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A APPENDIX

A ALGORITHM PROCEDURE

Algorithm 1 outlines the procedure of margin selection (MS). In MS, distances of the current sample
(x, y) to each other class c are computed. If y 6= c, the classification margin of (x, y) and class c is
M(x, y, c), which is the distance of moving x from class y to class c. If y = c, the classification
margin is minc̃ 6=y M(x, y, c̃), which corresponds to the distance moving (x, y) to another class that
is the most close to x. For the whole candidate set T , this generates a |T |⇥ C score matrix. After
the classification margins are obtained, |S|/C samples with the smallest classification margin along
each class are picked. This keeps samples collected in the subset balanced.

Algorithm 1 Margin selection: MS(w, T , �)

Input:
Candidate set T , keeping ratio �, number of classes C;
Network with weights w, including weights of the final classification layer W ;

Output:
Selected subset according to the classification margin S.

1: Compute the keeping budget |S| = � · |T |, initialize the subset S = {}

// Evaluating: compute the classification margin.

2: for (x, y) 2 T do
3: for c = 1 : C do
4: Compute the classification margin of the sample to the (y, c) boundary:

M(x, y, c) =

(
minc̃ 6=y M(x, y, c̃) y = c

M(x, y, c) y 6= c
(4)

5: end for
6: end for

// Selecting: pick the samples according to classification margin (Equation 4.)
7: for c = 1 : C do
8: Pick |S|/C samples which have the smallest classification margins (M(·)): Top|S|/C(c).
9: S = S

S
Top|S|/C(c)

10: Remove the already selected samples from the candidate set: T = T � Top|S|/C(c)
11: end for

Algorithm 2 Dynamic margin selection (DynaMS)
Input:

Training data T ;
Base network with weights W , learning rate ⌘
Keep ratio of each selection �k where k = 1, ...,K, selection interval Q

Output:
Model efficiently trained on selected subsets.

1: k = 1; �k = 1 thus Sk = T

2: for epochs t = 1, ..., T do
3: if t % Q == 0 then
4: Select subset, Sk = MS(Wt, T , �k).
5: k = k + 1
6: else
7: Keep subset Sk.
8: end if
9: Update W via stochastic gradient descent on Sk.

10: end for
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Algorithm 3 Dynamic margin selection (DynaMS) with parameter sharing proxy (PSP)
Input:

Training data T ;
Base network with weights W , learning rate ⌘
Keep ratio of each selection �k where k = 1, ...,K, selection interval Q
Slimming factor of the proxy r, thus the proxy weights Wproxy is determined.

Output:
Model efficiently trained on selected subsets.

1: k = 1; �k = 1 thus Sk = T

2: for epochs t = 1, ..., T do
3: if t % Q == 0 then
4: Select subset, Sk = MS(Wt

proxy, T , �k).
5: k = k + 1
6: else
7: Keep subset Sk.
8: end if
9: Update W via optimizing L(W) + L(Wproxy) on Sk. (Slimmable training)

10: end for

A full workflow of efficient training with the proposed dynamic margin selection (DynaMS) is shown
in Algorithm 2. The model is first trained on the full dataset T for Q epochs to warm up. Subset
selection kicks in each Q epochs, samples are evaluated with the current model so the informative
subset gets updated according to the distance of samples to the classification boundary. After selection,
the model is trained on the selected subset until the next selection. The workflow incorporating
parameter sharing proxy is shown in Algorithm 3. Different from naive DynaMS, samples are
evaluated and selected with the proxy instead of the underlying model. During the Q epochs’ training,
the proxy and the original model are updated simultaneously with slimmable training (Yu et al.,
2019).

B PROOF FOR THEOREM 2.2

To prove Theorem 2.2, we first inspect the norm of x. We get the following lemma.
Lemma 1. For Gaussian data x ⇠ N (0,⌃), let µ > 0, T > 1 be constants, d the dimension

of x and � the largest eigenvalue of the covariance ⌃, then with probability at least 1 �
1

µTd ,

kxk2 <
p
d�(1 + (2µ)

1
4 )T

1
4 .

Proof of Lemma 1. For x ⇠ N (0,⌃), kxk22 follows a generalized chi-squared distribution. The
mean and variance can be computed explicitly as E[kxk22] = tr⌃ =

P
j �j and Var(kxk22) =

2tr⌃2 = 2
P

j �
2
j . By Chebyshev’s inequality, we have

Pr

0

@kxk22 <

X
�j +

p
µTd

s
2
X

j

�
2
j

1

A > 1�
1

µTd

where µ > 0 and T > 1 are constants and d is the dimension of x. Then

as
P

�j +
p
µTd

q
2
P

j �
2
j  (1 +

p
2µT )d� where � = maxj �j is the largest eigenvalue of the

covariance ⌃, we have:

Pr

⇣
kxk2 <

p

d�(1 + (2µ)
1
4 )T

1
4

⌘
> 1�

1

µTd
(5)

Then we can start proving Theorem 2.2.
Theorem. Consider logistic regression f(x) = 1

1+e�w>x
with N Gaussian training samples x ⇠

N (0,⌃), x 2 Rd
. Assume kwk2  D and

N
d < ↵. Let w⇤

be the optimal parameters and � be
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the largest eigenvalue of the covariance ⌃. For t 2 {1, . . . T} and constants " > D

q
�
2 � 1, ⇣ >

1, µ >> ↵, select subset with critical margin t = (1 + ") log(⇣T � t) and update parameters with

learning rate ⌘ = DN
E
p
T

. Then with probability at least 1� ↵
µ

min
t

L(wt)� L(w⇤)  DE

✓
1

T
1
4

+
c",⇣

T
3
4+"

+
c",⇣,�

T �

◆
(6)

where E =
p
d�(1 + (2µ)

1
4 ), � = (1+")2

2D2� �
1
4 , c",⇣ and c",⇣,� are constants depending on ", ⇣ and

�.

Proof of Theorem 2.2. For logistic regression f(x) = 1
1+e�w>x

with loss function

L =
1

N

NX

i=1

`i =
1

N

NX

i=1

�yi log ŷi � (1� yi) log(1� ŷi) (7)

Where ŷi is the predicted value. The gradient incurred training on the selected subset is then:

@L

@w
=

1

N

NX

i=1

(ŷi � yi)xi · I(|w
>xi| < )

For those |w>
xi| �  or "easy" samples, we have | sgn(yi � 1

2 ) ·w
>xi| �  and with probability at

least 1� 1
µTd ����

@`i

@w

����
2



(
E·T

1
4

1+e if sgn(yi �
1
2 ) ·w

>xi � 

E · T
1
4 if sgn(yi �

1
2 ) ·w

>xi  �

(8)

where E =
p
d�(1 + (2µ)

1
4 ). Note that the condition sgn(yi �

1
2 ) · w

>
xi  � means xi is

misclassified by w as well as the margin is at least . Denote the portion of this kind of misclassified
sample in the whole training set by r, we have the estimate of the gradient gap

Errt =

����
@L

@w
�

@L

@w

����
2

=
1

N

������

X

|w>x|�

@`

@w
(x)

������
2


ET

1
4 (1� �t)

1 + et
+ ET

1
4 (1� �t)rt

(9)

Where �t is the fraction of data kept by selecting with margin t. The inequality holds with probability
at least (1� 1

µTd )
N

> 1� ↵
µT because of Equation 8.

Note that Lemma 1 also suggest
�� @`
@w

��
2
 E · T

1
4 with large probability, therefore L is highly likely

to be Lipschitz continuous with parameter ET
1
4 . By setting a constant learning rate ⌘ = DN

E
p
T

, and

critical margin t = (1+") log(⇣T �t), ⇣ > 1, we have with probability at least
�
1� ↵

µT

�T
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µ
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T
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3
4
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t=1

rt

(10)

The first inequality follows the Theorem 1 in (Killamsetty et al., 2021). The last inequality holds
because

PT�1
t=1

1
(⇣T�t)1+" 

R ⇣T
(⇣�1)T

1
s1+" ds 

c",⇣
T " with c",⇣ = 1

"(⇣�1)" , 8" > 0 and ⇣ > 1.

To bound the sum of classification error (the last term of Equation 10), again we utilize the data
distribution prior. Note that the data points contribute to r are quantified by the following set:

E = {w>
o x > 0 ^w>x < �} [ {w>

o x < 0 ^w>x > } := E1 [ E2
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where wo is the oracle classifier such that the true label is generated according to y = sgn(w>
o x).

Let � represent the probability density function of standard Gaussian, we see that

r =

Z

E
�(x|⌃)dx = 2

Z

E1

�(x|⌃)dx

2

Z

{w>·x<�}
�(x|⌃)dx = 2�

✓
�


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◆

2�

✓
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

D
p
�

◆

where � is the largest eigenvalue of ⌃. Therefore, we have the following estimation:
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(Gaussian upper tail bound)
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1
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e
� (1+")2
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p
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(11)

where � = (1+")2

2D2� �
1
4 and we assume log((⇣ � 1)T + 1) = ⌦(1) with respect to T . Together we

prove the theorem 2.2.

C GENERALIZATION

Sorscher et al. (2022) analysed the generalization of static training scheme in the teacher-student
perceptron setting, where the teacher is an "oracle" generating labels. For the training set T =

{xi, yi}
|T |
i=1, assume xi ⇠ N (0, I) and there exists an oracle model wo 2 Rd which generates the

labels such that yi = sign
�
w>

o xi

�
for all i. Without loss of generality, the oracle is assumed to be

drawn form a sphere. Sorscher et al. (2022) works in a high dimensional statistics where |T |, d ! 1

but the ratio ↵ = |T |/d remains O(1).

Following the static training scheme, a lower fidelity estimator westimate which has angle ✓ relative
to the oracle wo is used to evaluate the candidate instances, and those with smaller classification
margin |w>

estimatexi| along the estimator westimate are picked. The selection results in a subset S. S
follows p(z), a truncated Gaussian distribution along westimate, while the other directions are still
kept isotropic. More specifically, given a keeping ratio �, the corresponding selection margin is
 = H

�1
� 1��

2

�
and thus the subset distribution along westimate is p(z) = e�z2/2

p
2⇡�

⇥(� |z|), where
⇥(x) is the Heaviside function and H(x) = 1 � �(x) where �(x) is the cumulative distribution
function (CDF) of standard Gaussian.

The generalization error of the model trained on the subset S takes the form E(↵, �, ✓). That is, the
error is determined by � the keeping ratio, ↵ which indicates the abundance of training samples
before selection, and ✓ which shows the closeness of the estimator to the oracle model. The full set of
self-consistent equations characterizing E(↵, �, ✓) is given as
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Where,

⇤ =
q
sin2 ✓ �R2 � ⇢2 + 2⇢R cos ✓

�(t, z) = z(⇢R� cos ✓)� ⌧(R� ⇢ cos ✓)

�(t, z) = z
2
�
⇢
2 + cos2 ✓ � 2⇢R cos ✓

�
+ 2⌧z(R cos ✓ � ⇢) + ⌧

2 sin2 ✓

⌧ is an auxiliary field introduced by Hubbard-Stratonovich transformation. h·iz denotes expectation on
p(z). By solving these equations the generalization error can be easily read off as E = cos�1(R)/⇡,
where R = w>wo

kwk2·kwok .

D MORE RESULTS ON GENERALIZATION

(a) Smaller budget (�avg = 50%). (b) Less abundant data (↵ = 2.1). (c) Better estimator (✓ = 30�).

Figure 6: Effects of select ratio �avg, initial data abundance ↵ and the closeness of the estimator to
the oracle model ✓ on the generalization.

Figure 7: Generalization in a data
scarce regime (↵ = 1.7).

To better understand the generalization under classification
margin selection E(↵, �, ✓), we provide more results to indi-
vidually inspect the effect of (on average) select ratio �avg,
initial data abundance ↵ and the closeness of the estimator to
the oracle mode ✓. As shown in Figure 6(a), we changed �avg
from 60% to 50%, thus constructing a smaller selection budget
case. In Figure 6(b), we use ↵ = 2.1 instead of ↵ = 3.2
to construct a less abundant data case, where the data before
selection is insufficient. In Figure 6(c), we start selecting sam-
ples using a better estimator ✓ = 30� instead of ✓ = 40�. All
the other hyper-parameters aside from the inspected one are
kept consistent to those used Figure 2(b), that is, �avg = 0.6,
↵ = 3.2 and ✓ = 40�. We see that with various �avg and ✓,
DynaMS outperforms its static counterpart. The abundance of initial data, however, significantly
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affects. When data is insufficient, data selection, both static as well as dynamic cause obvious
performance degradation. Figure 7 shows a even more serious ↵ = 1.7, the generalization landscape
is significantly changed and data selection is not recommended in this case.

E COMPARISON WITH STANDARD DEVIATION

We test each method in Table 4 and Table 5 5 times. The averaged accuracy and standard deviation
are reported below in Table 6 and Table 7.

Table 6: Comparison for ResNet-18 on Cifar-10 with standard deviation.

Methods Types Budget Schedule Accuracy.

Original - 100% - 95.52±0.09
Random Stat. 60% - 94.09±0.23
EL2N1 Stat. 60% - 94.55±0.15
EL2N10 Stat. 60% - 95.34±0.13
GraNd10 Stat. 60% - 95.21±0.15
Forget10 Stat. 60% - 95.29±0.12

OnlineMS OLBS. 60% Const. 95.21±0.18
Auto-assist OLBS. 60% Const. 92.37±0.24

DynaRandom Dyna. 60% Linear 94.45±0.17
DynaCE Dyna. 60% Linear 94.96±0.21
Craig Dyna. 60% Const. 94.36±0.19
GradMatch Dyna. 60% Const. 94.84±0.17
DynaMS Dyna. 60% Linear 95.28±0.15

Table 7: Comparison for ResNet-18 and ResNet-50 on ImageNet with standard deviation

Types Budget Schedule ResNet 18 ResNet 50

Top1 Acc. Top5 Acc. Top1 Acc. Top5 Acc.

Original - 100% - 70.56±0.04 89.95±0.02 75.96±0.04 92.75±0.02
Random Stat. 60% - 67.16±0.10 87.50±0.07 72.46±0.10 90.85±0.04
EL2N1 Stat. 60% - 66.38±0.09 88.56±0.05 72.03±0.12 91.78±0.04
EL2N10 Stat. 60% - 66.46±0.10 88.73±0.04 72.18±0.10 92.02±0.06
GraNd10 Stat. 60% - 66.50±0.06 88.76±0.03 72.14±0.06 92.16±0.03
Forget10 Stat. 60% - 67.84±0.08 87.50±0.03 73.50±0.06 91.41±0.04
SVP+Forget Stat. 60% - - - 72.90±0.10 91.37±0.04
SVP+Entropy Stat. 60% - - - 73.00±0.01 91.52±0.01

DynaRandom Dyna. 60% Power 67.59±0.05 87.62±0.03 72.63±0.12 90.91±0.08
DynaCE Dyna. 60% Power 67.58±0.10 88.10±0.04 72.80±0.08 91.31±0.03
Craig Dyna. 60% Const. 65.32±0.08 86.92±0.04 70.69±0.07 90.72±0.02
GradMatch Dyna. 60% Const. 66.48±0.11 88.61±0.04 71.79±0.07 91.67±0.03
DynaMS Dyna. 60% Linear 68.12±0.13 88.93±0.06 74.10±0.09 92.25±0.03
DynaMS Dyna. 60% Power 68.65±0.11 89.21±0.04 74.56±0.09 92.33±0.03
DynaMS+PSP Dyna. 60% Linear - - 73.59±0.09 91.79±0.07
DynaMS+PSP Dyna. 60% Power - - 73.40±0.08 91.80±0.01

F IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

Subset size schedule Dynamic Selection admits more freedom in subset size schedule. In the
experiments we consider the linear schedule and the power schedule. For linear schedule, the keeping
ratio is determined by �k = 1� k · a for k = 1, 2, . . . ,K, where a determines the sample reduction
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ratio. � is supposed to satisfy �avg = 1
K

PK
k=1 �k = �s where �s is the selection ratio when a static

training scheme is applied. Thus 1
K

PK
k=1 |Tk| = |S|, meaning the averaged number of data used in

the dynamic scheme is kept equal to that of static training.

Aside from the linear scheduler, we also explore a power schedule where �k = m · k
�r + b for

k = 1, 2, . . . ,K. Power schedule reserves more samples in late training, preventing performance
degradation caused by over data pruning. Determining these hyper-parameters m, r, b is a bit tricky,
we just require �1 = 1.0 to warm start and �avg = 1

K

PK
k=1 �k = �s for fair comparison. �K should

not be overly small, we empirically find �K ⇡ � � 0.1 yield good results. For different budget
�s = {0.6, 0.7, 0.8, 0.9} the hyper-parameters are given in Appendix F, Table 8. Post process is
carried out to make sure the resulting subset size sequence satisfy the above requirements.

Figure 8: Different schedules for �s = 0.6 budget.

(Killamsetty et al., 2021) utilize a constant

schedule, where in each selection the subset size
is kept constant as �s · |T |. This schedule how-
ever, do not admit selection without replacement.
Linear and power schedule are all monotonically
decreasing, thus are natural choices consider-
ing this. Figure 8 plots the three schedules on
�s = 0.6 budget. In this paper we just provide a
primary exploration on the subset size schedule,
in depth study on the relationship between the
subset size and the model performance as well
as an automatic way determining the optimal
subset size schedule is left for future work.

Hyper-parameters Finally, the detailed hyper-parameters for DynaMS on both CIFAR-10 and
ImageNet datasets are shown in Table 8. Note that for DynaMS+PSP, the Max Epochs is set to be 90
on ImageNet.

Table 8: Hyper-parameters of DynaMS for different models on CIFAR-10 and ImageNet.

Hyper-parameters CIFAR-10 ImageNet

ResNet-18 ResNet-18 ResNet-50

Batch Size 128 512 512
Init. Learning Rate of W 0.1 0.1 0.1
Learning Rate Decay Stepwise 0.2 Stepwise 0.1 Stepwise 0.1
Lr Decay milestones {60,120,160} {40,80} {40,80}
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Nestrov True True True
Weight Decay 5e-4 1e-4 1e-4
Max Epochs 200 120 120
Selection interval 10 10 10

Power Scheduler -

60%: m = 0.3984, r = 0.2371, b = 0.2895
70%: m = 0.3476, r = 0.2300, b = 0.4275
80%: m = 0.3532, r = 0.1349, b = 0.4978
90%: m = 0.2176, r = 0.1035, b = 0.7078

Linear Scheduler

a = 0.041 60%: a = 0.073
- 70%: a = 0.055
- 80%: a = 0.036
- 90%: a = 0.018
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k=1

k=4

k=7

k=10

Figure 9: Images selected at different training stages of the model. As in (Sorscher et al., 2022), we
show results on ImageNet class 100 (black swan).

G VISUALIZATION OF DYNAMICALLY SELECTED IMAGES

To get a better understanding of how the selected samples look like and how they change over time,
we visualize samples picked in different selection steps along the training. For k = 1, k = 4, k =
7 and k = 10, which corresponds to the 1,4,7 and 10th selection, we randomly visualize selected
samples that are absent in the latter selection. E.g. the k = 4 row shows images picked in the 4th
selection but not in the 7th selection. From Figure 9, we see that in the early selections, amounts of
easy-to-recognize samples are kept. As the training proceeds, these simple images are screened out
and the model focuses more on harder samples that are atypical, blurred, or with interfering objects,
validating our hypothesis that samples most informative change as the model evolves. Dynamic
selection is thus indispensable.
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H SUMMARY OF NOTATIONS

Table 9: Summary of the notations used throughout this paper. Variables only used in theoretical
analysis including the convergence analysis and the generalization analysis are grayed for better
readability.

Topic Notation Explanation

Data (sub) Sets T The full training set
| · | Cardinality of a set
x data sample
y data label
S The extracted subset
C The number of classes
c The cth class

Models and Parameters f(·) The model used for classification
w Parameters of the model
w⇤ Optimal model parameter
wo Oracle model parameter
W Parameter of the linear classifier
W Kernel of a convolutional layers
g gradient incurred by the model
gproxy gradient incurred by the proxy
d The dimension of data feature
h(·) Feature extractor part of the model f(·)
p Slimming factor, deciding the width of the proxy model

Selection schedule a Sample reduction ratio in the linear schedule
m, r, b Hyper-parameters controlling the power schedule

Loss Functions L Generic reference to the loss function

Data Selection B Decision boundary of linear classifiers
Q Selection interval
M The classification margin aka. distance of a sample to decision boundary
�k Selection budget, keep ratio of samples for the kth selection
�avg The averaged keep ratio of dynamic selection
�s Selection budget in static selection.
k Selection step
K The total number of selections along training
E The generalization error of model trained on selected subset
✓ Relative angle of a model to the oracle model.
↵ Aboundance of data before selection
 Selection margin.

Train t Training epoch
T The total number of training epochs, T = Q · (K + 1)

Data Distribution ⌃ Covariance of a Gaussian distribution
� The largest eigenvalue of the covariance matrix

Hyper-parameters D Upper bound of model parameter norm
", ⇣, µ Constants appear in the convergence bound.
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