed shift in release time
is proportional to the average cost per job (the intuition here is that for most objective functions,
the average cost per job is at least the average completion time per job). We underscore the fact
that J \ J shift contains both the predicted jobs that have past the shift tolerance and additional
jobs in the realization. Finally, we let Ĵ shift = {(j, r̂j , p̂j , v̂j) : (j, rj , pj , vj) ∈ J shift}. The error
ηg = 1

OPT(Ĵ)
·max{OPT(J \J shift), OPT(Ĵ \ Ĵ shift)} is now defined as the optimal cost for both the

additional and missing jobs (similarly as in the previous sections) and the jobs that have past the shift
tolerance, normalized by the optimal cost for the prediction.

Algorithm description. The Algorithm, called TPE-S and formally described in Algorithm 2,
takes the same input parameters as Algorithm TPE, with some additional shift tolerance parameter
ηshift ∈ [0, 1), from which we compute the maximum allowed shift in release time η̄ (Line 8).

21

TPE-S globally follows the structure of TPE, with a few differences, that we now detail. First, we
start by slightly increasing the predicted weight and processing time of each job to obtain the set
of jobs Ĵ up := {(j, r̂j , p̂j(1 + ηshift

β(Ĵ)
), v̂j(1 +

ηshift

β(Ĵ)
))} (Line 1). Note that by the first smoothness

condition, the optimal schedule for Ĵ up has only a slightly higher cost than OPT(Ĵ).
Then, similarly as TPE, TPE-S starts with a first phase where it follows the online algorithm
ONLINEALG until the time tλ where the optimal offline has reached some threshold value λOPT(Ĵ up)
(Lines 3-7). In the second phase (Lines 9-13), it again combines two schedules, this time, for (1)
the jobs in J shift

≥tλ
that are within the shift tolerance (2) the jobs in J \ J shift

≥tλ
, which include the

remaining jobs from phase 1 and the non-predicted jobs (or jobs that have past the shift-tolerance)
that are released after time tλ. To schedule the jobs in J shift

≥tλ
, we first compute an offline schedule

Ŝ for Ĵ up (Line 9). One small difference with TPE is that we will delay the schedule Ŝ by η̄ time
steps backwards when we schedule jobs in J shift

≥tλ
. More precisely, each job (j, rj , pj , vj) ∈ J shift

≥tλ
is

scheduled on the same way the job with the same identifier j in Ĵ up is scheduled by Ŝ at time t− η̄
(Line 12). The intuition here is that we need to wait a small delay of η̄ in order to identify which jobs
of the predictions indeed arrived. Finally, and similarly as TPE, the speeds for jobs in J \ J shift

≥tλ
are

set by running ONLINEALG on the set J \ J shift
≥tλ

(Line 13).

Algorithm 2 Two-Phase Energy Efficient Scheduling with Shift Tolerance (TPE-S)

Input: predicted and true sets of jobs Ĵ and J , quality of cost function F , offline and online
algorithms (without predictions) OFFLINEALG and ONLINEALG for problem F , confidence level
λ ∈ (0, 1], shift tolerance ηshift > 0.

1: Ĵ up ← {(j, r̂j , p̂j(1 + ηshift

β(Ĵ)
), v̂j(1 +

ηshift

β(Ĵ)
))}

2: ˆOPT← OPT(Ĵ up)
3: for t ≥ 0 do
4: if OPT(J≤t) > λ · ˆOPT then
5: tλ ← t
6: break
7: {sj(t)}j∈J≤t

← ONLINEALG(J≤t)(t)

8: η̄ ← ηshift

β(Ĵ)
· OPT(Ĵ)

|Ĵ |

9: {ŝj(t)}t≥0,j∈Ĵ up ← OFFLINEALG(Ĵ up)
10: for t ≥ tλ do
11: for j : (j, rj , pj , vj) ∈ J shift

≥tλ
do

12: sj(t)← ŝj(t− η̄)
13: {sj(t)}j∈J≤t\J shift

≥tλ

← ONLINEALG(J≤t \ J shift
≥tλ

)(t)

14: return {sj(t)}t≥0,j∈J

Analysis. We now present the analysis of TPE-S. All missing proofs are provided in Appendix D.
In the following lemma, we start by upper bounding the cost of the schedule output by TPE-S for
the jobs that were released in the second phase and were correctly predicted (i.e., within the shift
tolerance). The proof mainly exploits the two smoothness conditions of the cost function.

Lemma C.1. Assume that cost(., .) is β-smooth. Consider the schedule Sshift, which, for all t ≥ tλ
and (j, rj , pj , vj) ∈ J shift

≥tλ
, processes job j at speed

sj(t) = ŝj

(
t− ηshift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

)
.

Then,

cost(Sshift,J shift
≥tλ

) ≤ (1 + 2ηshift(1 + ηshift))OPT(Ĵ).

22

We now show some slightly modified version of Corollary 3.3. Similarly as before, we write
η1 = OPT(J\J shift)

OPT(Ĵ)
to denote the error corresponding to additional jobs in the prediction, and η2 =

OPT(Ĵ \Ĵ shift)

OPT(Ĵ)
for the error corresponding to missing jobs.

Corollary C.2. Assume that cost(., .) is β-smooth, then

OPT(J shift) ≥
[(

1− η
1
α
2

)α
− ηshift

]/
(1 + ηshift)OPT(Ĵ).

Corollary C.3. Assume that cost(., .) is β-smooth. If OPT(J) ≤ λOPT(Ĵ), then η2 ≥(
1− (λ(1 + ηshift) + ηshift)

1
α

)α
.

We now state the main result of this section, which is our upper bound on the competitive ratio of the
shift-tolerant Algorithm TPE-S.

Theorem C.4. Assume that cost(., .) is β-smooth. Then, for any λ ∈ (0, 1], ηshift ∈ [0, 1), the
competitive ratio of TPE-S run with trust parameter λ, a γ-competitive algorithm ONLINEALG, an
optimal offline algorithm OFFLINEALG, and shift tolerance ηshift is at most

γ if OPT(J) ≤ λOPT(Ĵ)(
(1+2ηshift(1+ηshift))

1
α +γ

1
α

(
λ

1
α +η

1
α
1

))α

max

{
λ,η1+

((
1−η

1
α
2

)α

−ηshift

)
(1+ηshift)−1

} otherwise.

In particular, we deduce the following consistency and robustness guarantees.

Corollary C.5. (consistency) For any λ ∈ (0, 1] and ηshift ∈ [0, 1), if η1 = η2 = 0 (all jobs
are within the shift tolerance and there is no extra or missing jobs), then the competitive ratio
of TPE-S run with trust parameter λ and shift tolerance parameter ηshift is upper bounded by

min(1λ ,
(1+ηshift)
(1−ηshift)) ·

(
(1 + 2ηshift(1 + ηshift))

1
α + γ

1
αλ

1
α

)α
≤ (1+2ηshift(1+ηshift))2

(1−ηshift) · (1 + γ2αλ
1
α).

Corollary C.6. (robustness) For any λ ∈ (0, 1] and ηshift ∈ [0, 1), the competitive ratio of Al-
gorithm 1 run with trust parameter λ and shift tolerance parameter ηshift is upper bounded by
(1+2ηshift(1+ηshift))(1+γ22αλ

1
α)

λ .

D Missing analysis from Appendix C

Lemma D.1. For the objective of minimizing total integral weighted flow time plus energy with
α ≥ 1, the cost function is max(4 ·maxj vj , 2

α − 1)-smooth.

Proof. Let J1,J2 with |J1| = |J2|, a bijection π : J1 −→ J2 and S1 and S2 feasible for J1 and
J2.

We start with the first smoothness condition. Assume that for some η, η′ ∈ [0, 1] and for all j ∈ J1,
|rj − rπ(j)| ≤ η′, pj ≤ pπ(j)(1 + η) and vj ≤ vπ(j)(1 + η). Let S∗ be an optimal schedule for J2
and consider the schedule S = {sj(t) := (1 + η) · s∗π(j)(t− η′)}j∈J1

for J1.

Note that for all j ∈ J1 and t ≥ 0, s∗π(j)(t − η′) > 0 only if t − η′ > rπ(j). Since we assumed
|rj − rπ(j)| ≤ η′, we get that sj(t) > 0 only if t ≥ rj , hence S is feasible for J1. Next, note that

E(S) = E(S∗)(1 + η)α ≤ E(S∗)(1 + (2α − 1)η).

Recall that cSj denotes the completion time of j by S. Since pj ≤ (1+η)pπ(j), and since we assumed
that |rj − rπ(j)| ≤ η′, we have, by definition of S, that for all j, cSj ≤ η′ + cS

∗

π(j).

23

Hence,

F (S,J1) =
∑
j∈J1

vj(c
S
j − rj)

≤
∑
j∈J1

vπ(j)(1 + η)(cS
∗

π(j) + η′ − (rπ(j) − η′))

= (1 + η)F (S∗,J2) + 2max
j

vj |J1|(1 + η)η′

≤ (1 + η)F (S∗,J2) + 4max
j

vj |J1|η′ η ∈ [0, 1]

≤ (1 + (2α − 1)η)F (S∗,J2) + 4max
j

vj |J1|η′ α ≥ 1.

Therefore,

OPT(J1) ≤ cost(S,J1)
= E(S) + F (S,J1)
≤ (E(S∗) + F (S∗,J2)) · (1 + (2α − 1)η) + 4max

j
vj |J1|η′

= cost(S∗,J2)(1 + (2α − 1)η) + 4max
j

vj |J1|η′

= OPT(J2)(1 + (2α − 1)η) + 4max
j

vj |J1|η′.

We now show the second smoothness condition. Assume that for all j ∈ J1, pj ≤ pπ(j), vj ≤ vπ(j),
rj ≥ rπ(j) − η′ and that for all t ≥ rπ(j) + η′, wj

S1
(t) ≤ w

π(j)
S2

(t − η′). Then, in particular

wj
S1
(cS2

π(j) + η′) ≤ w
π(j)
S2

(cS2

π(j)) = 0, hence cS1
j = min{t ≥ rj : wj

S1
(t) = 0} ≤ cS2

π(j) + η′. By a
similar argument as above, we conclude that:

F (S,J1) ≤ F (S2,J2) + 4max
j

vj |J1|η′.

Lemma C.1. Assume that cost(., .) is β-smooth. Consider the schedule Sshift, which, for all t ≥ tλ
and (j, rj , pj , vj) ∈ J shift

≥tλ
, processes job j at speed

sj(t) = ŝj

(
t− ηshift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

)
.

Then,
cost(Sshift,J shift

≥tλ
) ≤ (1 + 2ηshift(1 + ηshift))OPT(Ĵ).

Proof. For simplifying the exposition, in the remainder of the proof, we write η̄ instead of ηshift

β(Ĵ)
·

OPT(Ĵ)

|Ĵ | .

We first analyse the energy cost.

E(Sshift) =

∫
t≥tλ

 ∑
j∈J shift

≥tλ

ŝj (t− η̄)


α

dt =
∫
t≥tλ−η̄

 ∑
j∈J shift

≥tλ

ŝj (t)


α

dt

≤
∫
t

∑
j∈Ĵ up

ŝj (t)

α

dt = E(Ŝ). (5)

24

Next, we analyze the quality cost. Note that by definition of Sshift, we have that for all j ∈ J shift
≥tλ

and
t ≥ r̂j + η̄ , the same amount of work for (j, rj , pj , vj) has been processed by Sshift at time t as the
amount of work for (j, r̂j , p̂j

(
1 + ηshift

β(Ĵ)

)
, v̂j
(
1 + ηshift

β(Ĵ)

)
) processed by Ŝ at time t− η̄. Hence, for all

t ≥ r̂j + η̄,

w
(j,rj ,pj ,vj)

Sshift (t) = w
(j,r̂j ,p̂j

(
1+ ηshift

β(Ĵ)

)
,v̂j

(
1+ ηshift

β(Ĵ)

)
)

Ŝ
(t− η̄) .

By definition of J shift
≥tλ

, we also have that for all (j, rj , pj , vj) ∈ J shift
≥tλ

, |rj − r̂j | ≤ η̄, pj ≤
p̂j
(
1 + ηshift

β(Ĵ)

)
and vj ≤ v̂j

(
1 + ηshift

β(Ĵ)

)
. Hence, we can apply the second smoothness condition with

J1 = J shift
≥tλ

and J2 = {(j, r̂j , p̂j
(
1 + ηshift

β(Ĵ)

)
, v̂j
(
1 + ηshift

β(Ĵ)

)
) : (j, rj , pj , vj) ∈ J shift

≥tλ
} ⊆ Ĵ up. This

gives:

F (Sshift,J shift
≥tλ

) ≤ F (Ŝ,J2) + η̄β(J shift
≥tλ

)|J shift
≥tλ
|

≤ F (Ŝ, Ĵ up) + η̄β(J shift
≥tλ

)|J shift
≥tλ
|

= F (Ŝ, Ĵ up) +
ηshift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

· β(J shift
≥tλ

)|J shift
≥tλ
|

≤ F (Ŝ, Ĵ up) +
ηshift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

· β(Ĵ)

(
1 +

ηshift

β(Ĵ)

)
|Ĵ |

= F (Ŝ, Ĵ up) + ηshift

(
1 +

ηshift

β(Ĵ)

)
OPT(Ĵ)

≤ F (Ŝ, Ĵ up) + ηshift(1 + ηshift)OPT(Ĵ), (6)

where the first inequality is by the second smoothness condition, the second one is is by monotonicity
of F , the equality is by definition of η̄, and the third inequality is by the smoothness and monotonicity
of β. The last inequality is since β ≥ 1.

Therefore, we get

cost(Sshift,J shift
≥tλ

) = E(Sshift) + F (Sshift,J shift
≥tλ

)

≤ E(Ŝ) + F (Ŝ, Ĵ up) + ηshift(1 + ηshift)OPT(Ĵ)
= OPT(Ĵ up) + ηshift(1 + ηshift)OPT(Ĵ)

≤

(
1 + β(Ĵ up)

ηshift

β(Ĵ)

)
OPT(Ĵ) + ηshift(1 + ηshift)OPT(Ĵ)

≤

(
1 + β(Ĵ)

(
1 +

ηshift

β(Ĵ)

)
ηshift

β(Ĵ)

)
OPT(Ĵ) + ηshift(1 + ηshift)OPT(Ĵ)

≤ (1 + ηshift(1 + ηshift))OPT(Ĵ) + ηshift(1 + ηshift)OPT(Ĵ)
= (1 + 2ηshift(1 + ηshift))OPT(Ĵ),

where the first inequality is by (5) and (6), the second inequality is by the first smoothness condition
with J1 = Ĵ up and J2 = Ĵ , the third inequality is by smoothness of β and the last inequality since
β ≥ 1.

Corollary C.2. Assume that cost(., .) is β-smooth, then

OPT(J shift) ≥
[(

1− η
1
α
2

)α
− ηshift

]/
(1 + ηshift)OPT(Ĵ).

25

Proof. We prove the result by contradiction. Assume that OPT(J shift) <
[(

1− η
1
α
2

)α
−ηshift

]/
(1+

ηshift)OPT(Ĵ). Then, we have:

OPT(Ĵ shift) ≤

(
1 + β(Ĵ shift) · η

shift

β(Ĵ)

)
OPT(J shift) + β(Ĵ shift)|Ĵ shift| · η

shift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

≤

(
1 + β(Ĵ) · η

shift

β(Ĵ)

)
OPT(J shift) + β(Ĵ)|Ĵ shift| · η

shift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

≤ (1 + ηshift)OPT(J shift) + ηshiftOPT(Ĵ)

<
(
1− η

1
α
2

)α
OPT(Ĵ).

where the first inequality is by the first smoothness condition with J1 = Ĵ shift, J2 = J shift, and the
second one is by monotonicity of β.

Next, by definition of the error η2, we have OPT(Ĵ \ Ĵ shift) = η2 · OPT(Ĵ). Hence, by Lemma 3.1,
there exists a schedule S for Ĵ shift ∪ (Ĵ \ Ĵ shift) = Ĵ such that

cost(S, Ĵ) ≤
(
OPT(Ĵ \ Ĵ shift)

1
α + OPT(Ĵ shift)

1
α

)α
<

(
(η2OPT(Ĵ))

1
α +

((
1− η

1
α
2

)α
OPT(Ĵ)

) 1
α

)α

= OPT(Ĵ),

which contradicts the definition of OPT(Ĵ).

Corollary C.3. Assume that cost(., .) is β-smooth. If OPT(J) ≤ λOPT(Ĵ), then η2 ≥(
1− (λ(1 + ηshift) + ηshift)

1
α

)α
.

Proof. Assume that OPT(J) ≤ λOPT(Ĵ). Since J shift ⊆ J , we get OPT(J shift) ≤ λOPT(Ĵ). Hence,
we have:

OPT(Ĵ shift) ≤

(
1 + β(Ĵ shift) · η

shift

β(Ĵ)

)
OPT(J shift) + β(Ĵ shift)|Ĵ shift| · η

shift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

≤

(
1 + β(Ĵ) · η

shift

β(Ĵ)

)
OPT(J shift) + β(Ĵ)|Ĵ shift| · η

shift

β(Ĵ)
· OPT(Ĵ)
|Ĵ |

≤ (1 + ηshift)OPT(J shift) + ηshiftOPT(Ĵ)
≤ (λ(1 + ηshift) + ηshift)OPT(Ĵ).

where the first inequality is by the first smoothness condition with J1 = Ĵ shift, J2 = J shift, and the
second one is by monotonicity of β.

Next, assume by contradiction, that η2 <
(
1− (λ(1 + ηshift) + ηshift)

1
α

)α
, which implies that

OPT(Ĵ \ Ĵ shift) <
(
1− (λ(1 + ηshift) + ηshift)

1
α

)α
OPT(Ĵ).

Then, by Lemma 3.1, there exists a schedule S for Ĵ shift ∪ (Ĵ \ Ĵ shift) = Ĵ such that

cost(S, Ĵ)

≤
(
OPT(Ĵ \ Ĵ shift)

1
α + OPT(Ĵ shift)

1
α

)α
<

(
((λ(1 + ηshift) + ηshift)OPT(Ĵ)) 1

α +
((

1− (λ(1 + ηshift) + ηshift)
1
α

)α
OPT(Ĵ)

) 1
α

)α

= OPT(Ĵ),

26

which contradicts the definition of OPT(Ĵ). Hence, η2 ≥
(
1− (λ(1 + ηshift) + ηshift)

1
α

)α
.

Theorem C.4. Assume that cost(., .) is β-smooth. Then, for any λ ∈ (0, 1], ηshift ∈ [0, 1), the
competitive ratio of TPE-S run with trust parameter λ, a γ-competitive algorithm ONLINEALG, an
optimal offline algorithm OFFLINEALG, and shift tolerance ηshift is at most

γ if OPT(J) ≤ λOPT(Ĵ)(
(1+2ηshift(1+ηshift))

1
α +γ

1
α

(
λ

1
α +η

1
α
1

))α

max

{
λ,η1+

((
1−η

1
α
2

)α

−ηshift

)
(1+ηshift)−1

} otherwise.

Proof. Similarly as in the proof of Theorem 3.4, we have that if OPT(J) ≤ λOPT(Ĵ), then

cost(S,J) ≤ γ · OPT(J). (7)

Next, we assume that there is tλ ≥ 0 such that OPT(J≤tλ) > λOPT(Ĵ). Hence we immediately have:

OPT(J) ≥ OPT(J≤tλ) > λOPT(Ĵ).

By Corollary C.2 and by definition of the error η1, we also get the following lower bound on the
optimal schedule:

OPT(J) ≥ OPT(J \ J shift) + OPT(J shift)

≥ η1OPT(Ĵ) +
[(

1− η
1
α
2

)α
− ηshift

]/
(1 + ηshift)OPT(Ĵ).

Therefore,

OPT(J) ≥ max
{
λ, η1 +

[(
1− η

1
α
2

)α
− ηshift

]/
(1 + ηshift)

}
OPT(Ĵ). (8)

We now upper bound the cost of the schedule output by our algorithm. By the same argument as in
the proof of Lemma 3.2, we get:

cost(Son,J \ J shift
≥tλ

) ≤ γ · OPT(Ĵ)
(
λ

1
α + η

1
α
1

)α
.

Now, from Lemma C.1, we have

cost(Sshift,J shift
≥tλ

) ≤ (1 + 2ηshift(1 + ηshift))OPT(Ĵ).

Therefore, by applying Lemma 3.1, we get:

cost(S,J) ≤
(

cost(Sshift,J shift
≥tλ

)
1
α + cost(Son,J \ Sshift)

1
α

)α
≤ OPT(Ĵ)

(
(1 + 2ηshift(1 + ηshift))

1
α + γ

1
α (λ

1
α + η

1
α
1)
)α

. (9)

Hence, we get the following upper bound on the competitive ratio of Algorithm 2:

cost(S,J)
OPT(J)

= 1OPT(J)≤λOPT(Ĵ)

cost(S,J)
OPT(J)

+ 1OPT(J)>λOPT(Ĵ)

cost(S,J)
OPT(J)

≤ 1OPT(J)≤λOPT(Ĵ) · γ + 1OPT(J)>λOPT(Ĵ)

(
(1 + 2ηshift(1 + ηshift))

1
α + γ

1
α (λ

1
α + η

1
α
1)
)α

max
{
λ, η1 +

[(
1− η

1
α
2

)α
− ηshift

]/
(1 + ηshift)

} .

27

Figure 3: The competitive ratio achieved by our algorithm, TPE-S and the benchmark algorithm as a
function of the shift tolerance ηshift (row 1) and as a function of the confidence parameter λ (row 2).

E Additional Experiments

Here, we also evaluate the impact of setting the parameters ηshift and λ on the two other datasets
(power law and real datasets). The result are presented in Figure 3. We observe similar behaviors as
for the periodic dataset.

F Comparison with [7, 4]

In [7, 4], the authors consider the energy minimization problem with deadlines, which, as detailed in
Section 3.3, is a special case of our general framework. For this problem, they propose two different
learning-augmented algorithms. We present here some elements of comparison with our algorithm
for (GESP).

We first show in Section F.1 and F.2 that our prediction model and results generalize the ones in
[7]: they are similar in the case of uniform deadlines and generalize the ones in [7] for general
deadlines. We also note that they are incomparable to those in [4]. In Section F.3, we then discuss the
algorithmic differences with [7] for the special case of energy with uniform deadlines.

F.1 Discussion about the prediction and error model in comparison to [4, 7]

At a high level, the prediction models considered in [7] and [4] are qualified by [4] as ’orthogonal’. In
[4], the number of jobs is known in advance, as well as the exact processing time for each job, however,
the release time and deadlines are only revealed when a job arrives, and the error is proportional to
the maximal shift in these values. On the contrary, in [7], the release times and deadlines are known
in advance, and the prediction regards the total workload at each time step. The error is then defined
as a function of the total variation of workload, which is the analog of additional and missing jobs in
our setting.

28

Note that in the model in [4], the predicted and true set of jobs need to contain exactly the same
number of jobs, whereas the model in [7] and our model allow for extra or missing jobs.

Comparison with the prediction model and the error metrics in [7] for energy minimization
with uniform deadlines.

Note that the prediction model used in [7] for the energy minimization with deadlines problem is
slightly different than ours: the prediction is the total workload wpred

i that arrives at each time step i
and needs to be scheduled before time i+D, and the error metric is defined as

err(wreal, wpred) :=
∑
i

||wreal
i − wpred

i ||
α, (10)

where wreal denotes the real workload at each time step.

However, in the specific case of energy minimization under uniform deadline constraints, our
prediction model and error metric and the ones from [7] are comparable: a workload wreal

i that
arrives at time i is equivalent in our setting to receiving wreal

i unit jobs with release time r = i and a
common deadline d = i+D. Moreover, we prove the following lemma, which shows that a small
error in the sense of [7] induces a small error η(J , Ĵ) in the sense defined in Section 2.

Lemma F.1. For any constant D > 0, and any instance (J , Ĵ), where at each time i, J is composed
of wreal

i jobs of one time unit with deadline i+D and Ĵ is composed of wpred
i jobs of one time unit

with deadline i+D, we have:

η(J , Ĵ) · OPT(Ĵ) = max{OPT(J \ Ĵ), OPT(Ĵ \ J)} ≤ D · err(wreal, wpred).

Proof. For convenience, we write ∆i = ||wreal
i − wpred

i ||. We can then write (J \ Ĵ) ∪ (Ĵ \ J) as
the instance which, at each time step i, is composed of ∆i unit size jobs with a common deadline
i+D.

We now upper bound the optimal cost for (J \ Ĵ) ∪ (Ĵ \ J) by the cost obtained by the Average
Rate heuristic (AVR) (first introduced in [28]). For each j, The AVR algorithm schedules uniformly
the ∆j units of work arriving at time j over the next D time steps. This is equivalent to setting the
speed sj(t) for each workload ∆j at time t ∈ [j, . . . , j +D] to ∆j

D and set sj(t) = 0 everywhere
else. For all t ≥ 0, the machine then runs at total speed

∑
j sj(t).

Letting EAVR denote the total cost of the AVR heuristic, we get:

max{OPT(J \ Ĵ), OPT(Ĵ \ J)} ≤ OPT((J \ Ĵ) ∪ (Ĵ \ J))
≤ EAVR((J \ Ĵ) ∪ (Ĵ \ J))

=

∞∑
t=1

∑
j

1sj(t)̸=0sj(t)

α

≤
∞∑
t=1

|{j : sj(t) ̸= 0}|α
(

max
j:sj(t) ̸=0

sj(t)

)α

≤
∞∑
t=1

Dα

(
max

j:sj(t)̸=0
sj(t)

)α

≤
∞∑
t=1

Dα
∑

j:sj(t)̸=0

sj(t)
α

=
∑
j

Dαsj(t)
α
∑
t

1sj(t)̸=0

≤
∑
j

Dαsj(t)
αD

29

=
∑
j

∆α
j D

= D · err(wreal, wpred),

where the fourth and sixth inequalities are since by definition of the AVR algorithm, each workload
∆j > 0 has only positive speed on time steps [j, . . . , j +D].

Comparison of the error metrics for general objective functions. We illustrate here that for a more
general GESP problem, the error metric we define can be tighter than the one in [7] (in the sense that
there are instances (J , Ĵ) and quality cost functions F such that η(J , Ĵ) << err(wreal, wpred)) and
that it may better adapt to the specific cost function under consideration.

To illustrate this point, consider an instance where the prediction is the realization plus an additional
workload of k jobs that all arrive at time 0, and consider the objective of minimizing total energy plus
flow time. In this case, the error computed in (10) is kα, whereas the error η(J , Ĵ) we define is the
optimal cost for the k extra jobs. By using results from [3], this is equal to k

2α−1
α (<< kα when α

grows large). Hence our error metric is tighter in this case.

F.2 Comparison with the theoretical guarantees in [7]

We compare below the theoretical guarantees in Theorem 3.4 and the ones shown in [7] for the
specific problem of energy minimization with uniform deadlines.

We note that we also generalize these results to the case of general deadlines to obtain the first
guarantee that smoothly degrades as a function of the prediction error in that setting. Note that for
general deadlines, [7] only obtain consistency and robustness, but not smoothness.

Comparison in the case of uniform deadlines. For convenience of the reader, we first recall below
the guarantee proven in [7].
Theorem F.2 (Theorem 8 in [7]). For any given ϵ > 0, algorithm LAS constructs, for the
energy minimization with deadlines problem, a schedule of cost at most min{(1 + ϵ)OPT +
O((αϵ)

α)err, O((αϵ)
α)OPT}, where

err(wreal, wpred) :=
∑
i

||wreal
i − wpred

i ||
α,

which is a similar dependency in ϵ as the one proved in Theorem 3.4. In particular, for all ϵ > 0,
Algorithm LAS achieves a consistency of (1 + ϵ) for a robustness factor of O((αϵ)

α). On the other
hand, when running Algorithm 1 with parameter λ = (ϵ

C2α)
α and the AVERAGE RATE heuristic [28]

as ONLINEALG (which was proven to have a 2α competitive ratio in [7]), we obtain, by plugging
λ = (ϵ

C2α)
α in the bounds provided in Corollary 3.5, a consistency of (1 + ϵ) for a robustness factor

of O(4α
2

ϵα−1).

F.3 Comparison with the algorithm (LAS) in [7]

In this section, we discuss the technical differences with the algorithm (LAS) proposed in [7] for the
energy with deadlines problem.

We first note that [7] only shows smoothness, consistency and robustness in the uniform deadline
case, where all jobs must be completed within D time steps from their release time. For the general
deadline case, [7] presents a more complicated algorithm and only show consistency and robustness.
The authors note that "one can also define smooth algorithms for general deadlines as [they] did in
the uniform case. However, the prediction model and the measure of error quickly get complex and
notation heavy". On the contrary, Algorithm 1 remains simple, captures the general deadline case,
and is also endowed with smoothness guarantees.

We now discuss more specifically the technical differences.

Robustification technique. [7] uses a convolution technique for the uniform deadline case, and a
more complicated procedure that separates each interval into a base part and an auxiliary part for

30

the general deadline case. On the other hand, our robustification technique is based on a simpler
two-phase algorithm.

We now give some intuition about why a direct generalisation of the techniques in [7] to general
objective functions does not seem straightforward. The main technical difficulty is that in [7], each
job j must be completed before its deadline dj , which is revealed to the decision maker at the time the
job arrives and is used by the algorithm. For a general objective function, we do not have a deadline ;
however, one could think about using the total completion time cj of each job instead. The issue is
that cj may depend on all future job arrivals and is not known at the time the job arrives, hence it
cannot be used directly by the algorithm.

To illustrate this point, consider the objective of minimizing total energy plus flow time with α = 2.
Consider two instances, where the first one has 1 job arriving at time 0 and the second one has 1 job
arriving at time 0 and n− 1 jobs arriving at time 1√

n
. In the first case, the optimal is to complete the

first job in 1 unit of time, whereas it is completed in 1√
n

unit of time in the second case. Furthermore,
this can be only deduced after the n − 1 other jobs have arrived. Hence, the completion times for
the first job significantly differ in the two cases. Since it is not immediate how to generalize the
technique in [7] without knowing cj at the time each job j arrives, this motivated our choice of a
different robustification technique.

Smoothness and consistency technique. To obtain smoothness and consistency guarantees, we use
a similar technique as in [7] (summing the speeds obtained by computing an offline schedule for the
predicted jobs and an online schedule for the extra jobs), with two main differences:
(1) In [7], the extra jobs arriving at each time i are scheduled uniformly over the next D time units.
On the other hand, our algorithm computes the speeds for all extra jobs by following an auxiliary
online algorithm given as an input to the decision maker. In fact, the technique from [7] can be
interpreted as a special case of our algorithm, where the auxiliary algorithm is the AVERAGE RATE
heuristic [28].
(2) The offline schedule we compute is conceptually identical to the one used in [7], however, our
online schedule differs, as it needs to integrate two different types of extra jobs: (1) the extra jobs
that arrive during the second phase of the algorithm (t ≥ tλ), and (2) the jobs that were not finished
during the first phase of the algorithm. [7] only needs to handle the first type of extra jobs. This
results in a different analysis.

31

	Consistent algorithms are not robust
	Warm-up: no 1-consistent algorithm is robust
	Consistency-robustness trade-off

	Missing analysis from Section 3
	The Extension with Job Shifts (Full version)
	Missing analysis from Appendix C
	Additional Experiments
	Comparison with BamasMRS20, antoniadis2021novel
	Discussion about the prediction and error model in comparison to antoniadis2021novel, BamasMRS20
	Comparison with the theoretical guarantees in BamasMRS20
	Comparison with the algorithm (LAS) in BamasMRS20

