
A Proof1

Proposition A.1. For any probability functions p and q of training distribution and testing distribution,2

diversity shift Ddiversity and attribute shift Dattribute are inclusively bounded between 0 and 1.3

Proof. Obviously, both Ddiversity and Dattribute are positive. Then, we prove the upper bound by the4

triangle inequality as followed:5
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Similarly, we have the following inequality:6
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The second inequality is due to triangle inequality.7

B Datasets8

BDD100K The original BDD100K [40] contains 80,000 labeled images (70,000 for training and9

10,000 for validation) with ten annotated object categories, including bike, bus, car, motor, person,10

rider, traffic light, traffic sign, train and truck. Each image has three attribute labels which indicate11

the condition, including the weather, scene and time for data collection. We remove the images with12

an undefined attribute label and separate the rest into three OOD environments.13

Sim10K Sim10k [19] is a synthetic dataset containing 10,000 images (8,000 for training, 1,000 for14

validating and 1,000 for testing) with bounding box annotations for cars, which is rendered with the15

Grand Theft Auto V (GTA5) game engine. On DetectBench, we use the training and validating data16

to construct Sim2real benchmark.17

Cityscapes Cityscapes [6] is a large-scale database which focuses on urban street scenes. The dataset18

consists of around 5000 fine annotated images (2975 for training, 500 for validating and the rest for19

testing) with eight annotated instance categories. On DetectBench, we consider the car recognition20

task to construct Sim2real benchmark for simplicity and without loss of generality.21

CtrlShift CtrlShift is a synthetic dataset to analyze the two-dimension shift on OOD object detection.22

It provides an API to generate the training set and the testing set with specific choices of ρdiversity23

and ρattribute.24

C Clarification of Tasks25

Domain Randomization techniques [36, 37, 42, 41, 17] aim at providing enough simulated domains26

at training data so that models are possible to generalize to real-world scenarios.27

OOD Detection for Object Detection [20, 9, 14, 31, 8, 26, 13, 7] can be formulated as a binary28

classification problem which distinguishes the Out-of-Distribution data.29

Open-World Object Detection [20, 45] initially learns a model which can detect all the previously30

encountered categories, and incrementally updates the model when unseen classes come.31

Open-Vocabulary Object Detection [12, 43, 10, 3] aims to train an detector which can deal with32

text inputs to detect objects in any novel categories.33
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Table 1: Illustration of the two settings on Sim2real. simtrain and simval indicate the training set and
validating set from original Sim10K [19] while citytrain and cityval are from original Cityscapes [6].
Quantity indicates the number of images. Total counts the total number of training and testing
domains respectively.

Setting Split Train Test Quantity Total

part-sim-part-real

simtrain
√

8000 8500simval
√

1000
citytrain

√
2975 3975cityval

√
500

all-sim-all-real

simtrain
√

8000 9000simval
√

1000
citytrain

√
2975 3475cityval

√
500

D Implementation Details34

To evaluate the object detection algorithms, we use the models and the pre-trained weights provided35

by mmdetection [5].36

For domain generalization algorithms on OOD object detection, we derive the implementations using37

Faster R-CNN [30] with ResNet-50 FPN backbone [16] from torchvision. The whole network is38

optimized by Stochastic Gradient Descent with learning rate 0.02, momentum 0.9 and weight decay39

0.0005.40

E Further Results41

Task complexity. To analyse the IID condition on CtrlShift, which indicates both Dattribute and42

Ddiversity equal zero, we propose a hyper-parameter task complexity α to measure the difficulty of the43

task. The difficulty is adjusted by using 1− α percent novel data in the testing set in addition to the44

original training data. The experimental results are shown in Figure 1. The generalization ability of45

each algorithm drops with the increase of task complexity.46

Sim2real benchmark. The training set of the Sim2real results reported in the main manuscript47

comprises the training data from Sim10K [19] and the validating data from Cityscapes [6], while the48

testing set comprises the training data from Cityscapes [6] and the validating data from Sim10K [19]49

(noted by part-sim-part-real, more details can be found in Table E). We reported the experimental50

results on all-sim-all-real in Table 2 and Table 3.51
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Table 2: The experimental results of object detection algorithms on the all-sim-all-real of Sim2real.
Mem (GB)† and Inf time (fps)† are from mmdetection [5].

Detector Backbone Mem† fps† AP

Faster R-CNN [30] X-101 10.3 9.4 35.6
RetinaNet [25] X-101 10.0 8.7 38.0
Mask R-CNN [15] X-101 10.7 8.0 36.7
CornetNet [23] Hourglass104 13.9 4.2 21.6
YOLOv3 [29] DarkNet-53 7.4 48.1 28.2
FCOS [35] X-101 10.0 9.7 37.9
Cascade R-CNN [4] X-101 10.7 - 40.5
MS R-CNN [18] R-X101 11.0 8.0 35.7
Libra R-CNN [27] X-101 10.8 8.5 35.3
DH R-CNN [39] R-50 6.8 9.5 33.8
VarifocalNet [44] X-101 - - 42.3
Sparse R-CNN [34] R-101 - - 40.3
Deformable [46] R-50 - - 37.4
YOLOX [11] YOLOX-x 28.1 - 36.4

Table 3: The experimental results of domain generalization algorithms on the all-sim-all-real of
Sim2real.

Algorithm hyper-parameters AP

ERM [38] - 32.8
IB-ERM [1] λib = 100 18.3
IRM [2] λirm = 1 32.7
MMD [24] γmmd = 1 33.2
CORAL [33] γmmd = 1 32.5
VREx [22] λvrex = 1 32.4
GS [28] λreg = 0.1 31.4
IGA [21] λpenalty = 1000 33.4
GroupDRO [32] ηgroupdro = 0.01 31.9

Figure 1: X-axis is task complexity α. Each block indicates the AP(%).
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