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A.1 LIST OF PROMPTS

We provide the list of prompts that are used to guide the diffusion model to generate diverse back-
ground changes, encompassing different distribution shifts with respect to the original data distribu-
tion.

Table 6: Prompts used to create background alterations

Background Prompts
Class label ”This is a picture of a class name.”
BLIP-2 Caption Captions generated from BLIP-2 image to caption
Colorprompt-1 ”This is a picture of a vivid red background.”
Colorprompt-2 ”This is a picture of a vivid green background.”
Colorprompt-3 ”This is a picture of a vivid blue background.”
Colorprompt-4 ”This is a picture of a vivid colorful background.”
Textureprompt-1 ”This is a picture of textures in the background.”
Textureprompt-2 ”This is a picture of intricately textured background.”
Textureprompt-3 ”This is a picture of colorful textured background.”
Textureprompt-4 ”This is a photo of distorted textures in the background.”
Adversarial Captions generated from BLIP-2 image to caption.
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A.2 ALGORITHM

We provide the algorithm (Algo. 1) for our approach of generating adversarial backgrounds by op-
timizing the textual and visual conditioning of the diffusion model. We also tried to optimize only
the conditional embeddings or the latent embeddings, but achieve better attack success rate by op-
timizing both. Note that for crafting adversarial examples on COCO-Dc we use ImageNet trained
resnet50 classifiers and our adversarial objective is to maximize the feature representation distance
between clean and adversarial samples. Furthermore, for introducing desired non-adversarial back-
ground changes using the textual description T ′

, the optimization of the latent and embedding is not
needed.

Algorithm 1 Background Generation

Require: Conditioning module C, Diffusion model ϵθ, Autoencoder V , CLIP text encoder ψCLIP,
image I, class label y, classifier Fϕ, denoising steps T , guidance scale λ, attack iterations N ,
and learning rate β for AdamW optimizer A.

1: Get the textual and visual conditioning from the image I

C(I,y) = T ,M

2: Modify T to T ′
for desired background change.

3: Map the maskM and image I to latent space: i,m← VENC(I,M)

4: Get the embedding of the textual discription T ′
: eT ′ ← ψCLIP(T

′
)

5: Randomly initialize the latent zT
6: Get the denoised latent zt at time step t.
7: for n ∈ [1, 2, . . . N ] do
8: for t ∈ [t, t+ 1, . . . T ] do
9: ϵ̂tθ(zt, eT ′ , i,m) = ϵtθ(zt, i,m) + λ (ϵθ(zt, eT ′ , i,m)− ϵtθ(zt, i,m))

10: From noise estimate ϵ̂θ get zt−1.
11: end for
12: Project the latents to pixel space: Iadv ← VDEC(z0)
13: Compute Adversarial Loss:

Ladv = LCE(Fϕ(Iadv),y)

14: Update zt and eT using A to maximize Ladv:

zt, eT ′ ← A
(
∇ztLadv,∇eT ′Ladv

)
15: end for
16:
17: Generate Adversarial image Iadv using updated zt and eT ′ .
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A.3 DIVERSITY AND DIFFUSION PARAMETER ABLATION

In this section, we qualitatively analyze the diversity in visual results of the diffusion model. In
Figure 7, we show that keeping textual and visual guidance fixed, the diffusion model is still able
to generate diverse changes with similar background semantics at different seeds for the noise zT .
Furthermore, we explore the diversity in genrating realistic background changes across an original
image by using diverse class agnostic textual prompts, capturing different realistic backgrounds.
Figure 8 and 9 show some of the qualitative results obtained on IN-Nat samples using prompts
generated from ChatGPT (See Table 7). Furthermore, we show the visual examples of color, texture,
and adversarial attack on IN-Nat dataset in Figure 10, 11, and 12. We also provide a visualization
in Figure 13 showing the effect of changing diffusion model parameters.

Figure 7: In this figure, examples are generated using BLIP-2 captions by altering the seed from
left to right in the row. This highlights the high diversity achievable with the diffusion model when
employing different starting noise latents.

17



Under review as a conference paper at ICLR 2024

Figure 8: Using diverse prompts to capture for diverse background shifts on samples from IN-Nat.
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Figure 9: Using diverse prompts to capture for diverse background shifts on samples from IN-Nat.
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Table 7: ChatGPT prompts used to create diverse and realistic background changes. In the prompts
provided the is replaced with original class name of the object

”A realistic photo of on a grassy field with a greenish hue background.”
”A realistic photo of on a sandy beach with a bluish tint ocean background.”
”A realistic photo of on a hilltop with a panoramic and slightly reddish background.”
”A realistic photo of on a leafy surface with a vibrant, natural coloration background.”
”A realistic photo of on a forest floor with dappled sunlight and natural hues background.”
”A realistic photo of by a riverbank with a tranquil water stream and bluish tones background.”
”A realistic photo of on a mountain trail with rugged terrain and earthy tones background.”
”A realistic photo of on a mossy rock with a lush, green and slightly yellowish forest background.”
”A realistic photo of on a tree stump with a woodland setting and brownish tones background.”
”A realistic photo of in a forest glade with dappled sunlight background.”
”A realistic photo of on a moss-covered rock with a tranquil forest and greenery background.”
”A realistic photo of on a rocky riverbed with flowing water and natural hues background.”
”A realistic photo of on a forest path with a beautiful, peaceful forest background.”
”A realistic photo of on a beach with a tranquil ocean view and shades of blue background.”
”A realistic photo of on a mountain ledge with a stunning valley view and natural sky back-
ground.”
”A realistic photo of by a forest stream with a serene and peaceful natural setting and back-
ground.”
”A realistic photo of on a rocky outcrop with a rugged and scenic mountain background.”
”A realistic photo of on a forest floor with a peaceful and natural setting with lush greenery and
earthy tones background.”
”A realistic photo of on a sandy beach with a beautiful sunrise and gentle waves rolling onto the
shore and warm tones background.”
”A realistic photo of on a mountain ledge with a stunning valley view background.”
”A realistic photo of on a forest path with the sun shining through the trees and warm back-
ground.”

”A photo of with a vivid greenish color background.”
”A photo of with a vivid bluish color background.”
”A photo of with a vivid reddish color background.”
”A photo of with a textured background featuring intricate patterns and soft hues.”
”A photo of with a textured background resembling natural stone with earthy tones.”
”A photo of with a textured background resembling wood grain with natural hues.”
”A photo of with a textured background resembling fabric with soft colorations.”
”A photo of with a textured background resembling a painted canvas with artistic tones.”
”A photo of with a textured background resembling crumpled paper with muted hues.”
”A photo of with a textured background resembling sand with natural shades.”
”A photo of with a textured background resembling flowing water with soft tones.”
”A photo of with a textured background resembling a starry night sky with dimmed colors.”
”A photo of with a textured background resembling fluffy clouds with light and airy hues.”

”A realistic photo of with a slightly blurred and diffused background.”
”A realistic photo of with a misty and foggy atmosphere in the background.”
”A realistic photo of with a hazy and ethereal background.”
”A realistic photo of with a softly blurred and dreamy background.”
”A realistic photo of with a gentle and soft-focus background.”
”A realistic photo of with a slightly obscured and blurred background.”
”A realistic photo of with a diffused and unfocused background.”
”A realistic photo of with a veiled and indistinct background.”
”A realistic photo of with a subtly blurred and obscured background.”
”A realistic photo of with a mist-covered and dreamlike background.”
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Figure 10: Images generated through diverse color prompts on IN-Nat.
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Figure 11: Images generated through diverse texture prompts on IN-Nat.
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Figure 12: Images generated under various attack scenarios on IN-Adv. Here we show the visual-
ization for latent, prompt, and ensemble attack that are generated by optimizing latent, text prompt
embeddings, and both respectively.
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Figure 13: Visualization on samples taken from IN-Nat. Varying parameters like guidance,
strength, and denoising steps while using BLIP-2 caption as the prompt. Increasing guidance leads
to more fine-detailed background changes. Additionally, greater strength correlated with more pro-
nounced alterations from the original background. And, augmenting diffusion steps improves image
quality.
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A.4 VISION LANGUAGE MODEL FOR IMAGE CAPTIONING

Figure 14: A visual comparison of BLIP-2 captions on clean and generated datasets. The top row
shows captions on clean images, while the bottom row displays captions on generated images. As
background complexity increases, BLIP-2 fails to accurately represent the true class in the image.

Figure 15: The figure illustrates the introduction of background variations achieved through a diverse
set of texture and color text prompts
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A.5 QUALITATIVE RESULTS ON DETECTION

Figure 16: We use diverse prompts to capture the diverse background shifts on samples from
COCO-DC. The figure illustrate a comparison of prediction of Mask-RCNN on both clean and gen-
erated samples on COCO-DC. Each two adjacent rows represents the prediction of Mask-RCNN on
clean (top) and generated images (bottom).
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Table 8: IoU distribution of FastSAM. We report the percentage
of images that have IoU within the given range.

Background 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Class Label 8.10 5.93 8.02 13.03 64.92
BLIP-2 Caption 5.70 4.81 6.92 13.01 69.56
Color 1.65 1.39 2.31 4.99 89.65
Texture 2.11 1.02 1.78 4.07 91.02

Adversarial 4.87 2.91 4.32 10.63 77.27

Table 9: DETR Object detection eval-
uation on COCO-DC

Background Box AP Recall AR

Original 0.65 0.81
BLIP-2 Caption 0.53 0.76
Color 0.52 0.73
Texture 0.52 0.71
Adversarial 0.42 0.62

A.6 EFFECT OF BACKGROUND CHANGE ON SEGMENTATION MODELS

Figure 17, 18, and 19 provide failure cases of FastSAM to correctly segment the object in the images
where background has been changed in terms of color, texture, and adversarial, respectively. Since
we obtain the object masks for IN-Nat using FastSAM, we compare those masks using IoU with
the ones obtained by FastSAM on the generated dataset (see Table 8).

Figure 17: Instances illustrating FastSAM model’s failure to accurately segment masks for the back-
ground color changes on IN-Nat samples..
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Figure 18: Instances illustrating FastSAM model’s failure to accurately segment masks for the back-
ground texture changes on IN-Nat samples.
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Figure 19: Instances illustrating FastSAM model’s failure to accurately segment masks for the ad-
versarial background changes on IN-Adv samples.
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Table 10: Performance evaluation of naturally trained classifiers and zero-shot CLIP models on
IN-Nat. The text prompts used for color and texture changes are provided in Table 6.

Background Naturally Trained Models
ViT CNN

ViT-T ViT-S Swin-T Swin-S ResNet50 ResNet152 DenseNet Average
Clean 96.04 98.18 98.65 98.84 98.65 99.27 98.09 98.25
Colorprompt-1 76.58 86.43 88.92 91.23 91.08 93.79 86.05 87.72
Colorprompt-2 77.09 87.57 89.33 90.99 90.62 93.40 86.61 87.94
Colorprompt-3 76.80 86.97 88.74 90.99 90.62 93.18 87.41 87.82
Colorprompt-4 70.64 84.52 86.84 88.84 89.44 92.89 83.19 85.19
Textureprompt-1 79.07 87.92 90.17 91.68 91.18 94.42 88.28 88.96
Textureprompt-2 75.29 85.84 87.74 90.32 89.01 93.04 84.77 86.57
Textureprompt-3 67.97 82.54 86.17 87.99 87.99 91.28 82.99 83.85
Textureprompt-4 68.24 79.73 81.09 84.41 83.21 87.66 77.29 80.23

Background CLIP Models
ViT CNN

ViT-B/32 ViT-B/16 ViT-L/14 ResNet50 ResNet101 ResNet50x4 ResNet50x16 Average
Clean 75.56 81.56 88.61 73.06 73.95 77.87 83.25 79.12
Colorprompt-1 58.32 65.54 72.75 57.43 60.92 65.97 73.04 64.49
Colorprompt-2 57.91 67.28 74.44 58.67 60.12 65.9 74.13 65.49
Colorprompt-3 57.27 66.77 74.07 57.89 59.03 66.10 74.06 65.03
Colorprompt-4 53.02 63.08 71.42 53.53 55.87 60.05 71.28 61.18
Textureprompt-1 59.05 68.50 75.67 60.38 61.78 66.99 74.31 66.67
Textureprompt-2 58.60 68.01 74.40 58.29 59.56 66.34 74.67 65.69
Textureprompt-3 52.89 64.30 68.70 53.29 55.35 61.58 69.35 60.78
Textureprompt-4 51.01 62.25 69.08 51.35 53.46 61.10 70.33 59.79

Table 11: Performance evaluation of naturally trained classifiers on COCO-DC dataset. The text
prompts used for color and texture changes are provided in Table 6.

Background ViT CNN

ViT-T ViT-S Swin-T Swin-S ResNet50 DenseNet-161 Average

Clean 82.96 86.24 88.55 90.23 88.55 86.77 87.21

Colorprompt-1 61.66 65.92 73.38 73.73 75.86 71.6 70.35
Colorprompt-2 64.86 70.01 76.84 77.10 77.81 75.06 73.61
Colorprompt-3 62.64 67.52 73.29 74.09 77.28 73.64 71.41
Colorprompt-4 55.54 61.04 70.09 72.13 74.97 66.19 66.66

Textureprompt-1 67.96 70.36 75.42 78.70 79.94 73.55 74.32
Textureprompt-2 63.97 69.56 74.62 77.72 78.97 75.15 73.33
Textureprompt-3 52.52 58.82 68.05 70.09 70.71 63.79 63.99
Textureprompt-4 56.16 61.57 66.72 70.18 69.56 67.25 65.24

A.7 EVALUATION ON COLOR AND TEXTURE PROMPTS

In this section, we provide evaluation across diverse color and texture prompts. In Table 10 uni-
modal classifier and multi-modal CLIP models are evaluated on IN-Nat. Furthermore, in Table
11 we extend the analysis to report results on COCO-DC for the classification task. For ease of
comparison we plot the results obtained on uni-modal models and multi-models on IN-Nat dataset
side-by-side in Figure 20.
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Figure 20: We compare the performance of uni-modal, multi-modal CLIP and EVA-CLIP on diverse
color and texture prompts. We observe across Uni-modal models, CNNs and hybrid models tend
to perform better than pure transformer based models with similar capacity. EVA-CLIP perform
significantly better than the CLIP models even for models with similar capacity (ViT-L). The plots
are evaluated on IN-Nat dataset under texture and color changes.

A.8 EXPLORING FEATURE SPACE OF VISION MODELS

In Figure 21 and 22, we explore the visual feature space of vision and vision language model using
t-SNE visualizations. We observe that as the background changes deviate further from the original
background, a noticeable shift occurs in the feature space. The distinct separation or clustering of
features belonging to the same class appears to decrease. This observation suggests a significant
correlation between the model’s decision-making process and the alterations in the background.
Furthermore, we also show the GradCAM (Selvaraju et al., 2019) on generated background changes.
We observe that diverse background changes significantly shift the attention of the model as can be
seen from Figure 23 and 24.

Figure 21: t-SNE visualization of classifier models on IN-Nat dataset.
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Figure 22: t-SNE visualization of CLIP Vision Encoder features on IN-Nat dataset.
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Figure 23: GradCAM (Selvaraju et al., 2019) visualization of adversarial and BLIP-2 background
examples. The activation maps were generated on ImageNet pre-trained Res-50 model.

Figure 24: GradCAM (Selvaraju et al., 2019) visualization of texture and color background changes.
The activation maps were generated on ImageNet pre-trained Res-50 model.
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Table 12: Performance evaluation and comparison of our dataset with LANCE counterfactual im-
ages. The images are generated on IN-Adv dataset.

Background ViT CNN

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 DenseNet-161 Average

Original 95.5 97.5 97.9 98.3 98.5 99.1 97.2 97.71

Class label 90.5 94.0 95.1 95.4 96.7 96.5 94.7 94.70
BLIP-2 Caption 85.5 89.1 91.9 92.1 93.9 94.5 90.6 91.08
Color 67.1 83.8 85.8 86.1 88.2 91.7 80.9 83.37
Texture 64.7 80.4 84.1 85.8 85.5 90.1 80.3 81.55
Adversarial 18.4 32.1 25.0 31.7 2.0 14.0 28.0 21.65

LANCE (Prabhu et al., 2023) 80.0 83.8 87.6 87.7 86.1 87.4 85.1 85.38

A.9 COMPARISON WITH RELATED WORKS

Prabhu et al. (2023) proposed the LANCE method, which is closely relevant to our approach.
LANCE leverages the capabilities of language models to create textual prompts, facilitating di-
verse image alterations using the prompt-to-prompt image editing method (Hertz et al., 2022a) and
null-text inversion (Mokady et al., 2023) for real image editing. However, this reliance on prompt-to-
prompt editing imposes constraints, particularly limiting its ability to modify only specific words in
the prompt. Such a limitation restricts the range of possible image transformations. Additionally, the
global nature of their editing process poses challenges in preserving object semantics during these
transformations. In contrast, our method employs both visual and textual conditioning, effectively
preserving object semantics while generating varied background changes. This approach aligns well
with our goal of studying object-to-background context. We use open-sourced code from LANCE
to compare it against our approach both quantitatively and qualitatively. We use a subset of 1000
images, named IN-Adv, for comparison. a) Quantitative comparison: We observe that our nat-
ural object-to-background changes including color and texture perform favorably against LANCE,
while our adversarial object-to-background changes perform significantly better as shown in the Ta-
ble 12. b) Qualitative comparison: Since LANCE relies on global-level image editing, thus tends
to alter the object semantics and distort the original object shape in contrast to our approach which
naturally preserves the original object and alters the object-to-background composition only. This
can be observed in qualitative examples provided in Figures 25 and 26. We further validate this
effect by masking the original images and LANCE-generated counterfactual images. As reported
in Table 13, we observe an accuracy drop from 97.71% to 84.35% across different models. Note
that this is the first step of our approach, where the background is just masked but not optimized for
any background changes. However, when the background is masked in LANCE-generated coun-
terfactual images, overall accuracy drops from 97.71% to 71.57%. This shows that the LANCE
framework has changed the original object during optimization which is also reflected in Figures 25
and 26.Therefore, our proposed approach allows us to study the correlation of object to background
changes without distorting the original object.

Table 13: Performance evaluation and comparison on IN-Adv dataset. The drop in accuracy of
LANCE dataset when the background is masked clearly highlight the image manipulation being
done on the object of interest.

Masked Background Foreground

ViT-T ViT-S Swin-T Swin-S Res-50 Res-152 DenseNet-161 Average

Original 70.5 86.1 84.2 87.6 87.2 91.2 83.7 84.35

LANCE (Prabhu et al., 2023) 59.5 72.5 72.3 75.3 71.9 77.5 72.0 71.57
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Original

LANCE

Ours

Figure 25: Visual illustrations of generated images on IN-ADV dataset using LANCE’s prompts
for background variation. LANCE fails to preserve object semantics, limiting our ability to evaluate
models on the background alone. In contrast, our method exclusively edits the background.

Original

LANCE

Ours

Figure 26: Visual illustrations of generated images on IN-ADV dataset using LANCE’s prompts
for background variation. LANCE fails to preserve object semantics, limiting our ability to evaluate
models on the background alone. In contrast, our method exclusively edits the background.
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A.10 MISCLASSIFIED SAMPLES

We observe that there exist images which get misclassified (by ResNet-50) across several background
alterations as can be seen from from Figure 27. In Figure 28 we show examples on which the
highly robust EVA-CLIP ViT-E/14+ model fails to classify the correct class. After going through the
misclassified samples, we visualize some of the hard examples in Figure 29. Furthermore, we also
provide visualisation of images misclassified with adversarial background changes in Figure 30.

Figure 27: Images misclassified by Res-50 across different background changes
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Figure 28: Visual illustration of misclassified samples on color background and corresponding clean
image samples. In two adjacent rows, first row represent the clean images and the second row
represent the corresponding colorful background images

Figure 29: Visual illustration of hard samples on color background
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Figure 30: Visual illustration of misclassified samples on adversarial background and corresponding
clean image samples. In two adjacent rows, first row represents the clean images and the second row
represents the corresponding adversarial images

38



Under review as a conference paper at ICLR 2024

A.11 LIMITATIONS AND FUTURE DIRECTIONS

Limitations: In Figure 31, we observe that for objects covering a small region in the image, relying
solely on the class name to guide the diffusion model can result in alterations of the object shape,
expanding the influence of the class name semantics to larger image regions. However, by supple-
menting with descriptive captions that encompass the object-to-background context, we partially
mitigate this effect. Furthermore, the generated textured background can inadvertently camouflage
the object. To address this concern, we slightly expand the object mask to clearly delineate the
object boundaries.

Future Directions: Our current work represents one of the preliminary efforts in utilizing diffusion
models to study the object-to-background context in vision-based systems. Based on our observa-
tions and analysis, the following are the interesting future directions.

• Since large capacity models in general show better robustness to object-to-background
compositions, coming up with new approaches to effectively distill knowledge from these
large models could improve how small models cope with background changes. This can
improve resilience in small models that can be deployed in edge devices.

• Another direction is to set up object-to-background priors during adversarial training to
expand robustness beyond just adversarial changes. To some extent, successful examples
are recent works (Sitawarin et al., 2022; Darcet et al., 2023) where models are trained to
discern the salient features in the image foreground. This leads to better robustness.

• Our work can be extended to videos where preserving the semantics of the objects across
the frames while introducing changes to the background temporally will help understand
the robustness of video models.

• Additionally, the capabilities of diffusion models can be explored to craft complex changes
in the object of interest while preserving the semantic integrity. For instance, in Yuan
et al. (2023), diffusion models are employed to generate multiple viewpoints of the same
object. Additionally, in (Kawar et al., 2023), non-rigid motions of objects are created while
preserving their semantics. By incorporating these with our approach, we can study how
vision models maintain semantic consistency in dynamic scenarios.

Figure 31: Limitation: Background changes on small objects in the scene. Enlarging the mask (here
by 6 pixels) helps in mitigating the issue to some effect.

A.12 DATASET DISTRIBUTION

IN-Nat dataset comprises a wide variety of objects belonging to different classes, as illustrated in
Figure 32. Our dataset maintains a clear distinction between the background and objects, achieved
through a rigorous filtering process applied to the ImageNet validation dataset. Additionally, we
provide the list of prompts in Table 6 utilized for the experiments.
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Figure 32: Our IN-Nat dataset encompasses a diverse variety of images spanning 582 distinct
classes. In this illustration, we showcase images distribution among all the classes. The figure is
plotted in decreasing order of images present in each class.

A.13 EVALUATION ON RECENT VISION MODELS

We have conducted experiments on recent transformer CNN based models like DeiT (Touvron et al.,
2021) and ConvNeXt (Liu et al., 2022), and their results are presented in Table 14. We observe a
consistent trend in model performance on our dataset, revealing that even the modern vision models
are vulnerable to background changes.

Table 14: Performance evaluation on naturally trained classifiers on IN-NAT and IN-ADV dataset.
All models exhibit a marked decrease in accuracy when the background is modified, highlighting
their sensitivity to changes in the environment. The decline in performance is minimal with class
label backgrounds but more pronounced with texture and color alterations. The most significant
accuracy drop occurs under adversarial conditions, underscoring the substantial challenge posed by
such backgrounds to the classifiers.

Datasets Background Transformers CNN
DeiT-T DeiT-S DeiT-B Average ConvNeXt-T ConvNeXt-B ConvNeXt-L Average

IN-Nat

Original 96.36 99.27 99.41 98.34 99.07 99.21 99.40 99.22
Class label 94.18 96.85 97.74 96.25 97.60 97.51 97.51 97.54
BLIP-2 Caption 89.33 94.29 95.07 92.89 94.64 94.82 95.47 94.97
Color 80.96 89.48 91.11 87.13 92.11 93.58 93.58 93.09
Texture 74.15 84.01 86.75 81.63 88.50 89.50 91.13 89.71

IN-ADV Original 95.44 99.10 99.10 97.88 99.00 99.00 92.92 96.97
Adversarial 20.40 29.62 34.81 28.27 32.88 42.52 48.60 41.33

A.14 EVALUATION ON DINOV2 MODELS

Our findings underscore the necessity of training vision models to prioritize discriminative and
salient features, thereby diminishing their dependence on background cues. Recent advancements,
such as the approaches by Sitawarin et al. (2022) employing a segmentation backbone for classifica-
tion to improve adversarial robustness and by Darcet et al. (2023) using additional learnable tokens
known as registers for interpretable attention maps, resonate with this perspective. Our preliminary
experiments with the DINOv2 models Oquab et al. (2023), as presented in Table 15, corroborate
this hypothesis. Across all the experiments, models with registers (learnable tokens) provide more
robustness to background changes, with significant improvement seen in the adversarial background
changes.
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Table 15: Performance comparison of classifiers that are trained different on IN-NAT dataset. The
DINOv2 model with registers generally shows higher robustness to background changes, particu-
larly in the presence of color, texture and adversarial backgrounds. This suggests that the incor-
poration of registers in DINOv2 enhances its ability to maintain performance despite challenging
background alterations.

Dataset Background Dinov2 Dinov2registers

ViT-S ViT-B ViT-L Average ViT-S ViT-B ViT-L Average

IN-Nat

Original 96.78 97.18 98.58 97.51 97.71 98.05 99.14 98.30
Class label 94.62 96.02 97.18 95.94 95.55 96.44 97.94 96.64
BLIP-2 Caption 89.22 91.73 94.33 91.76 90.86 92.10 95.02 92.66
Color 83.85 89.68 93.31 88.94 85.88 91.15 94.64 90.55
Texture 83.63 89.08 92.44 88.38 84.98 91.03 93.97 89.99

IN-Adv Original 95.12 96.50 98.10 96.57 97.91 97.80 99.00 98.23
Adversarial 54.31 71.62 80.87 68.93 58.30 76.21 84.50 73.00

A.15 EVALUATION ON BACKGROUND/FOREGROUND IMAGES

In this section, we systematically evaluate vision-based models by focusing on background and fore-
ground elements in images. This evaluation involves masking the background of the original image,
allowing us to assess the model’s performance in recognizing and classifying the foreground without
any cues from the background context. Conversely, we also mask the object or foreground from the
image. This step is crucial to understand to what extent the models rely on background informa-
tion for classifying the image into a specific class. This dual approach provides a comprehensive
insight into the model’s capabilities in image classification, highlighting its reliance on foreground
and background elements.

Table 16: Evaluation of Zero-shot CLIP Models on IN-NAT dataset while masking the object or
the background of the image. Top-1(%) accuracy is reported. The accuracy drop is observe when
we remove the object clues from the background such as in texture or color background

Background Foreground

Res50 Res101 Res50x4 Res50x16 ViT-B/32 ViT-B/16 ViT-B/14 Average

Original 54.76 58.89 64.86 70.80 59.47 69.42 79.12 65.33
Background

Original 15.84 17.74 18.47 20.67 17.72 21.28 28.99 20.10
Class label 27.17 29.08 33.02 35.93 31.35 38.74 46.88 34.59
BLIP-2 Caption 19.05 21.39 23.37 24.57 22.39 27.21 34.42 24.62
Color 3.92 5.46 5.64 6.53 5.64 6.95 10.28 6.34
Texture 3.65 5.12 5.12 5.84 5.43 6.68 10.04 5.98

Table 17: DINOv2 model evaluation by masking either the object or the background within the
IN-NAT dataset. The integration of the additional token in the DINOv2 model proves beneficial,
contributing to enhanced accuracy. However, our observations reveal that these models remain sus-
ceptible to background cues, particularly evident in class labels and the BLIP-2 Caption dataset.
Interestingly, as we transition towards more generic texture or color backgrounds, a discernible drop
in accuracy is observed.

Background Foreground

ViT-S ViT-B ViT-L Average ViT-Sreg ViT-Breg ViT-Lreg Average

Original 88.73 93.86 94.89 92.49 96.34 89.95 97.25 94.51

Background

Original 27.72 37.78 51.44 38.98 30.10 42.08 55.18 42.45
Class label 42.70 54.73 66.68 54.70 46.88 58.81 68.97 58.22
BLIP-2 Caption 30.51 40.74 50.57 40.60 33.62 42.48 52.40 42.83
Color 2.96 5.03 8.39 5.46 3.68 5.75 9.50 6.31
Texture 2.83 4.92 7.88 5.21 3.45 5.57 9.28 6.10
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