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ABSTRACT

Crowd counting and localization involve extracting the number and distribution of
crowds from images or videos using computer vision techniques. Most counting
methods are based on density regression and are based on an “intersection” hy-
pothesis, i.e., one pixel is influenced by multiple points in the ground truth, which
is inconsistent with reality since one pixel would not contain two objects. This
paper proposes Proximal Mapping Loss (PML), a density regression method that
eliminates this hypothesis. PML divides the predicted density map into multiple
point-neighbor cases through nearest neighbor, and then dynamically constructs
a learning target for each sub-case via proximal mapping, leading to more robust
and accurate training. Furthermore, PML is theoretically linked to various existing
loss functions, such as Gaussian-blurred L2 loss, Bayesian loss, and the training
schemes in P2PNet and DMC, demonstrating its versatility and adaptability. Ex-
perimentally, PML significantly improves the performance of crowd counting and
localization, and illustrates the robustness against annotation noise. The code is
available at https://github.com/Elin24/pml.

1 INTRODUCTION

Automated crowd scene understanding has undergone extensive exploration over the years, primar-
ily due to its broad applicability in video surveillance and public safety services (Wang et al., 2020c;
Ma & Chan, 2015). The fundamental task within this research domain is crowd counting (Chan &
Vasconcelos, 2009; 2011), wherein statistical data related to crowds, crowd count and distribution,
is extracted from images or videos using computer vision technologies. In recent times, the advent
of deep learning has significantly enhanced the precision of counting methodologies (Wang et al.,
2019; Ma et al., 2019; Lin et al., 2022a; Shu et al., 2022), with some well-performing methods also
being applied to crowd instance localization (Song et al., 2021; Wan et al., 2021; Lin & Chan, 2023;
Han et al., 2023). Concurrently, diverse domains, including traffic congestion control (Wang et al.,
2018; Lu et al., 2018; Lin et al., 2022b) and marine environmental monitoring (Sun et al., 2023),
have also benefitted from advances in crowd counting algorithms.

Supervised crowd counting is typically formulated as a regression task. Given a crowd image, the
counting model aims to predict a density map whose distribution and count closely align with the
ground truth (GT) point map, in which a pixel with a value of one denotes a person’s location. A
pseudo GT density map is created by convolving a Gaussian kernel with the GT point map (Lempit-
sky & Zisserman, 2010; Zhang et al., 2016). Subsequently, pixel-wise L2 loss is computed between
this intermediate map and predictions to supervise the counting model. In contrast to L2 loss that
uses an intermediate GT density map based on the GT point map, Bayesian Loss (BL) (Ma et al.,
2019) offers an alternative method for supervision based purely on the GT point map. Specifically,
BL computes the posterior probability of each pixel having a GT point to establish an intermediate
point map, which is then compared with the GT for supervision. Both models make theoretical
sense, and positive results have been obtained through experiments. Although L2 loss and BL are
developed based on different principles, Wan et al. (2021) demonstrates that both L2 and BL are spe-
cial cases of a generalized loss (GL), which computes a transport plan matrix between the predicted
density map and GT point map using unbalanced optimal transport (UOT) (Peyré et al., 2019). The
transport matrix represents both an intermediate density map, by marginalizing over the columns,
or a point map, by marginalizing over the rows, thus providing a theoretical connection between GL
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Figure 1: Design principle of counting methods. The top row presents a 2D representation, while the bottom
row showcases the corresponding 1D representation. (a) A synthetic input with three humans. (b) Density
regression with the intersection hypothesis (using a Gaussian prior) or D2CNet (Cheng et al., 2021), where
one pixel may correspond to multiple objects. (c) Point prediction. (d) Head region segmentation. (e) Density
regression without the intersection hypothesis (proposed method), where one pixel corresponds to one object.
The intersection hypothesis in (b) includes the Gaussian-blurred L2 loss, BL, DMC, and GL. Conversely, (c)-
(e) assume no intersections among instances.

and both Gaussian-blurred L2 loss and BL. The effectiveness of GL is also substantiated experimen-
tally, where a GL-trained model estimates more accurate density map than with other losses.

Looking closely at these methods, we note that they are all designed with an intersection hypothesis:
the value of a foreground pixel in the defined learning objective is influenced by multiple instances,
i.e., the mixed Gaussian kernel in Fig. 1(a). However, methods based on point detection, such as
P2PNet (Song et al., 2021) and PET (Liu et al., 2023), have shown that it is possible to represent a
pedestrian’s location with just one pixel, as shown in Fig. 1(c). Additionally, LSC-CNN (Sam et al.,
2020), TopoCount (Abousamra et al., 2021), and IIM (Gao et al., 2020) localize and count people
by clearly defining the boundaries of head regions around each pedestrian in training and then seg-
menting them out during inference (Fig. 1(d)). iKNN (Olmschenk et al.) and FIDTM (Liang et al.,
2022b) localize crowds by detecting the local maximum of predicted inverse distance transform
maps (IDTM) (Fig. 1(e)). These methods assume there is no interaction between pixels of different
pedestrians, but achieve counting results comparable to those of density-regression models, suggest-
ing that the intersection hypothesis may not be necessary. Moreover, not considering the intersection
hypothesis leads to better localization performance, because there are clear boundaries between each
instance (Fig. 1(c-e)). In contrast, the intersection hypothesis causes the predicted density maps to
overlap (Fig. 1(b)), making it difficult to define clear boundaries between instances and to iden-
tify each independent individual, especially in dense scenarios where the density representation of
crowds blends together. D2CNet (Cheng et al., 2021) also follows Fig. 1(b), but uses the max rather
than the sum operator when embedding Gaussian kernels to each GT point when constructing the
learning objective, which learns to output overlapping probability maps for localization.

Premised on the above successful experience, we argue for eliminating the intersection hypothe-
sis in the density regression framework, so that a model can be trained to achieve both advanced
counting and localization performance. Specifically, we propose to divide the predicted density map
into multiple non-overlapping irregular patches and then process each patch independently when
computing the loss value, following the philosophy of divide and conquer. The dividing stage is
implemented via nearest neighbor assignment, which assigns each pixel in the density map to its
nearest point in the ground truth. Consequently, in the conquer stage, we only need to compute the
loss within each point-neighbor case separately and then sum these values to obtain the final loss
value. However, new obstacles emerge when processing the sub-problems after assignment: these
point-neighbor cases vary in the number of neighbors, which introduces difficulty in training with
constant targets like Gaussian-kernel density maps (Lempitsky & Zisserman, 2010). This is because
there is no effective way to determine hyper-parameters, i.e., the variance in the Gaussian distribu-
tion. To address this issue, we propose the Proximal Mapping Loss (PML), which uses proximal
mapping (Drusvyatskiy, 2017) to dynamically construct a learning target for each sample during
training. This target lies between the predicted distribution and the delta function established by
the GT point as parameters. Several experimental results illustrate that our PML outperforms most
current approaches, exhibiting superior accuracy in crowd count estimation and capturing crowd
distributions.

In conjunction with our empirical advancements, we find that the derived PML theoretically en-
compasses many existing loss functions when processing the point-neighbor case. Specifically, it
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can be transformed into the Gaussian-blurred L2 loss by incorporating certain constraints. PML
can also be instantiated as a dynamic L2 loss for the counting model, sharing a similar formula-
tion with BL (Ma et al., 2019). Moreover, by restricting the space of the learning objective to the
delta function, we derive the matching strategy for the Hungarian algorithm used in P2PNet (Song
et al., 2021). By modifying a regularizer in our PML, the loss function based on balanced optimal
transport in DM-Count (DMC) (Wang et al., 2020a) also be derived.

To summarize, the contributions of this paper are three-fold:

1. We introduce Proximal Mapping Loss (PML), which can effectively train a crowd counting
model based on density regression without the intersection hypothesis. It follows the phi-
losophy of divide and conquer — dividing the training sample into many point-neighbor
cases and then computing sub-loss by comparing the difference between the prediction and
a dynamic learning target defined via proximal mapping.

2. Theoretically, we establish the connection between PML and several widely-used counting
methods, including the Gaussian-blurred L2 loss, Bayesian loss (Ma et al., 2019), and the
training schemes in P2PNet (Song et al., 2021) and DMC (Wang et al., 2020a).

3. Empirically, we demonstrate the effectiveness of the proposed PML in crowd counting and
localization. The counting performance is significantly improved compared to previous
models, and the localization results outperform all previous methods.

2 RELATED WORK

The design of crowd counting methods primarily focuses on the model structure, loss function for
training, and localization processing.

Crowd Counting with intersection hypothesis. Most crowd counting methods are trained with
the Gaussian-blurred L2 loss and follows the scheme of density regression. Early publications such
as MCNN (Zhang et al., 2016), Switch CNN (Babu Sam et al., 2017), CSRNet (Li et al., 2018),
RAZNet (Liu et al., 2019) focus on addressing scale information in crowds by integrating infor-
mation from CNN modules with different receptive fields. In contrast, later approaches (Gao et al.,
2019; Shi et al., 2019; Yang et al., 2020) aim to extract perspective information from the input image
and subsequently allocate detailed attention to regions with dense crowds. MAN (Lin et al., 2022a)
introduces an effective approach to embed transformers (Vaswani et al., 2017) into crowd counters,
enhancing counting performance.

Instead of designing network modules to enhance the effectiveness of crowd counters, Ma et al.
(2019); Wan et al. (2021); Wang et al. (2020a); Ma et al. (2021) focus on training counting model
with loss functions based on different principles. Typically, most counting models are trained with
Gaussian-blurred L2 loss following MCNN (Zhang et al., 2016), using GT density maps obtained
by convolving a Gaussian kernel with GT point maps. In contrast, BL (Ma et al., 2019) directly
considers these point maps as priors, computing the posterior probability of density pixels corre-
sponding to the points, leading to a more accurate prediction. Subsequently, DMC (Wang et al.,
2020a) introduces balanced optimal transport (OT) to establish the mapping relations between GT
points and predicted pixels, while UOTCC (Ma et al., 2021) and GL (Wan et al., 2021) utilize
unbalanced OT (UOT). Notably, GL demonstrates that BL and Gaussian-blurred L2 loss are spe-
cial cases of GL by substituting a half Sinkhorn iteration, providing solid theoretical contributions.
Although the Gaussian-based pseudo density map is later replaced by posterior probability or opti-
mal transport, these methods for density regression still operate under the intersection hypothesis.
There are no works that design a density regression method without the intersection hypothesis. In
D2CNet (Cheng et al., 2021), the learning objective is a probability map, where each pixel’s value
is the output of a Gaussian function with the distance to its nearest GT point as the argument. This
approach differs from the use of density maps in constructing the learning objective, as it uses the
max operator instead of the sum operator to embed Gaussian kernels at each GT point’s location.

Crowd Counting without intersection hypothesis. Frameworks that do not use the intersection
hypothesis, like point detection, head segmentation, and inverse distance transform map (IDTM)
regression, have also been explored. P2PNet (Song et al., 2021) is the first one proposing to count
and localize pedestrians via point detection, treating each pedestrian as a point and predicting their
locations through a single-stage detection framework. This approach distinguishes itself from pre-
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vious density-based methods by directly acquiring localization information. Follow-up works, such
as CLTR (Liang et al., 2022a) and PET (Liu et al., 2023), adopt a similar strategy for predicting
points but employ distinct network structures. Apart from these methods, head detection is another
popular trend for counting without the intersection hypothesis. LSC-CNN (Sam et al., 2020) and
TopoCount (Abousamra et al., 2021) use pseudo and coarse box annotations to supervise the de-
tection network, while IIM (Gao et al., 2020) adopts accurate box annotations provided in NWPU-
Crowd (Wang et al., 2020c) to train the counting model. IDTM is also investigated for counting
without the intersection hypothesis. FIDTM Liang et al. (2022b) and iKNN (Olmschenk et al.) de-
fine the learning objective of each pixel as the inverse value of the distance to the k-nearest point in
the ground truth, and locate pedestrians by finding peak positions in a 3× 3 patch during inference.

The above methods without the intersection hypothesis demonstrate outstanding localization per-
formance, but their counting performance is not as good as density regression methods. However,
the above methods have inspired us to design a density regression method without the intersection
hypothesis. We show that our proposed method encompasses many existing crowd counting loss
functions, including BL (Ma et al., 2019) and the widely-used Gaussian-blurred L2 loss, as well as
the training schemes presented in P2PNet (Song et al., 2021) and DMC (Wang et al., 2020a).

3 PROXIMAL MAPPING LOSS (PML)

To remove the intersection hypothesis existing in current density regression methods, we adopt
nearest neighbors to split the density map into multiple irregular patches without overlapping. In
this way, the loss computation is divided into multiple simpler sub-problems, as each point-neighbor
case is handled independently. For each case, we compute the loss in a dynamic way based on
proximal mapping. Overall, PML is based on the principle of divide and conquer.

3.1 DIVIDE STAGE: NEAREST NEIGHBOR

Mathematically, we represent the predicted density map with n pixels as A = {(ai,xi)}ni=1, in
which ai ∈ R+ represents the predicted density value at pixel located at xi ∈ R2. Similarly, the
corresponding ground truth with m pedestrians is represented as B = {(1,yj)}mj=1, with yj ∈ R2

represents the GT location of the j-th annotation. The “1” in each element of B implicates that the
count equals to 1 for each point in GT. Accordingly, the divide stage in PML is formulated as:

L(A,B) =
∑m

j=1
L̃(Ãj , bj), Ãj = {(ai,xi)}i∈Xj bj = (1,yj), (1)

Xj = { i | ∥xi − yj∥2 ≤ ∥xi − yk∥2, ∀yk ∈ B } , (2)

where Xj collects the indices of all nearest neighboring pixels to yj , and Ãj represents the cor-
responding density pixel set. The divide stage splits the construction of loss value L(A,B) into
m independent sub-loss functions. Thus, we only have to analyze any one of these sub-problems,
L(Ãj , bj), to ease the theoretical analysis.

3.2 CONQUER STAGE: PROXIMAL MAPPING OF TRANSPORT COST

We next conquer the sub-problem L(Ãj , bj) presented in (1). To simplify the notation, we remove
the subscript j – we represent the GT location as y ∈ R2, corresponding to bj . We assume that
there are ñ neighbor pixels collected in Ãj , which we denote as Ã = {(ai,xi)}ñi=1. Defining
a = [ai]

ñ
i=1, we construct the learning objective by minimizing the transport cost f(a) = c⊤a,

where c = [ci]
ñ
i=1 measures the cost when moving a unit mass from xi to y, which is commonly

defined as Euclidean distance ∥xi−y∥2 or its exponential (e.g., in GL (Wan et al., 2021)). Here we
consider the objective f(a) from the perspective of proximal gradient descent. Specifically, after
the t-th round of parameter updates, the new prediction, at+1, of the counting network should be
close to the proximal mapping (Parikh et al., 2014) of the previous at:

at+1 ≈ argmin
p

f(at) +∇f(at)
⊤(p− at)︸ ︷︷ ︸

linear approximation of f(at+1)

+ τ
2∥p− at∥2︸ ︷︷ ︸

regularizer

, (3)

where τ is a hyperparameter controlling the size of the neighborhood for mapping, and∇f(at) = c
is the gradient w.r.t at. The regularizer in (3) is required to prevent at+1 from straying far from at

4



Published as a conference paper at ICLR 2025

loss function τ Dφ(p,a) ξ p∗

L2 loss (Zhang et al., 2016) 0 1
2∥p− a∥2 N (µ|Σ) N (0|σ12×2)

Bayesian loss (Ma et al., 2019) 1
|1⊤a−1|

1
2∥p− a∥2 - a− 1

|1⊤a−1|c+ η

P2PNet (Song et al., 2021) - ∥p− a∥1 δ(·) δ(argminj cj − τaj)
DM-Count (Wang et al., 2020a) ∞ KL(p | a) - a/∥a∥1

Table 1: Different crowd counting loss functions implemented from PML. τ and Dφ(p,a) are defined in (5).
ξ and p∗ are the distribution formula and the analytical solution of learning objective.

since the linear approximation only works well in the neighborhood of the current at. Compared
with directly computing the loss between prediction and point GT, the proximal mapping in (3)
points out a reachable and soft target for optimization since the estimated at+1 is an intermediate
learning object between the current prediction at and GT. Thus, we can design a loss function
according to (3) by adding a constraint that p sum to 1, and dropping terms that do not depend on p:

L(Ã, b) = minp∈ξ c⊤p+ τ
2∥p− a∥2, (4)

where ξ ⊆ {p | p⊤1 = 1,p ∈ Rñ}, and ∇f(at) is replaced by its value c. Furthermore, the
squared L2-norm can be replaced with other distances, e.g., Bregman divergence, to achieve different
implementations. Therefore, the general formulation for PML is:

L(Ã, b) = minp∈ξ p⊤a+ τDφ(p,a), (5)
where Dφ(p,a) is the Bregman divergence w.r.t. a strictly convex function φ. Note that the squared
L2-norm is a special case: Dφ = 1

2∥p− a∥2 when φ(·) = 1
2∥ · ∥

2.

4 RELATIONSHIP BETWEEN PML AND OTHER LOSS FUNCTIONS

In this section, we show that PML encompasses previous loss functions, including L2 loss, BL (Ma
et al., 2019), P2PNet (Song et al., 2021), and DMC (Wang et al., 2020a).

4.1 FROM DYNAMIC L2 LOSS TO GAUSSIAN-BLURRED L2 LOSS

We derive the L2 loss from PML with φ(·) = 1
2∥ · ∥

2, i.e., Eq. 4. Specifically, (4) is rewritten as:

L2 = minp c
⊤p+ τ

2∥p− a∥22, s.t. p⊤1 =
∑ñ

i=1
pi = 1. (6)

Applying Lagrange multipliers, the analytical solution p∗ can be derived as

p∗ = a− 1
τ c+ η, η = 1

ñ

[
1−

(
a− 1

τ c
)⊤

1
]
. (7)

Note that η takes the role as “filler” such that p∗⊤1 = 1. Substituting (7) into (6) and taking the
derivative of L2 with respect to a:

∂L2

∂ai
= ci − τη ⇒ L2 =

τ

2
∥a− detach(p∗)∥22. (8)

p∗ in (8) is detached from the computation graph in implementation, and the RHS is the loss function
for training a crowd counting network.

From (6) and (7), we note that p∗ is an intermediate distribution between σ(yj) and Ã, and τ controls
how close p∗ is to the latter. In extreme cases, we have limτ→0 p

∗ = δ(y) and limτ→∞ p∗ =
a + (1 − 1⊤a). However, traditional L2 loss is likely to formulate p∗ as a Gaussian distribution,
which can be achieved by limiting ξ within a Gaussian prior, i.e., ξ ⊆ N (µ|Σ), or projecting p∗

into the feasible region after obtaining p∗:
p∗′ ← N (µ | (x− µ)⊤(x− µ)), µ = x⊤p∗. (9)

Note that (9) is still a dynamic solution depending on Ã. Fitting the original Gaussian-blurred L2
loss tightly, i.e., removing the dynamic property, can be achieved by setting τ = 0 so that p∗ = δ(y),
and limiting Σ with a lower bound (i.e., Σ ≽ σ2I2×2): p∗′ ← N (y|σ2I2×2).

However, Compared with fixed Gaussian kernels, adapting the learning target (e.g., the intermediate
representation between the density map and ground truth) can lead to better counting performance
by better fitting the properties of the data, as explored in numerous studies (Bai et al., 2020; Wan &
Chan, 2019; Wan et al., 2020; 2021; Song et al., 2021).
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(a) image & density map (b) Bayesian loss (c) generalized loss (d) proximal mapping loss

Figure 2: Visualization of the weight item of the background loss in (b) Bayesian loss (Ma et al., 2019), (c)
generalized loss (Wan et al., 2021), and (d) our proximal mapping loss. (a) displays the predicted density map
overlayed on the input image. The weight map of PML has clearer boundaries of instances, thus resulting in
better localization results.

4.2 RELATIONSHIP WITH BAYESIAN LOSS

Bayesian loss (Ma et al., 2019) is formulated as:

LBayesian =
∑n

i=1
q(y0|xi)ai +

∑m

j=1

∣∣∣∑n

i=1
q(yj |xi)ai − 1

∣∣∣, (10)

where q(yj |xi) with j > 0 represents the posterior probability of xi having the label yj , while
q(y0|xi) models the background pixels. In the point-neighbor case, i.e., m = 1, the posterior
probability q(y1|xi) = 1 since all predicted density values ai are assigned to the same target y1.
Therefore, (10) is simplified as:

Lb = q⊤a︸ ︷︷ ︸
background loss

+
∣∣a⊤1− 1

∣∣︸ ︷︷ ︸
count loss

, (11)

in which q = [q(y0|xi)]
ñ
i=1. Similar to the previous section, the density map is Ã =

∑ñ
i=1 aiδ(xi),

and a = [ai]
ñ
i=1. In BL, the absolute term in (11) is called the count loss, which forces the sum of a

to be close to 1, while the background loss q⊤a forces the distribution of a to be close to σ(y). This
is achieved by backpropagating greater gradients to pixels in Ã that are far from y. Specifically, the
i-th element qi is defined based on Bayes’ rule with the Gaussian distribution as the prior:

qi = q(y0|xi) =
q(xi|y0)

q(xi|y0)+1 , q(xi|y0)
def.
== 1√

2πσ
exp

[
− (d−ci)

2

2σ2

]
, (12)

where d = maxi ci. The LHS of (12) shows q[i] ∝ q(xi|y0), while the RHS holds q(xi|y0) ∝ ci.
Thus the order-preserving is transitive: q ∝ c, revealing that there must be q[i] > q[j] if ci > cj .

The relationship between (11) and (4) is not apparent, but there is a connection between BL and
the analytical solution of dynamic L2 loss presented in (8), which means both L2 and BL instantiate
Dφ(p,a) with the L2-norm. Borrowing the conclusion from (8) and substituting η into (7), we have:

∂L2

∂ai
= ci −

1

ñ
c⊤1+

τ

ñ
(a⊤1− 1) ⇔ L2 = (c− c̄)⊤a︸ ︷︷ ︸

background loss

+
τ

2ñ

(
a⊤1− 1

)2︸ ︷︷ ︸
count loss

, (13)

where c̄ = 1
ñ1

⊤c = 1
ñ

∑ñ
i=1 ci is the average value of elements in c. Without loss of generality,

the squared item in (13) could be considered as the count loss to force the sum of a close to 1.
Meanwhile, (c− c̄)⊤a is the background loss since greater ci must result in greater gradient ci − c̄
for ai via the background loss item. Fig. 2 demonstrates the weight item, i.e., the multiplier of a in
the background loss part of BL, GL, and our PML. There is no big difference apart from the sharp
boundaries present with PML, which are due to the nearest neighbor regions.

Note that the L2-norm in (13) can be transformed into the L1-norm by setting τ dynamically ac-
cording to the absolute error, i.e., τ = detach

(
2/|1⊤a− 1|

)
, which results in a new solution:

L′
Bayesian = (c− c̄)a+ 1

ñ

∣∣1⊤a− 1
∣∣ ⇔ p∗ = a−

(
1
2 |1

⊤a− 1|
)
c+ η. (14)

(14) shows that using L1-norm as the count loss is the same as letting p∗ change according to a
dynamic τ . When the predicted count is close to 1, p∗ is also close to the distribution of a, which
nearly has no contribution to parameter updates. On the contrary, p∗ will be close to δ(y) if the
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predicted count is far from GT. Therefore, using the L1-norm is an implicit way to set a dynamic
τ that is correlated with the absolute difference between predicted and GT count. This observation
explains the reason why the L1-norm performs better than the L2-norm while playing the role of
counting loss in both BL and GL – a dynamic τ is robust and able to mitigate noise in annotation.
Later, we will also show how the L1- and L2-norms affect our PML in experiments.

Despite the similarities between PML and BL, differences also exist. Specifically, q in (11) is
constructed using only positive numbers. Therefore, the background loss in BL is expected to reduce
all density values, regardless of whether they belong to a pedestrian or the background. In contrast,
c − c̄ allocates positive weights to pixels that are close to GT points, as long as their distance ci
is smaller than the average distance c̄. In other words, the background loss in PML segments the
density map into “foreground” and “background,” expecting density pixels in the foreground to be
promoted while background parts are lowered. This is in contrast to BL, which considers all pixels
to belong to the background and lowers their values.

4.3 RELATIONSHIP WITH P2PNET

Here we build the connection between (5) and the training scheme in P2PNet (Song et al., 2021). We
instantiateDφ with L1-norm, and limit p to a subspace of ξ : ξp2p = {δ(xi)|xi ∈ Ã}. Accordingly,
(4) can be instantiated as:

Lp2p = minp∈ξp2p c
⊤p+ τ∥p− a∥1, ξp2p = {δ(xi)|xi ∈ Ã}, (15)

which can be rewritten as:
Lp2p = minp∈ξp2p c

⊤p+ τ
[
p⊤(1− a) + (1− p)⊤a

]
(16)

= minp∈ξp2p (c− 2τa)⊤p︸ ︷︷ ︸
matching strategy

+ τ (p⊤1+ a⊤1)︸ ︷︷ ︸
constant (1+∥a∥1)

, (17)

whose solution is p∗ = δ(argmini ci − 2τai), which is exactly the way to compute the cost matrix
for the Hungarian algorithm in P2PNet when defining the i-th element in c as ci = ∥xi − y∥2:

C(A,B) = [τ ′∥xi − yj∥2 − a]i∈N,j∈M . (18)

By setting τ = 1
2τ ′ , the matching strategy in (17) is the same as (18).

4.4 RELATIONSHIP WITH DM-COUNT (DMC)

DMC (Wang et al., 2020a) is another approach to compute the loss for crowd counting models. In
contrast to GL, DMC uses balanced optimal transport to match normalized predictions and normal-
ized GT. In the point-neighbor case, the DMC loss is simplified as:

Ldmc = c⊤ a
∥a∥1︸ ︷︷ ︸

OT loss

+ τ |1⊤a− 1|︸ ︷︷ ︸
count loss

. (19)

The OT loss is simplified in (19) since all normalized mass in a
∥a∥1

are transported to the same
GT point y. Here we show that DMC is a special case when Dφ is the generalized KL divergence
KL(p|a) (Peyré et al., 2019), whose variables are defined on Rñ

+:

φ(x) = x⊤ logx− x⊤1 ⇒ Dφ(p,a) = p⊤ log p
a − p⊤1+ a⊤1. (20)

By substituting (20) into (5), we have:
Ldmc = minp c

⊤p+ τ(p⊤ log p
a − p⊤1+ a⊤1) s.t. p⊤1 = 1, (21)

The close-form solution p∗ is obtained by applying Lagrange multipliers to (21), resulting in

p∗i = ai exp(−ci/τ)
η , η =

∑
j
aj exp(−ci/τ). (22)

Here, η also serves as “filler”, ensuring the sum of elements in p equals 1. As τ → ∞, p becomes
the normalized density map: p = a

∥a∥1
. Replacing p with the normalized a in (21), the simplified

loss function is:
L(φ)
dmc = c⊤ a

∥a∥1︸ ︷︷ ︸
OT loss

+ τ
(
1⊤a− log

(
1⊤a

)
− 1

)︸ ︷︷ ︸
count loss

. (23)

The OT loss is the same as that in (19), except that the count loss takes a KL divergence formulation:
f(x) = x− log x− 1, which is a convex function and reaches the minimum at the solution x∗ = 1.
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METHOD (backbone)
ShTech A ShTech B UCF-QNRF JHU ++ NWPU

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN (Zhang et al., 2016) 232.5 714.6 110.2 173.2 277.0 426.0 188.9 483.4 232.5 714.6

CSRNet (Li et al., 2018) (VGG-16) 68.2 115.0 10.6 16.0 110.6 190.1 85.9 309.2 121.3 387.8
SFCN (Wang et al., 2019) (ResNet-101) 64.8 107.5 7.6 13.0 102.0 171.4 77.5 297.6 105.7 424.1

BL (Ma et al., 2019) (VGG-19) 62.8 101.8 7.7 12.7 88.7 154.8 75.0 299.9 105.4 454.2
KDMG (Wan et al., 2020) (VGG-19) 63.8 99.2 7.8 12.7 99.5 173.0 69.7 268.3 100.5 415.5
DMC (Wang et al., 2020a) (VGG-19) 59.7 95.7 7.4 11.8 85.6 148.3 68.4 283.3 88.4 357.6

NoiseCC (Wan & Chan, 2020) (VGG-19) 61.9 99.6 7.4 11.3 85.8 150.6 67.7 258.5 96.9 534.2
P2PNet (Song et al., 2021) (VGG-16bn) 52.7 85.6 6.3 9.9 85.3 154.5 - - 77.4 362.0
UOTCC (Ma et al., 2021) (VGG-19) 58.1 95.9 6.5 10.2 83.3 142.3 60.5 252.7 87.8 387.5

GL (Wan et al., 2021) (VGG-19) 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5 79.3 346.1
ChfL (Shu et al., 2022) (VGG-19bn) 57.5 94.3 6.9 11.0 80.3 137.6 57.0 235.7 76.8 343.0
PET (Liu et al., 2023) (VGG-16bn) 49.3 78.8 6.2 9.7 79.5 144.3 58.5 238.0 74.4 328.5

STEERER (Han et al., 2023) (HRNet) 54.5 86.9 5.8 8.5 74.3 128.3 54.3 238.1 63.7 309.3
PML (ours) (VGG-16bn) 50.6 80.7 6.1 9.7 79.5 142.7 58.9 249.6 75.7 353.1
PML (ours) (VGG-19) 55.5 89.0 6.0 9.3 76.6 132.2 57.4 227.4 73.6 338.6
PML (ours) (HRNet) 52.3 84.7 5.4 8.2 73.2 127.5 52.6 230.8 63.8 306.9

Table 2: Comparison of our PML with recent crowd counting methods.

5 EXPERIMENTS

In this section, we present experiments demonstrating the efficacy of our proposed PML in crowd
counting and crowd localization.

5.1 IMPLEMENTATION DETAILS

In our experiments, nearest neighbor is employed in the divide stage to associate pixels in the density
map with its nearest point in the ground truth. During training, the dynamic L2 loss with L1-norm,
as described in (14), is utilized to supervise the counting model, showing superior performance.
Additionally, a hyperparameter ϵ is introduced to balance these two terms in PML. Therefore, the
final loss is formulated by incorporating (14) into (1) and add ϵ as the weight:

L(A,B) = a⊤C̃1+ ϵ∥P⊤a− 1∥1,

where C̃ij = Cij −Pij

∑n
i=1 Cij∑n
i=1 Pij

, with Cij =
Pij exp(∥xi − yj∥2)

maxi Pij exp(∥xi − yj∥2)
.

(24)

In (24), P ∈ {0, 1}n×m denotes the matching matrix computed via nearest neighbor, where Pij = 1
if ∥xi−yj∥2 ≤ ∥xi−yk∥2 for all k ≤ m, and Pij = 0 otherwise. Inspired by GL, Cij is computed
by normalizing the exponential Euclidean distance between xi an yj , in which the normalization is
implemented by dividing the maximum distance between the j-th target yj and pixels in its point-
neighbor case. Subsequently, subtracting the average distance from Cij results in C̃ij for loss
computation, aligning with operation that subtracts the average cost c̄ in (14).

The counting model utilizes VGG19 (Simonyan & Zisserman, 2015) and HRNet (Wang et al.,
2020b) as the backbone. Details and related ablation study on the structure are illustrated in the
appendix.

5.2 OVERALL PERFORMANCE ON COUNTING

In Tab. 2, we compare PML with other prominent crowd counting methods. Taking VGG16-bn
as backbone, PML achieves similar performance to PET and perform better than P2PNet. Using
VGG19 as the backbone, PML achieves significant improvements over BL, DMC, and GL. On the
JHU Crowd++ dataset (Sindagi et al., 2020), the MAE of PML closely matches Chfl (57.4 vs. 57.0),
while the MSE of PML (227.4) is lower (235.7). When combined with HRNet backbone, PML
attains the best performance on ShanghaiTech Part B (Zhang et al., 2016) with an MAE of 5.4
and MSE of 8.2. On the UCF-QNRF dataset (Idrees et al., 2018), the estimation errors (MAE: 73.2,
MSE: 127.5) are superior to the latest records set by STEERER (Han et al., 2023) (MAE: 74.3; MSE:
128.3). Additionally, on the larger NWPU benchmark (Wang et al., 2020c), PML demonstrates
outstanding performance with an MAE of 63.8 and MSE of 306.9, showcasing its excellent counting
performance on large-scale datasets. Note that due to the small size of ShTech A, VGG19 usually
overfits and does not achieve good performance, while VGGG16-bn does not overfit and obtains
MAE of 50.6 and MSE of 80.7, comparable to PET.
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F1-meas. Prec. Rec.
RAZNet 0.599 0.666 0.543
GL+LM 0.660 0.800 0.562

GL+OTM 0.683 0.710 0.658
P2PNet 0.729 0.676 0.685

PET 0.742 0.752 0.732
STEERER+LM 0.770 0.814 0.730

PML(VGG-19)+OTM 0.735 0.776 0.698
PML(HRNet)+OTM 0.802 0.809 0.795

PML(HRNet)+LM 0.790 0.803 0.777

Table 3: Localization on NWPU-Crowd.

MCNN CSRNet VGG19 HRNet
MAE MSE MAE MSE MAE MSE MAE MSE

L2 Loss 186.4 283.6 110.6 190.1 98.7 176.1 92.03 157.49
BL 190.6 272.3 107.5 184.3 88.8 154.8 85.52 149.55

NoiseCC 177.4 259.0 96.5 163.3 85.8 150.6 - -
DMC 176.1 263.3 103.6 180.6 85.6 148.3 82.07 144.84

GL 142.8 227.9 92.0 165.7 84.3 147.5 78.37 140.23
GCFL - - 83.0 139.8 80.3 137.6 - -

PML (ours) 138.9 215.7 82.1 139.0 77.6 132.8 73.17 127.45

Table 4: Comparison of loss functions and backbones on UCF-
QNRF dataset.

Figure 3: Visualization of samples in the NWPU validation set: density map (top) and estimated point map
(bottom) via OTM (Lin & Chan, 2023). In the bottom row, predicted points are annotated in green, while
ground-truth points are in red. The blue ellipses highlight examples where PML is robust to annotation noise.

5.3 LOCALIZATION PERFORMANCE ON NWPU-CROWD

We applied OTM (Lin & Chan, 2023), which transforms the density map into a point map, to our
predictions to localize the people in the crowd, and compared the results with other crowd localiza-
tion methods, as shown in Tab. 3. PML with VGG19 backbone performs well against GL with OTM
(F1: 0.735 vs. 0.683), and its F1 is also better than the point-detection-based P2PNet (Song et al.,
2021), close to the recent PET (Liu et al., 2023).

PML with HRNet as backbone achieves the best localization performance. Although the precision
is a little lower than STEERER (Han et al., 2023), the recall is much higher, resulting a better F1
of 0.802. For fair comparison with STEERER, we also use the local maximum as the localization
algorithm. As displayed in the last row of Tab. 3, the performance is still better than STEERER.

In Fig. 3, we present detailed visualizations of predicted density maps and the corresponding point
maps estimated via OTM (Lin & Chan, 2023).

5.4 COMPARISON WITH OTHER LOSS FUNCTIONS

We applied PML to different counting models and compared when training with different loss func-
tions, including the traditional Gaussian-blurred L2 loss, BL, NoiseCC (Wan & Chan, 2020), a
method tackling the problem of noisy annotations, DMC, and GL. Four counting models with differ-
ent structures and complexities were selected to demonstrate the generality of PML. The test results
on UCF-QNRF (Idrees et al., 2018) are presented in Tab. 4. PML effectively trains all these models
and further enhances their performance over other loss functions. Compared with GL, PML reduces
the MAE of MCNN from 142.8 to 138.9, while MSE is also reduced from 227.9 to 215.7. For
CSRNet (Li et al., 2018), VGG19, and HRNet the estimation errors are also considerably reduced.
Moreover, our PML outperforms the recent GCFL (Shu et al., 2022; 2023), which transforms the
density map into the frequency domain and then designs a generalized characteristic function loss.

5.5 THE EFFECT OF COUNT LOSS

Here we discuss the robustness of PML with L1-norm (Eq. 13) as the count loss against annotation
noise when compared to L2-norm (Eq. 14). Fig. 4(a)–(b) show the results of adding noise following
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Figure 4: Robustness to annotation error. (a) Adding uniform random noises ranging from a percentage of the
image height; (b) Selecting noisy annotations by picking a pixel uniformly within a circle of a specific radius.

(a) Image & prediction

(b) GT & neighbor pixels

(e) Over estimation (L1-norm)(d) Well estimation (L1-norm)(c) Under estimation (L1-norm)

(f) Under estimation (L2-norm) (h) Over estimation (L2-norm)(g) Well estimation (L2-norm)

Figure 5: Visualization of the learning objective p∗ when given noisy annotation and different estimation a.
(a) shows a prediction that is not aligned with the GT point, and (b) shows the point’s neighbor pixels. (c-e)
display the distribution of p∗ and a with (c) under-estimated, (d) well-estimated, and (e) over-estimated a
when L1-norm is applied, while (f-h) display the distribution of L2-norm.

BL Ma et al. (2019) and NCC Wan & Chan (2020). PML with the L1-norm achieves lower estima-
tion errors than the one with the L2-norm across all noise degrees, and outperforms BL and NCC.
Additionally, we plot how the MAE changes during training in Fig. 4(c), which shows that training
with the L2-norm is unstable, as evidenced by the presence of spurious peaks of high MAE.

The superior performance of L1-norm compared to L2-norm is consistent with the findings in abla-
tion studies of BL (Ma et al., 2019) and GL (Wan et al., 2021). This preference for L1-norm (Eq. 14)
may arise from the fact that it defines the hyperparameter τ as a function of MAE, as opposed to
the fixed constant in L2-norm (Eq. 13). This is advantageous for improving robustness since it
can mitigate the impact of annotation noise. In Fig. 5, we visualize an example to illustrate this
characteristic. When the density map is under- or over-estimated, the learning objective p∗ covers
most density pixels that are close to the GT point (distance ci is close to 0) in both L1-norm and
L2-norm. However, if a is well-estimated, L1-norm will keep the learning objective p∗ close to the
estimation (Fig. 5(d)), even if the prediction is far from the annotation. In such cases, the model
will consider the GT point as a noisy annotation. In contrast, L2-norm will still attempt to move the
prediction closer to the noisy annotation (Fig. 5(g)), which is detrimental to training. Furthermore,
we also showcase the PML’s robustness in Fig. 3: the two blue ellipses in the last two columns mark
examples where predictions are true positives but do not overlap with the GT noisy annotation.

6 CONCLUSION

This paper introduces the Proximal Mapping Loss (PML) as an effective training method for crowd
counting models. In contrast to previous density regression methods that are based on the inter-
section hypothesis, PML eliminates it by dividing the predicted density map into multiple point-
neighbor cases via nearest neighbors, and then computes the loss value in each sub-case. The loss
function is derived by minimizing the difference between current prediction and its proximal map-
ping. After theoretical analysis, we find that PML has close links with many loss functions for object
counting when they are considered in the point-neighbor case, including Gaussian-blurred L2 loss,
Bayesian loss, and the training scheme in P2PNet and DMC. In the experiments, PML achieves
outstanding performance compared to other counting models and crowd localization methods. Fur-
thermore, different counting models designed with various principles also achieve lower estimation
errors when they are trained with PML, providing empirical evidence for the effectiveness of PML.
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(I) Divide Stage: assign each pixel to its nearest GT point (II) Conquer Stage: loss computation
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Figure 6: Procedure of the divide and the conquer stage in PML.

A OVERVIEW

In this appendix, we discuss more details about the relationship between PML and other loss func-
tions, to show the generalization of PML. Besides, we also present details about the counting model,
and more visualization figures are displayed to show the effectiveness of PML.

1. In Sec. B, we present a figure to illustrate how PML is implemented following the principle
of divide and conquer;

2. In Sec. C, we demonstrate the difference when PML processes sparse and dense crowd.
3. In Sec. D, an improved P2PNet (Song et al., 2021) is designed from the view of PML and

achieves better performance than the vanilla P2PNet;
4. In Sec. E, we discuss the relationship between PML with KL-divergence (21) and

DMC (Wang et al., 2020a) in more detail;
5. In Sec. F, experimental results are presented to demonstrate the difference between PML

and BL (Ma et al., 2019);
6. In Sec. G, we show that PML is easier to be understand and it is more efficient for training

a counting model than GL (Wan et al., 2021).
7. In Sec. H, the model structure used in our experiments is introduced;
8. In Sec. I, ablation studies are presented to discuss issues involving hyper parameters in

PML and model structure. Besides, we extend Tab. 4 to more datasets.
9. In Sec. J, the details of results on NWPU benchmark are presented, and some prediction

results on NWPU validation set are visualized.

B VISUALIZATION OF DIVIDE AND CONQUER

Fig. 6 demonstrates how our PML follows the principle of the divide and conquer. In the (I) divide
stage, each pixel in the prediction is assigned to its nearest point in the GT, construct Xi in (2). After
that, each point-neighbor case is conquered independently based on proximal mapping (5).

C SPARSE vs. DENSE CROWD IN PML

In Fig. 7(a), we plot a figure to show the “average count in each point-neighbor case” vs. the “NN
distance of each point” for PML, GL, and P2P on the UCF-QNRF dataset, while the bar chart in
it demonstrates “the number of point-neighbor cases” vs. “NN distance of each point.” Here NN
distance means the L2 distance between the concerned GT point and its corresponding nearest one
in GT, which reflects the sparsity of the crowd near the concerned point. It shows that even the NN
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(c) Gaussian-blurred GT : 2671

(b) Example (GT: 2671)

(d) PML’s prediction: 2712

(a) Count vs. Sparsity

(e) Details comparison

Figure 7: The performance difference of PML when handling sparse and dense crowds.

distance is very small (0∼4). the average count of PML (0.9441) is close to 1, and it is comparable
to GL (0.9400, with intersection hypothesis) and P2PNet (0.9248, point-based counting).

We also give an example in UCF-QNRF dataset that contains both sparse and dense crowd in
Fig. 7(b)-(e). Fig. 7(b) and (c) present the point location and the corresponding Gaussian-blurred
GT map, while Fig. 7(d) demonstrates the prediction of PML. In sparse crowd, PML can predict
density map similar to point map. In dense region, the density map is similar to a Gaussian-blured
density map. There is a rectangle region clearly demonstrating how the prediction changes from
point-similar case to density-similar case. These evidences illustrate that PML based on NN is able
to capture the density information in both sparse and dense scene.

D IMPROVED P2PNET (SONG ET AL., 2021)

In the main paper, we have proven that P2PNet (Song et al., 2021) is also a special case of PML.
However, there is a discrepancy between the implemented P2PNet (Song et al., 2021) and the derived
(15): the counting network is optimized via binary cross-entropy (BCE) instead of L1 norm, which
is inconsistent with the principle of SGL. To maintain consistency, we can define D as the Bregman
divergence associated with the binary negentropy function φ(x) = x⊤ logx+(1−x)⊤ log(1−x),
and then Dφ(p,a) is instantiated as:

Dφ(p,a) = φ(p)− φ(a)−∇φ(y)⊤(x− y) (25)

= p⊤ log
(
p
a

)
+ (1− p)⊤ log

(
1−p
1−a

)
, (26)

which is the sum of pixel-wise binary KL divergence. Thus the BCE loss is derived accordingly:

L′
p2p = minp∈ξp2p c

⊤p+ τDφ(p,a) (27)

= minp∈ξp2p c
⊤p− τ

[
p⊤ loga+ (1− p) log(1− a)

]︸ ︷︷ ︸
binary cross entropy

+ Pc (28)

where Pc = τ
[
p⊤ log p+ (1− p)⊤ log(1− p)

]
is a constant.

From (28), we know how the BCE is derived from (5) by instantiating D with the cumulative binary
KL divergence. Based on (28), p should also be re-derived. Specifically, a is modulated by a
Sigmoid(·) in P2PNet (Song et al., 2021), i.e., a = [1 + exp(−x)]−1. Therefore, (28) could be
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MAE MSE
P2PNet (Song et al., 2021) 52.74 85.06

P2PNet† 52.49 83.02
PML 52.25 83.93

P2PNet† uses (30) to estimate p∗.

Table 5: Test results on ShTech-A (Zhang et al.,
2016) using different P2PNet.

MAE MSE
DMC (Wang et al., 2020a) 85.60 148.30

τ = 1 in (35) 85.56 148.90
τ = 8 in (35) 84.77 144.36

PML (23) 82.35 142.19

Table 6: Experimental results on UCF-
QNRF (Idrees et al., 2018) using different
DMC.

further expanded to:

L′
p2p = minp∈ξp2p c

⊤p− τp⊤ log

(
a

1− a

)
− τ1⊤

ñ log(1− a) + P (29)

= min p∈ξp2p (c− τx)⊤p︸ ︷︷ ︸
matching strategy

− τ1⊤
ñ log(1− a) + P︸ ︷︷ ︸

constant

, (30)

whose solution is p∗ = δ(argminj cj − τxj). Compared with (17), L′
p2p in (30) prefers to use the

prediction before the activation function instead of that processed by Sigmoid(·) to construct the
cost matrix in the Hungarian algorithm.

In Tab. 5, we conduct experiments to compare how these two versions of P2PNet perform. P2PNet†
is the one using (30) as the matching strategy to estimate p∗. The results show that P2PNet† can
further reduce the MAE to 52.49 from 52.74, and the MSE is also decreased by approximately
2.04. We also train the same model with PML. The third row of Tab. 5 demonstrates that PML can
decrease the MAE to 52.25, while the MSE is also better than the vanilla P2PNet (83.93 vs. 85.06).

E DISCUSSION ON DMC (WANG ET AL., 2020A)

In Sec. 4.4, we have shown how to implement PML using KL divergence and presented the relation-
ship between PML and DMC (Wang et al., 2020a) in (21)∼(23). However, (23) is obtained by letting
τ approach infinity. Here, we show the solution when τ is a positive real number by substituting
(22) into (21):

Ldmc = c⊤p∗ + τ
(
p∗⊤ log p∗

a − p∗⊤1+ a⊤1
)

(31)

= c⊤p∗ + τ
(
p∗⊤ log exp(−c/τ)

η + a⊤1− p∗⊤1
)

(32)

= c⊤p∗ + τ
(
− 1

τ p
∗⊤c− log η + a⊤1− 1

)
(33)

= τ
(
a⊤1− log η − 1

)
(34)

Accordingly, the PML with a real postive number τ is formulated as:

Ldmc = a⊤1− log η, where η = a⊤ exp(−c/τ). (35)

Tab. 6 presents the experimental results of different DMCs. It shows that the performance of (35)
is close to the vanilla DMC, but there is still a small gap. Setting τ = 8 achieves lower estimation
errors than the vanilla DMC. Besides, if we let τ → ∞ when computing p∗, but use a constant
τ = 2 for the counting loss, i.e., (23), the counting error will decrease significantly and be better
than the vanilla DMC.

F DIFFERENCE BETWEEN PML AND BL (MA ET AL., 2019)

In the main paper, we show that the difference between BL (Ma et al., 2019) and PML lies in the
method used to compute the weight item in the background loss. In BL, q in 11 is constructed
using only positive numbers, which considers all pixels to belong to the background and reduces the
corresponding density values. In contrast, c− c̄ considers pixels meeting ci < c̄ as foreground and

16



Published as a conference paper at ICLR 2025

background loss MAE MSE
BL (Ma et al., 2019) q⊤a 88.7 154.8

PML (variant) c⊤a 85.3 146.1
PML (ours) (c− c̄)⊤a 76.6 132.2

Table 7: Test results on UCF-QNRF (Idrees et al., 2018) when using different background loss.
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Figure 8: The difference between vanilla GL(Wan et al., 2021) (top) and the proposed PML (bottom). (a) A
and B represent the predicted density map and GT point map. GL employs unbalanced optimal transport for
dense assignment, but PML directly assigns the corresponding nearest neighbor pixels in A to each pixel in B.
(b) An example density map with two GT points b1 and b2. (c) Assigned density values in each pixel for b1
and b2. (d & e) The assigned pixel values or corresponding neighbors for b1 and b2. From (c-e) we find that
the transport in UOT is very close to nearest neighbor assignment.

those with ci > c̄ as background. The foreground pixels are assigned negative weights to increase
the corresponding density values, while positive weights are assigned to the background to lower
the corresponding density values.

Here, we empirically demonstrate that the strategy in PML is superior to BL. In Tab. 7, we test two
PML models and compare them with BL. The one without −c̄ (the second row in Tab. 7) is similar
to BL since it also considers all pixels as background and assigns positive weights to all pixels in the
background loss part. Its performance is also close to BL. However, PML using (c − c̄)⊤a as the
background loss can significantly reduce the MAE, demonstrating its effectiveness. Besides, c − c̄
in PML has a solid theoretical basis since it is derived from proximal mapping.

G CONNECTIONS & DIFFERENCE BETWEEN PML AND GL (WAN ET AL.,
2021)

The generalized loss (GL) (Wan et al., 2021) is formulated as:

Lε
C(A,B) = min

P∈Rn×m
+

⟨C,P⟩ − εH(P)︸ ︷︷ ︸
entropic OT

+ τ1∥P1− a∥22 + τ2∥P⊤1− 1∥1︸ ︷︷ ︸
marginal penalties

, (36)

where Cij measures the cost associated with moving a unit mass from xi to yj and is normally set
as Cij = ∥xi − yj∥2. The hyperparameter ε is a near-zero weight for the entropic term H(P) =
−
∑

ij Pij logPij . Additionally, two constants τ1 and τ2 are introduced to modulate the impact of

these penalties for marginal deviation. Once the optimal transport plan P̂ is obtained, the gradient
∂L
∂a is accessible for backpropagation. However, there are no applicable algorithms to solve (36).
The alternative is to implement an unbalanced OT with KL divergence as the marginal penalties to
approximate P̂ via Sinkhorn algorithm (Peyré et al., 2019), and then substitute it into (36) to obtain
Lε
C for automatic differentiation.

Connections. Fig. 8, we visualize how UOT and nearest neighbor perform the assignment in loss
computation. Fig. 8(a) illustrates the transport plan in PML is defined by assigning each density
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Figure 9: The structure of the trained model in our experiments.

pixel to its nearest GT point. Consequently, PML only needs to compute the loss within each point-
neighbor group separately, i.e., within just one point in GT and its neighbors in the density map. In
this case, the Sinkhorn algorithm(Peyré et al., 2019) is not required, as the mass for each pixel is
transported completely to the same target point.

Comparing UOT with nearest neighbor, it is easily observed that UOT still obeys the intersection
hypothesis, since it “softly” assigns one pixels to multiple points in GT. However, nearest neighbor
only assigns each density pixels to its nearest point, which could be considered as a “hard” assign-
ment. The nearest neighbor can be considered as the solution of (36) when ε = 0, τ1 = ∞ and
τ2 = 0. This means the nearest neighbor sacrifices the second marginal penalty, i.e., the count loss
∥P⊤1− 1∥1, to approximate P̂ . However, PML (24) implicates the count loss, mending the flaw.

Drawbacks of GL. We find that GL has two drawbacks. Firstly, the theoretical analysis of UOT that
relates it to L2 and BL is imperfect. The proof stems from applying a half Sinkhorn iteration to
obtain an approximate UOT solution, which means that the equivalence of UOT to L2 and BL is
based on computing a plan non-iteratively, using a single pass over the inputs. Thus the connection
is through a static construction of an approximate P̂, instead of the whole Sinkhorn iterations, i.e.,
the full UOT solution. Secondly, the Sinkhorn algorithm in implementation is time-consuming and
requires a large amount of space to store the transport plan during computation, limiting training
efficiency.

Efficiency of PML. Theoretically, the computation of UOT is O(tmn), where m × n is the shape
of the cost matrix, and t is the number of iterations of the Sinkhorn algorithm. Meanwhile, the
nearest neighbor only requires O(mn) to get the index of the nearest point in GT for each pixel in
the prediction. In practice, the average loss computation time ratio is GL

PML = 0.045s
0.013s ≈ 3.46 on a

3090Ti GPU, with the density map resolution of 256× 256.

H MODEL STRUCTURE

Fig. 9 displays the model structure of our counter. VGG19 (Simonyan & Zisserman, 2015) or
HRNet (Wang et al., 2020b) are adopted as the backbone to extract image features. After that,
feature maps outputted from different blocks are fused to generate the density features. Based on
this, several convolutional layers are stacked to predict the final density map, and pixel shuffle (Shi
et al., 2016) is applied to interpolate the final prediction to a resolution that is half of the input. For
VGG19, we fuse features from the last two blocks. For HRNet, we fuse features maps from the first
two branches.

I ABLATION STUDIES

The effect of ϵ. In (24), a balanced hyperparameter ϵ is introduced to weigh the two components,
enabling a focus on either localization or counting. Fig. 10(a) shows the impact of ϵ on the counting
performance of the trained model. A value of ϵ = 1 yields a good counting model, but surprisingly,
ϵ = 2 results in even lower estimation errors. However, further increasing this hyperparameter
proves detrimental to training, as the model leans excessively towards counting, neglecting vital
localization information: setting ϵ to 4 and 8 yields a degradation in counting performance compared
to ϵ = 1.

The effect of upsampling module. We conducted an ablation study on the upsampling modules,
namely bilinear interpolation and pixel shuffle (Shi et al., 2016), to systematically assess their impact
on model performance. Bilinear interpolation is a non-learnable method, while pixel shuffle is a
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(a) Ablation study on ϵ. (b) Ablation study on upsampling module.

Figure 10: The effect of ϵ in (24) and upsampling module.
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Figure 11: The relationship between losses and output
resolution.

METHOD ShTech A ShTech B JHU
MAE MSE MAE MSE MAE MSE

MCNN
BL 103.0 168.6 16.3 28.2 105.2 358.19
GL 100.4 165.7 16.0 26.7 99.5 339.6

PML 95.9 161.5 15.2 24.6 95.9 314.2

CSRNet
BL 65.8 115.0 8.9 13.5 72.9 287.5
GL 64.8 111.9 8.1 12.2 69.7 275.3

PML 64.1 109.3 7.7 11.6 66.5 268.8

Table 8: Results on additional models with differ-
ents losses.

learnable module often utilized in single-image super-resolution tasks. The detailed structure is
provided in the Supplementary. The test results in Fig. 10(b) show how the output with different
interpolation rates (× 1

4 ,× 1
2 , and×1) affects counting performance. Here,×r denotes that the output

resolution is r times that of the input image. Due to its learnable nature, pixel shuffle consistently
achieves lower errors in all experiments when compared to bilinear interpolation. Although the
differences in estimation errors between different resolutions are marginal, the model with an output
resolution rate of 1

2 has the optimal performance during training.

Fig. 11 presents the results when different losses are applied to different output sizes. Overall, a
detailed density map is beneficial for counting model since it provides a more detailed prediction.
However, Fig. 11 shows that the output size does not affect the superiority of PML.

More comparison on loss functions. In Tab. 8, we compare MCNN (Zhang et al., 2016) and CSR-
Net (Li et al., 2018) on more datasets than the main paper. Without loss of generalization, PML still
outperforms BL (Ma et al., 2019) and GL (Wan et al., 2021) when other networks are adopted.

J DETAILS ON NWPU BENCHMARK

Tab. 9 presents the details on the NWPU benchmark to understand in which parts PML works better
than other methods. In the counting section (the top part of Tab. 9), the overall performance of PML
is close to STEERER. However, both models excel at different scene levels. PML performs the
best in S3, whose crowd size variance is the largest (GT count ∈ (500, 5000]), and achieves similar
performance to STEERER in other scenes. In the benchmark of localization, FIDTM achieves
superior performance in A0 (head area < 10) and A1 (head area ∈ (10, 100]), typical dense scenes.
However, the Recalls of PML in A0 and A1 are the second best ones, and PML obtains the best
recall from A2 to A4, where the head area ranges from 100 to 105. In the extremely sparse scene A5
(head area > 105), the segmentation-based method, TopoCount (Abousamra et al., 2021), achieves
the best results. These findings indicate that different models excel in different scenarios, but PML
demonstrates strong performance in the localization task.

This section also presents some visualization results are presented in Fig. 12 to Fig. 15.
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Method (backbone)
overall Scene Level (MAE / MSE)

mae mse S0 S1 S2 S3 S4
FIDTM (HRNet) 86.0 312.5 21.6 / 129.2 13.70 / 20.03 55.6 / 174.9 217.1 / 391.9 1645.4 / 2288.2
P2PNet (vgg16bn) 72.6 331.6 34.7 / 202.7 11.3 / 17.0 31.5 / 52.3 161.0 / 265.8 2311.6 / 2960.7

GL (vgg19) 79.3 346.1 92.4 / 461.5 8.2 / 13.9 34.4 / 65.6 179.2 / 299.2 2228.3 / 2865.8
STEERER (HRNet) 63.7 309.8 48.3 / 327.3 6.0 / 10.8 25.9 / 51.4 158.3 / 275.7 1814.5 / 2636.9

PML (vgg19) 73.6 338.6 39.6 / 225.7 6.7 / 12.0 32.8 / 93.4 179.6 / 296.9 2141.7 / 2934.3
PML (HRNet) 63.8 306.9 26.0 / 198.4 7.0 / 13.3 27.4 / 51.7 151.7 / 262.5 1983.0 / 2707.7

Method (backbone)
overall (×100) Head Area (Rec. ×100)

F1. Prec. Rec. A0 A1 A2 A3 A4 A5
TopoCount (vgg16) 69.2 68.3 70.1 5.7 39.1 72.2 85.7 87.3 89.7

FIDTM (HRNet) 75.5 79.8 71.7 22.8 66.8 76.0 71.9 37.4 10.2
IIM (HRNet) 76.0 82.9 70.2 11.7 45.3 73.4 83.0 64.5 16.7
GL (vgg19) 66.0 80.0 56.2 3.6 21.2 56.2 79.4 79.4 51.2

STEERER (HRNet) 77.0 81.4 73.0 12.0 46.0 73.2 85.5 86.7 64.3
PML (vgg19) 73.5 77.6 69.8 5.5 40.7 72.3 84.1 82.7 62.4
PML (HRNet) 80.2 80.9 79.5 18.4 63.8 80.5 88.2 88.3 69.9

Table 9: Details on the NWPU counting (top) and localization (bottom) benchmark.

Figure 12: Density map and localization map visualization.
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Figure 13: Density map and localuization map visualization.
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Figure 14: Density map and localuization map visualization.
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Figure 15: Density map and localuization map visualization.
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