
Published as a conference paper at ICLR 2023

A DEFERRED PROOFS

In this section, we provide the proof for Lemma A.1. Let us first consider the following Lemma:
Lemma A.1 (Hyper-Box Growth). Let y := σ(x) = max(0, x) be a ReLU function and consider
box inputs with radius δx and centres x̄ ∼ D. Then the mean radius Eδy of the output boxes will
satisfy:

∂

∂δx,i
ED[δy,i] =

1

2
PD[−δx,i < x̄i < δx,i] + PD[x̄i > δx,i] > 0, (9)

and
∂

∂2δx,i
ED[δy,i] =

1

2
(PD[x̄i = −δx,i]− PD[x̄i = δx,i]). (10)

Proof. Recall that given an input box with centre x̄ and radius δx, the output relaxation of a ReLU
layer is defined by:

ȳi =


0, if x̄i + δx,i ≤ 0
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

x̄i, else
, δy,i =


0, if x̄i + δx,i ≤ 0
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

δx,i, else
(11)

We thus obtain the expectation

ED[δy,i] =

∫ δx,i

−δx,i

x̄i + δx,i
2

p[x̄i]dx̄i +

∫ ∞
δx,i

δx,ipD(x̄i)dx̄i

=
δx,i
2
PD[−δx,i < x̄i < δx,i] + δx,iPD[x̄i > δx,i] +

∫ δx,i

−δx,i

x̄i
2
p[x̄i]dx̄i, (12)

its derivative
∂

∂δx,i
ED[δy,i] =

1

2
PD[−δx,i < x̄i < δx,i] +

δx,i
2

(PD[x̄i = −δx,i] + PD[x̄i = δx,i])

+ PD[x̄i > δx,i]− δx,iPD[x̄i = δx,i]

+
δx,i
2

(PD[x̄i = −δx,i]− PD[x̄i = δx,i])

=
1

2
PD[−δx,i < x̄i < δx,i] + PD[x̄i > δx,i] > 0, (13)

and its curvature
∂

∂2δx,i
ED[δy,i] =

1

2
(PD[x̄i = −δx,i] + PD[x̄i = δx,i])− PD[x̄i = δx,i]

=
1

2
(PD[x̄i = −δx,i]− PD[x̄i = δx,i]). (14)

Now, we can easily proof Theorem 4.1, restated below for convenience.
Theorem 4.1 (Hyper-Box Growth). Let y := σ(x) = max(0, x) be a ReLU function and consider
box inputs with radius δx and asymmetrically distributed centres x̄ ∼ D such that PD(x̄ = −z) >
PD(x̄ = z), ∀z ∈ R>0. Then, the mean output radius δy will grow super-linearly in the input
radius δx. More formally:

∀δx, δ′x ∈ R≥0 : δ′x > δx =⇒ ED[δ′y] > ED[δy] + (δ′x − δx)
∂

∂δx
ED[δy]. (8)

Proof. We apply Lemma A.1 by substituting an asymmetric centre distribution D, satisfying
PD(x̄ = −z) > PD(x̄ = z), ∀z ∈ R>0 into Eq. (10) to obtain:

∂

∂2δx,i
ED[δy,i] =

1

2
(PD[x̄i = −δx,i]− PD[x̄i = δx,i]) > 0.

The theorem follows trivially from the strictly positive curvature.

15



Published as a conference paper at ICLR 2023

Example for Piecewise Uniform Distribution Let us assume the centres x̄ ∼ D are distributed
according to:

PD[x̄ = z] =


a, if − l ≤ z < 0

b, elif 0 < u ≤ l
0, else

, l =
1

a+ b
, (15)

where a and b. Then we have by Lemma A.1

ED[δy] =
δx
2
PD[−δx < x̄ < δx] + δxPD[x̄ > δx] +

∫ δx

−δx

x̄

2
p[x̄]dx̄ (16)

=
δ2
x

2
(a+ b) + bδx(l − δx) +

δ2
x

4
(b− a) (17)

= δ2
x

a− b
4

+ δx
b

a+ b
. (18)

We observe quadratic growth for a > b and recover the symmetric special case of ED[δy] = 0.5δx
for a = b.

B ADDITIONAL THEORETICAL DETAILS

B.1 CROSS-ENTROPY LOSS FORMULATION

Below we derive the formulation of the Cross-Entropy (CE) loss used in equation Eqs. (2) and (5).
We let pi be the label probability of class i, qi the predicted probability of class i, t the label for
sample x and y the logits predicted by a neural network h for this sample.

LCE = −
n∑
i=1

pi(y) log(qi(y))

= −
n∑
i=1

1i=y log

(
exp(yi)∑n
j=1 exp(yj)

)

= − log

(
exp(yt)∑n
j=1 exp(yj)

)

= − log

(
exp(yt)/ exp(yt)∑n
j=1 exp(yj)/ exp(yt)

)

= − log

(
1∑n

j=1 exp(yj − yt)

)

= log

 n∑
j=1

exp(yj − yt)

− log(1)

= log

1 +

n∑
j=1
j 6=y

exp(yj − yt)


C ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide detailed informations on the exact experimental setup.

Datasets We conduct experiments on the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky
et al., 2009), and TINYIMAGENET (Le & Yang, 2015) datasets. For TINYIMAGENET and CIFAR-
10 we follow Shi et al. (2021) and use random horizontal flips and random cropping as data aug-
mentation during training and normalize inputs after applying perturbations. Following prior work

16



Published as a conference paper at ICLR 2023

(Xu et al., 2020; Shi et al., 2021), we evaluate CIFAR-10 and MNIST on their test sets and TINY-
IMAGENET on its validation set, as test set labels are unavailable. Following Xu et al. (2020) and in
contrast to Shi et al. (2021), we train and evaluate TINYIMAGENET with images cropped to 56×56.

Table 5: Hyperparameters for the experi-
ments shown in Table 1.

Dataset ε `1 λ

MNIST 0.1 10−5 0.4
0.3 10−6 0.6

CIFAR-10 2/255 10−6 0.1
8/255 0 0.7

TINYIMAGENET 1/255 10−6 0.4

Training Hyperparameters We mostly follow the hyperpa-
rameter choices from Shi et al. (2021) including their weight
initialization and warm-up regularization2, and use ADAM
(Kingma & Ba, 2015) with an initial learning rate of 5×10−4,
decayed twice with a factor of 0.2. For CIFAR-10 we train
160 an 180 epochs for ε = 2/255 and ε = 8/255, respectively,
decaying the learning rate after 120 and 140 and 140 and 160
epochs. For TINYIMAGENET ε = 1/255 we use the same set-
tings as for CIFAR-10 at ε = 8/255. For MNIST we train 70
epochs, decaying the learning rate after 50 and 60 epochs. We
choose a batch size of 128 for CIFAR-10 and TINYIMAGENET, and 256 for MNIST. We use `1
regularization with factors according to Table 5. For all datasets, we perform one epoch of stan-
dard training (ε = 0) before annealing ε from 0 to its final value over 80 epochs for CIFAR-10 and
TINYIMAGENET and for 20 epochs for MNIST. We use an n = 8 step PGD attack with an initial
step size of α = 0.5, decayed with a factor of 0.1 after the 4th and 7th step to select the centre of
the propagation region. We use a constant subselection ratio λ with values shown in Table 5. For
CIFAR-10 ε = 2/255 we use shrinking with cs = 0.8 (see below).

ReLU-Transformer with Shrinking Additionally to standard SABR, outlined in §3, we propose
to amplify the BOX growth rate reduction (see §4) affected by smaller propagation regions, by
adapting the ReLU transformer as follows:

ȳi =


0, if x̄i + δx,i ≤ 0

cs
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

x̄i, else
, δy,i =


0, if x̄i + δx,i ≤ 0

cs
x̄i+δx,i

2 , elif x̄i − δx,i ≤ 0

δx,i, else
. (19)

We call cs the shrinking coefficient, as the output radius of unstable ReLUs is shrunken by multi-
plying it with this factor. We note that we only use these transformers for the CIFAR-10 ε = 2/255
network discussed in Table 1.

Architectures Similar to prior work (Shi et al., 2021), we consider a 7-layer convolutional archi-
tecture, CNN7. The first 5 layers are convolutional layers with filter sizes [64, 64, 128, 128, 128],
kernel size 3, strides [1, 1, 2, 1, 1], and padding 1. They are followed by a fully connected layer
with 512 hidden units and the final classification. All but the last layers are followed by batch nor-
malization (Ioffe & Szegedy, 2015) and ReLU activations. For the BN layers, we train using the
statistics of the unperturbed data similar to Shi et al. (2021). During the PGD attack we use the BN
layers in evaluation mode. We further consider narrower version, CNN7-narrow which is identical to
CNN7 expect for using the filter sizes [32, 32, 64, 64, 64] and a fully connected layer with 216 hidden
units.

Table 6: SABR training times on a single
NVIDIA RTX 2080Ti.

Dataset ε Time

MNIST 0.1 3h 23 min
0.3 3h 20 min

CIFAR-10 2/255 7h 6 min
8/255 7h 20 min

TINYIMAGENET 1/255 57h 24 min

Hardware and Timings We train and certify all networks
using single NVIDIA RTX 2080Ti, 3090, Titan RTX, or
A6000. Training takes roughly 3 and 7 hours for MNIST and
CIFAR-10, respectively, with TINYIMAGENET taking two and
a half days on a single NVIDIA RTX 2080Ti. For more De-
tails see Table 6. Verification with MN-BAB takes around 34h
for MNIST, 28h for CIFAR-10 and 2h for TINYIMAGENET
on a NVIDIA Titan RTX.

2For the ReLU warm-up regularization, the bounds of the small boxes are considered.

17



Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
λ

10−1

101

103

105

107
Loss

Box

Std

PGD

0 2 4 6 8 10
λ

10−1

100

101

102

103
Loss

Box

Std

IBP

Figure 9: Standard (Std.) and robust cross-entropy loss, computed with BOX (Box) bounds for an adversarially
(left) and IBP (right) trained network over subselection ratio λ. Note the logarithmic y-scale and different axes.

Table 7: Comparison of the standard (Acc.), adversarial (Adv. Acc), and certified (Cert. Acc.) accuracy for
different certified training methods on the full CIFAR-10 test set. We use MN-BAB (Ferrari et al., 2022) to
compute all certified and adversarial accuracies.

ε∞ Training Method Source Acc. [%] Adv. Acc. [%] Cert. Acc. [%]

2/255

COLT Balunovic & Vechev (2020) 78.42 66.17 61.02
CROWN-IBP Zhang et al. (2020)† 71.27 59.58 58.19
IBP Shi et al. (2021) - - -
SABR this work 79.52 65.76 62.57

8/255

COLT Balunovic & Vechev (2020) 51.69 31.81 27.60
CROWN-IBP Zhang et al. (2020)† 45.41 33.33 33.18
IBP Shi et al. (2021) 48.94 35.43 35.30
SABR this work 52.00 35.70 35.25

- No network published.
† Published network does not match reported performance.

D ADDITIONAL EXPERIMENTAL RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
λ

100

101
Loss

Box Std

Box Adex

Std Adex

IBP

SABR

Figure 10: Comparison of the robust cross-entropy
losses computed with BOX (Box) centered around un-
perturbed and adversarial examples for an IBP and
SABR trained network over subselection ratio λ.

Loss Analysis In Fig. 9, we show the error
growth of an adversarially trained (left) and IBP
trained model over increasing subselection ra-
tios λ. We observe that errors grow only slightly
super-linear rather than exponential for the ad-
versarially trained network. We trace this back
to the large portion of crossing ReLUs (Table 4),
especially in later layers, leading to the layer-
wise growth being only linear. For the IBP
trained model, in contrast, we observe exponen-
tial growth across a wide range of propagation
region sizes, as the heavy regularization leads to
a small portion of active and unstable ReLUs.
In Fig. 10, we compare errors for BOX centred
around the unperturbed sample (BOX Std) and
around a high loss point computed with an adversarial attack (BOX Adex). We observe that while
the loss is larger around the adversarial centres, especially for small propagation regions, this effect
is small compared to the difference between training or certification methods.

D.1 EFFECT OF VERIFICATION METHOD ON OTHER CERTIFIED DEFENSES

In this section we compare different certified defenses when evaluated using the same, precise veri-
fier MN-BAB (Ferrari et al., 2022). While COLT (Balunovic & Vechev, 2020) and IBP-R (Palma
et al., 2022) trained networks were verified using similarly expensive and precise verification meth-
ods as MN-BAB (MILP (Tjeng et al., 2019) and β-CROWN (Wang et al., 2021), respectively),
the IBP and CROWN-IBP trained networks were originally verified using much less precise BOX
propagation. We compare standard (Acc.), empirical adversarial (Adv. Acc.), and certified (Cert.

18



Published as a conference paper at ICLR 2023

Acc.) accuracy for CIFAR-10 at ε = 2/255 and ε = 8/255 in Table 7. We omit IBP-R, as neither
code nor networks are published. For CROWN-IBP (Zhang et al., 2020), we evaluated both the
‘best’ and last checkpoints of the published networks but observed that the standard accuracy of
neither matched the ones reported in the paper. We report the better of the two (‘best’).

We observe that certified accuracies increase only minimal in most settings, with the exception of
CROWN-IBP at ε = 2/255, where the certified accuracy rises from 54.0% to 58.2%. However,
there the adversarial accuracy of 59.6% remains significantly below our certified accuracy of 62.6%.
At ε = 8/255 the IBP trained network achieves 35.3% certified accuracy, matching SABR’s per-
formance, however at a 3% lower standard accuracy.

D.2 ABLATION SABR

Table 8: Ablation of SABR’s components with re-
spect to standard (Acc.) and certified (Cert. Acc.)
accuracy on the first 1000 samples of the CIFAR-10
test set at ε = 2/255.

Training Method Acc. [%] Cert. Acc. [%]

SABR 80.4 61.0
+ centred 82.5 27.4
+ random 84.1 28.3
+ FGSM 80.8 58.2
+ no projection 80.0 61.9
+ CROWN-IBP 80.3 56.7

To assess the different components of SABR, we
conduct an ablation study on CIFAR-10 with ε =
2/255. Beyond the subselection ratio , discussed in
§5 and especially Fig. 7, SABR has two main com-
ponents: i) the choice of propagation region posi-
tion and ii) the propagation method.

To analyse the effect of the propagation region’s
position, we evaluate four methods to compute its
center x′ for λ = 0.05: i) always choose the orig-
inal input as center (centred: x′ = x), ii) choose
the center uniformly at random such that the prop-
agation region lies in the original adversarial region (random: x′ ∼ U(Bε−τ (x))), iii) choose
the centre with a weak adversarial attack such as FGSM (Goodfellow et al., 2015) (FGSM:
x′ = x + (ε − τ) sign(∇xLCE(hθ(x), t))), and iv) choose the centre with a strong adversarial
attack over the whole input region Bε, without projecting it into Bε−τ , allowing it to ‘stick out’
(no projection: x′ = x∗). We observe that choosing centres either at random or as the original
input leads to weaker regularization, increasing standard accuracy slightly (+3.5% and +2.1%, re-
spectively) but significantly reducing certified accuracy (−32% and −33%, respectively). Using a
weaker adversarial attack has a similar but much less pronounced effect, increasing natural accuracy
by 0.4% at the cost of a 3.2% reduction in certified accuracy. Permitting propagation regions to pro-
trude from the original input region increases regularization, leading to a slight increase in certified
accuracy (+0.9%) at the cost of decreased standard accuracy (−0.4%).

To assess the effect of the propagation method, we compare standard SABR which uses IBP, yield-
ing an easier optimization problem (Jovanovic et al., 2021), to CROWN-IBP, which generally
yields tighter bounds. We observe that using the less precise BOX propagation indeed yields better
standard and certified accuracy.

D.3 BOUND TIGHTNESS

−1 0 1 2
Bound Tightness

Frequency

(a) IBP-trained

−1 0 1 2
Bound Tightness

Frequency

IBP

SABR

PGD

(b) SABR-trained

Figure 11: Tightness comparison of bounds computed
with IBP (λ = 1), SABR (λ = 0.1), and an adver-
sarial attack (PGD), relative to the exact MILP (Tjeng
et al., 2019) solution. A bound tightness greater than 0
indicates that the computed approximate bound is over-
approximate (e.g. for certification), one below 0 is
under-approximate (e.g. an adversarial attack).

To support the intuitions discussed in §3, we
compare the tightness of IBP, SABR, and
PGD bounds on the worst-case margin loss. To
make the computation of the exact worst-case
loss (y∆

MILP) via mixed integer linear program-
ming (MILP) and using the encoding from
Tjeng et al. (2019) tractable, we train a small
network (2 convolutional layers and 1 linear
layer) with IBP and SABR (λ = 0.1) on
MNIST at ε = 0.1. We compute bounds on
the minimum logit difference y∆ := mini yt−
yi for the first 100 test set samples using
SABR as during training (8-step PGD attack
targeting the Cross-Entropy loss), using PGD
with a 50-step margin attack and 3 restarts per
adversarial label, and using IBP.

19



Published as a conference paper at ICLR 2023

In Fig. 11, we show histograms of the bound tightness (y∆
MILP − y∆

approx), where results greater 0
correspond to the bound (PGD, IBP, or SABR) being larger than the actual worst case loss and
results smaller 0 correspond to the bound being smaller. A sound verification method will thus al-
ways yield positive bound tightness and is the more precise the smaller its absolute value. Similarly,
adversarial attack based methods will always yield negative bounds, with stronger attacks generally
yielding smaller magnitudes.

We observe that, especially for the SABR trained network, IBP bounds are relatively loose. SABR
bounds are generally tighter than both PGD and IBP bounds (smaller mean magnitude), although
clearly not sound (as discussed in §3). We highlight that the PGD attack used to compute the bound
is significantly stronger than the one used for SABR. We conclude that while SABR bounds often
do not include the true worst case loss, they represent a better proxy than either IBP or PGD bounds.

D.4 BOX GROWTH RATES OF TRAINED NETWORKS

Table 9: Mean and maximum row-wise `1-norm of effective
weight matrices. Where applicable (∗), BN layers are merged
with the preceding convolutional (Conv) and linear (Lin) layer.

Layer
PGD SABR IBP

mean max mean max mean max

Conv 1∗ 4.56 12.50 0.73 2.36 0.64 2.74
Conv 2∗ 11.88 21.44 3.21 12.93 2.54 9.00
Conv 3∗ 11.29 18.33 4.19 17.18 17.81 58.97
Conv 4∗ 20.86 31.53 4.48 22.18 6.60 25.75
Conv 5∗ 22.47 61.31 5.62 39.71 31.77 272.52
Lin 1∗ 30.60 98.06 19.52 83.62 32.25 65.13
Lin 2 40.07 47.29 34.32 42.06 97.20 113.65

In Table 9, we compare the mean and max
row-wise `1-norm of the effective weight
matrices of PGD, SABR and IBP trained
networks for CIFAR-10 and ε = 2/255,
depending on the network layer. Where
applicable, we combine batch normaliza-
tion layers with the preceding affine lay-
ers. As we show in §4, this corresponds to
the mean and maximum growth rate κ for
BOX of equal side lengths.

We observe that growth rates generally in-
crease with network depth. Interestingly
training with BOX, either in the form of SABR or IBP significantly reduces growth rates in the
early layers, but much less in later layers. For IBP trained networks, the maximum growth rate in
later layers can even exceed that of the PGD trained network.

D.5 TRAINING ALGORITHM

Algorithm 1 get_propagation_region

Input: Neural network h, input x, label t, perturbation radius ε, subselection ratio λ, step size α,
step number n

Output: Center x′ and radius τ of propagation region Bτ (x′)
(x,x)← clamp((x− ε,x+ ε), 0, 1) // Get bounds of input region
τ ← λ/2 · (x− x) // Compute propagation region size τ
x∗0 ← Uniform(x,x) // Sample PGD initialization
for i = 0 . . . n− 1 do // Do n PGD steps
x∗i+1 ← x∗i + α · ε · sign(∇x∗iLCE(h(x∗i ), t))
x∗i+1 ← clamp(x∗i+1,x,x)

end for
x′ ← clamp(x∗n,x+ τ,x− τ) // Ensure that Bτ (x′) will lie fully in Bε(x)
return x′, τ

20



Published as a conference paper at ICLR 2023

Algorithm 2 SABR Training Epoch

Input: Neural network hθ, training set (X,T ), perturbation radius ε, subselection ratio λ, learning
rate η, `1 regularization weight `1
for (x, t) = (x0, t0) . . . (xb, tb) do // Sample batches ∼ (X,T )

(x′, τ)← get_propagation_region // Refer to Algorithm 1
Bτ (x′)← BOX(x′, τ) // Get box with midpoint x′ and radius τ
uy∆ ← get_upper_bound(hθ,Bτ (x′)) // Get upper bound uy∆ on logit differences

// based on IBP
loss← LCE(uy∆ , t)
loss`1 ← `1 · get_`1_norm(hθ)
losstot ← loss + loss`1
θ ← θ − η · ∇θlosstot // Update model parameters θ

end for

21


