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ABSTRACT

Non-Independent and Identically Distributed (Non-IID) training data significantly
challenge federated learning (FL), impairing the performance of the global model
in distributed frameworks. Inspired by the superior performance and generaliz-
ability of language-driven representation learning in centralized settings, we ex-
plore its potential to enhance FL for handling non-IID data. In specific, this
paper introduces FedGLCL, a novel language-driven FL framework for image-
text learning that uniquely integrates global language and local image features
through contrastive learning, offering a new approach to tackle non-IID data in
FL. FedGLCL redefines FL by avoiding separate local training models for each
client. Instead, it uses contrastive learning to harmonize local image features with
global textual data, enabling uniform feature learning across different local mod-
els. The utilization of a pre-trained text encoder in FedGLCL serves a dual pur-
pose: it not only reduces the variance in local feature representations within FL
by providing a stable and rich language context but also aids in mitigating overfit-
ting, particularly to majority classes, by leveraging broad linguistic knowledge.
Extensive experiments show that FedGLCL significantly outperforms state-of-
the-art FL algorithms across different non-IID scenarios. Codes are available at
https://github.com/IAMJackYan/FedGLCL.

1 INTRODUCTION

Federated learning (Li et al., 2020a) (FL) serves as a powerful tool for distributed learning, allowing
multiple clients to collaboratively train a global model without privacy concerns. It is widely applied
in various applications (Niknam et al., 2020; Kang et al., 2020), especially in some privacy-sensitive
fields such as healthcare (Jiang et al., 2022; Feng et al., 2022; Wicaksana et al., 2022; Yan et al.,
2024a; Feng et al., 2023a; Yan et al., 2024b; 2023). The pioneering FL algorithm, FedAvg (McMa-
han et al., 2017), trains the model locally and averages the updated parameters of local models to
update the global model. This process is effective and easy to implement, which establishes the
fundamental framework for FL.

Since data is acquired from different devices in diverse environments, each local dataset inherently
exhibits variations in the underlying distribution, i.e., non-IID1 (shifts due to weather conditions,
night-time images, and various image degradations). Label distribution skew and feature distri-
bution skew (see Definition 1 in §3.1) are two typical cases of non-IID situations in real-world
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Figure 1: Analysis of two types of training paradigm, i.e., label-driven representation learning
and language-driven representation learning. (a) Accuracy comparisons on centralized and fed-
erated scenarios, where the language-driven representation learning improves Accs on the federated
scenario higher than it improves on centralized learning. (b) Accuracy comparisons for both lo-
cal majority and minority classes on CIFAR-100. Language-driven representation learning showed
significant improvement over label-driven representation learning, especially for minority classes,
indicating that language-driven representation learning can effectively enhance the generalization
performance of local models. (c) Variations in CKA similarity (Kornblith et al., 2019) reveal that
language-driven representation learning reduces the disparity in feature representations among local
models.

applications, manifesting as data imbalances at the label level and feature level (Li et al., 2022c;
Zhang et al., 2022). Such statistical heterogeneity incurs a significant decline in the performance
of FedAvg (Zhang et al., 2022; Luo et al., 2021; Karimireddy et al., 2020; Li et al., 2020b; Zhao
et al., 2018), emerging as a fundamental challenge in FL. This has attracted significant attention, and
many studies are dedicated to improving the local training (Li et al., 2021; Tan et al., 2022a; Luo
et al., 2021; Zhang et al., 2022; Gao et al., 2022) or model aggregation (Li et al., 2020c; Wang et al.,
2020; Li et al., 2023; Fallah et al., 2020) of FedAvg on non-IID data. Despite the progress, most
existing FL methods still follow label-driven representation learning during local training, such as
cross-entropy loss in classification tasks.

In this work, we argue that it is not advisable to adopt the label-driven training paradigm, as it
leads to significant drift in local models. Drawing on visual recognition as the running example,
as mentioned in previous studies, induces model bias towards imbalanced local class distribution in
terms of label distribution skew setting (Zhang et al., 2022; Diao et al., 2024). The local model
seeks to fit the majority classes (see Definition 2 in §3.1) of the private dataset as much as possible
(see Figure 1 (b)), incurring differences in both the feature representation layers (backbone) and the
classifier. It exhibits greater bias in the classifier compared to other layers (Luo et al., 2021). In
terms of feature distribution skew setting, using cross-entropy as the local objective will result in
the feature shift problem (Li et al., 2020c; 2023; Zhou & Konukoglu, 2023), thereby degrading the
performance of the global model (see Figure 1 (c)). The shortcomings of label-driven representation
learning prompt us to explore a new training paradigm to redefine local training.

With the emergence of CLIP (Radford et al., 2021), language-driven representation learning has
gained considerable attention and achieved success in various applications (Cha et al., 2023; He
et al., 2023; Wang et al., 2022). Models trained with language showcase better generalization.
Since language-driven representation learning is so effective in the centralized setting, we are thus
interested in whether language-driven representation learning can be a better training paradigm for
FL, particularly in alleviating the non-IID issue. By introducing it into FL, we surprisingly observed
consistent accuracy improvements in FedAvg across two federated scenarios as shown in Figure 1
(a). We also observed that these improvements are significantly more pronounced in FL compared to
centralized learning. This suggests that language-driven representation learning provides additional
benefits to FedAvg in the federated setting. With deeper analysis, we further found that: Language-
driven representation learning benefits 1) learning a unified feature representation across different
clients (see Figure 1 (c)); 2) alleviating the overfitting to majority classes (see Figure 1 (b)), more
details can be seen in Appendix §A. This explains why language-driven representation learning is
more effective compared to traditional label-driven representation learning in heterogeneous FL
scenarios.

Based on the above analyses, we propose Federated Global Language-image Contrastive Learning,
termed as FedGLCL. FedGLCL focused on redefining the local training phase of FedAvg, yielding a
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language-driven training manner for FL on non-IID data. It instantiates the idea of language-driven
representation learning by aligning each local image feature space to a common global text feature
space during the training phase. Different from CLIP, we use a fixed pre-trained text encoder to
encode the global class texts, thereby yielding a consistent text feature space. Subsequently, we use
contrastive learning to train the image encoder from scratch. In our framework, there is no tradi-
tional classifier. Instead, similar to CLIP, we use similarity measures between images and text for
predictions. Accordingly, we argue that the bias across different local models in our method, no
matter whether caused by the label distribution skew or feature distribution skew, can be interpreted
as the difference in feature representation. This issue has been alleviated through the alignment of
feature spaces. Therefore, FedGLCL can be applied to various non-IID scenarios. Extensive experi-
ments on four benchmarks demonstrated the effectiveness of our approach, which shows significant
improvements under different non-IID scenarios.

Contribution. In this paper, we systematically explore the importance of language-driven repre-
sentation learning for heterogeneous FL, yielding a language-driven FL framework, i.e., FedGLCL.
While seems straightforward, we believe this study provides more insights into addressing the non-
IID issue in FL. Moreover, we offer comprehensive theoretical and empirical analyses to gain a
deeper understanding of our approach, providing valuable insights for future research work.

2 RELATED WORK

2.1 FEDERATED LEARNING ON NON-IID DATA

How to alleviate the impact of non-IID data on model training has always been a critical issue in the
field of FL (Ye et al., 2023; Huang et al., 2023; Luo et al., 2021; Feng et al., 2023b). Variations in
the distribution of data across different clients may result in optimization bias in the local models,
thereby significantly degrading the performance of the model aggregation (Karimireddy et al., 2020;
Zhao et al., 2018). To address this, a type of solution (Durmus et al., 2021; Li et al., 2020b; Zhang
et al., 2022; Li et al., 2021; Gao et al., 2022) is to minimize the optimization difference among local
models during the local training phase. For example, FedProx (Li et al., 2020b) and FedDyn (Dur-
mus et al., 2021) introduced additional regulation terms into local objectives to mitigate the bias
between local models. In contrast to these approaches, another type of solution. (Li et al., 2020c;
Hsu et al., 2019; Wang et al., 2020; Fallah et al., 2020; Ma et al., 2022; Lee et al., 2023) focuses
on designing novel model aggregation strategies to yield a better global model. For instance, Fed-
Nova (Wang et al., 2020) proposed a normalized averaging method, which corrects local model
parameters before averaging. Besides, a typical representative among these methods is personalized
aggregation strategies (Li et al., 2020c; Arivazhagan et al., 2019; Collins et al., 2021; Lee et al.,
2023), which mitigate the impact of data heterogeneity by allowing local models to retain a portion
of personalized parameters.

In this work, we focus on the local training phase. While previous studies have made progress
on this type of solution, most of them still use label-driven representation learning as the local
training paradigm. They typically employ cross-entropy as the primary supervisory training loss and
additionally incorporate some auxiliary losses to mitigate bias in local models, such as regulation (Li
et al., 2020b; Durmus et al., 2021), distillation (Yao et al., 2023; Lee et al., 2022) and prototype
learning (Tan et al., 2022a;b). While effective, it is unable to overcome the inherent disadvantages
of label-driven training (see Figure 1 (b) and (c)). Given this, this work redefines the process of local
training by language-driven representation learning, which can effectively address non-IID issues.

2.2 LANGUAGE-DRIVEN REPRESENTATION LEARNING

Recently, language-driven representation learning (Gan et al., 2022) has been a very hot topic in
the field of vision, giving rise to numerous vision-language models, such as CLIP (Radford et al.,
2021) and Align (Jia et al., 2021). CLIP employs text and image encoders to learn rich semantic
representations from extensive pairs of images and texts by a contrastive loss. This grants CLIP more
powerful feature representation capabilities and superior zero-shot learning performance, prompting
lots of studies to directly apply it to various downstream tasks (Zhou et al., 2022; Patashnik et al.,
2021; Wysoczańska et al., 2024; Luo et al., 2022; Gao et al., 2021). Besides direct application,
another is to modify the text-image feature alignment approach of CLIP for specific downstream
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Figure 2: Illustration of FedGLCL. (a) During the training stage, FedGLCL utilizes a frozen text
encoder to embed the global class texts on the server side, thereby yielding a unique global text
feature space. Then, each client aligns its own local image feature space with the global text feature
space. We omit the model aggregation procedure, as it is identical to FedAvg. (b) During the
inference stage, we make predictions based on the similarity between images and text.

tasks (Li et al., 2022a; Xu et al., 2022; Wang et al., 2023). For example, RegionCLIP (Li et al.,
2022b) and GLIP (Cha et al., 2023) proposed region-text alignment to learn region-level semantic
information for object detection. The idea of region-text alignment has also been applied in semantic
segmentation tasks (Cha et al., 2023; Liang et al., 2023).

However, little is understood about the importance and applicability of language-driven representa-
tion learning for FL. Previous studies have merely applied the pre-trained CLIP model directly to FL
as a foundational component (Lu et al., 2023; Guo et al., 2023; Shi et al., 2023), which is unrelated
to language-driven representation learning. In this paper, we thoroughly explored language-driven
representation learning for non-IID FL settings and proposed a novel language-driven FL frame-
work.

3 METHODOLOGY

3.1 PRELIMINARY

Federated Learning. Suppose there are K clients and each client k ∈ [K] has a set of supervised
training instances {(xi, yi)}nk

i=1. The image xi ∈ X and label yi ∈ Y are from a device-indexed
joint distribution (xi, yi) ∼ Pk(x, y). The goal of FL is to collaboratively learn a model f without
sharing local private data, which can be formulated as the following optimization problem:

L(w) =

K∑
k=1

γkLk(w), where γk =
nk∑K
i=1 ni

. (1)

To solve this, FedAvg (McMahan et al., 2017) minimizes each local empirical loss Lk(w) to par-
allel train local models — local training at the clients and then average the updated local model
parameters — model aggregation at the server:

Lk(wt
k) =

1

nk

∑
(xi,yi)∼Pk

ℓ(f(xi;w
t−1
k ); yi), (2)

wt
G =

K∑
k=1

γkw
t
k, (3)

where the superscript t represents the model parameters after t-th round training, wk and wG are
the parameters of local model and global model. In label-driven FL, the loss function ℓ is usually a
cross-entropy loss for the image classification task.
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Algorithm 1: FedGLCL
Input: Number of Clients K, communication rounds M , epochs E, learning rate η, temperature τ
Output: wM

G

1 Server-side Execution:
2 T ← Embed global class texts
3 for round t = 1, 2, ...,M do
4 for client k = 1, 2, ...,K parallelly do
5 for (xi, yi) ∼ Pk do
6 wt

k ← Local Training (k,wt−1
G ,T )

7 end
8 end
9 wt

G←
∑K

k=1 γkw
t
k

10 end
11 Local Training (k, wt−1

G , T ):
12 wt

k ←wt−1
G

13 for epoch e = 1, 2, ..., E do
14 for (xi, yi) ∼ Pk do
15 Ii← f(xi;w

t
k)

16 δi← Ii·T⊤

∥Ii∥∥T∥

17 ℓ←− log
exp(δi,yi/τ)∑

j ̸=yi
exp(δi,j/τ)

18 wt
k ←wt

k − η∇ℓ
19 end
20 end
21 return wt

k to server

Definition 1 (Non-IID Data In Federated Learning) The local distribution Pk(x, y) can be rewrit-
ten as Pk(y|x)Pk(x) or Pk(x|y)Pk(y). For label distribution skew, Pk(y) varies across clients while
Pk(x|y) is consistent for all clients. In contrast, for feature distribution skew, Pk(y|x) keeps consis-
tent for all clients but Pk(x) is different.

Definition 2 (Majority and Minority Classes) For label distribution skew, the number of instances
for each class on the client side is imbalanced. We partition the Y into majority classes Yϕ and
minority classes Yψ based on whether their quantities exceed a threshold τ , where Y = Yϕ ∪ Yψ .

Tradition FL methods adopt label-driven representation learning as the local training paradigm,
which struggles to exhibit robustness on non-IID data, leading to inconsistent local and global ob-
jectives, i.e., the global model from Eq. (3) deviate from the solution of Eq. (1), termed client drift.
Previous studies (Li et al., 2020b; Durmus et al., 2021; Li et al., 2021; Lee et al., 2022) attempt to
introduce various forms of auxiliary loss terms into Eq. (2), but it remains challenging to fully over-
come the inherent limitations of label-driven representation learning for client drift (Karimireddy
et al., 2020). In this work, we explore a novel federated global language-image contrastive learning,
namely FedGLCL, to address the non-IID issue in FL.

3.2 FEDERATED GLOBAL LANGUAGE-IMAGE CONTRASTIVE LEARNING

Our approach, FedGLCL, is the first language-driven federated learning framework, which alleviates
the non-IID from a feature perspective. Language-driven training paradigm typically involves a
text encoder and an image encoder, mapping text and images to their respective feature spaces. In
FedGLCL, we have deployed a text encoder on the server side, while each client has an image
encoder and a projector. The key is to embed local images and global texts into a common space,
learning a consistent feature presentation among clients. Meanwhile, the learned metric between
image and text features enables making predictions. We illustrate the training and inference of our
framework in Figure 2 and describe each part in detail below.

Global Text Embeddings. If training text encoders independently on each local client, the imbal-
anced data distribution will lead to multiple skewed local text feature spaces, which runs counter
to our objectives (see §5.5). To achieve consistent global text feature spaces, we use a pre-trained
text encoder to embed the set of N texts, producing N text embeddings T = {T1,T2, . . . ,TN} ∈

5



Published as a conference paper at ICLR 2025

RN×V . The above process is carried out solely on the server side before training, and previous
work (Li et al., 2021; 2020c; Zhou & Konukoglu, 2023; Diao et al., 2024; Zhang et al., 2022) typ-
ically assumes that the complete set Y of classes is known. The class is embedded into a context
prompt such as “a photo of a {class}”, where “class” is the class name. The global text
embeddings will be transferred to all clients for local training.

Local Training. On the k-th client, the local model f has an image encoder G serves as the backbone
to extract the image features, and a lightweight projector H to align the dimensions of image and
text features:

f = H ◦ G, wk = wH
k ∪wG

k , (4)

where wG
k and wH

k are the parameters of backbone and projector. Given a training instance
(xi, yi) ∼ Pk, where xi ∈ RC×H×W is an image with spatial size (H × W ) and C channels,
yi ∈ [N ] is the label, we can get the corresponding image embedding as follows:

Ii = f(xi;wk) ∈ RV . (5)

Following this, we can get the similarity between image embedding and global text embeddings as
follows:

δi =
Ii · T⊤

∥Ii∥∥T ∥
∈ RN . (6)

To align the image and text into a common space, we introduce contrastive learning (Hadsell et al.,
2006; Oord et al., 2018). Consider the image embedding Ii as a query, its positive key is the text
embedding Tyi corresponding to class yi. The rest of the N − 1 text embeddings are considered
negative keys for query, which should be dissimilar to Ii. Thus, the loss function ℓ of Eq. (2) can be
rewritten as:

ℓ = − log
exp(δi,yi/τ)∑

j∈[N ],j ̸=yi exp(δi,j/τ)
, (7)

where τ is the temperature parameter that can control the tolerance for feature differences (Wu et al.,
2018; Zhang et al., 2021). Notably, only the backbone and projector are trainable in our framework.
At the end of local training in each round, clients upload their updated parameters of backbone and
projector to the server, and we can update the global model by Eq. (3).

Algorithm 1 shows the detailed training procedure of FedGLCL. Before training, the server first
encodes the class names using a pre-trained encoder to acquire global text embeddings, which are
subsequently transferred to individual local clients. During the local training stage, each client learns
the consistent image feature representations with the guide of global text embeddings. By this, the
differences among local models will be decreased, leading to a better global model. Our model
aggregation process aligns with FedAvg (McMahan et al., 2017).

Language-driven Inference. After optimization through contrastive learning, the trained backbone
and projector exhibit strong feature representation capabilities. Intuitively, their image embeddings
are closer to the text embeddings of the corresponding class as far as others. Meanwhile, these text
embeddings contain class-wise information, which can be used to distinguish different classes. The
learned metrics between image and text can be used for making predictions. Therefore, similar to
CLIP, we can use the similarity between image and text embeddings for prediction. The process of
prediction for a given image x can be described as follows:

ỹ = argmax softmax(
I · T⊤

∥I∥∥T ∥
), and I = H(G(x;wG

G);w
H
G ), (8)

where wG
G and wH

G are the optimized parameters of global backbone and projector.

4 THEORETICAL ANALYSIS

In this section, we provide deep insights into our framework by theoretical analysis. To understand
the underlying working principle of our method, we provide the following three theorems.
Theorem 1. Consider a FL system with K clients, and K training instances {(xk, σ)Kk=1} from
each client, satisfy (xk, σ) ∼ Pk. Let T = {T1, . . . ,TN} be a set of N text embeddings containing
one positive sample and N − 1 negative samples, local image embedding Ik = f(xk;wk) . Then,

6



Published as a conference paper at ICLR 2025

the total mutual information between K local image embeddings and their positive sample Tσ has
a lower bound

K∑
k=1

M(Ik,Tσ) ≥ K log(N)−
K∑
k=1

Lk. (9)

Theorem 2. In FedGLCL, the loss function Lk of client k can be expressed as:

Lk = ℓ+(xi;Tyi ;wk) + ℓ−(xi; {Tj}j∈[N ],j ̸=yi ;wk), (10)

where ℓ+ is the target objective, and ℓ− is the regulation term to prevent overfitting.

Theorem 1 indicates that FedGLCL aims to increase the mutual information between local fea-
ture representations and global text embeddings. This ensures that all local feature representations
converge towards a common objective, reducing the disparity in feature representations. Besides,
Theorem 2 further shows that FedGLCL introduces regulation effects into local training, thereby
preventing overfitting to the majority classes.

Theorem 3. Let P1,P2, . . . ,PK be the empirical data distribution and P̂1, P̂2, . . . , P̂K be the true
data distribution. Denote the projector H as the hypothesis from hypothesis space Ĥ and d be the
VC-dimension of Ĥ. The number of text embeddings is N . With probability at least 1− δ,

max
(w1,w2,...,wK)

∣∣∣∣∣
K∑
k=1

γkLPk
(T ;wk)−

K∑
k=1

γkLP̂k
(T ;wk)

∣∣∣∣∣
≤

√∑K
k=1 nk
2

log
N

δ
+

√√√√ d∑K
k=1 nk

log
e
∑K
k=1 nk
d

.

(11)

Theorem 3 provides the bound of our generalization error and indicates our method can achieve the
expected performance. The detailed analysis and proof are provided in the Appendix §B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two different non-IID FL scenarios, including label
distribution skew: CIFAR-100 (Krizhevsky et al., 2009) and Fashion-MNIST (Xiao et al.,
2017), and feature distribution skew: Office-Caltech-10 (Gong et al., 2012) and Do-
mainNet (Peng et al., 2019). For label distribution skew, following (Li et al., 2021; Tan et al.,
2022a; Diao et al., 2024), we randomly partition datasets according to the Dirichlet distribution
(Pk ∼ Dir(β)) or select C classes for each client. The number of clients is 10 and all participate in
training, i.e., the sample fraction is 1. For feature distribution skew, we use the subsets from differ-
ent domains as clients (Zhou & Konukoglu, 2023; Li et al., 2020c), where the number of clients in
Office-Caltech-10 and DomainNet are 4 and 6, respectively.

Baselines. We compare FedGLCL with several state-of-the-art FL methods for non-IID data, includ-
ing FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), FedNova (Wang et al., 2020), Scaf-
fold (Karimireddy et al., 2020), MOON (Li et al., 2021), and FedProto (Tan et al., 2022a), which are
popular baselines in heterogeneous FL. Moreover, we compared some FL methods that are designed
for specialized scenarios, such as FedBN (Li et al., 2020c) and FedFA (Zhou & Konukoglu, 2023)
for the feature distribution skew scenario, and FedLC (Zhang et al., 2022) and FedConcat (Diao
et al., 2024) for the label distribution skew scenario.

Implementation Details. We implement our method and other baselines by Pytorch and conduct all
experiments on an NVIDIA RTX 4090 GPU with 24 GB memory. We adopt AlexNet (Krizhevsky
et al., 2012) for Office-Caltech-10, DomainNet and Fashion-MNIST, and ResNet-50 (He et al.,
2016) for CIFAR-100. The models are trained with the SGD optimizer, with a learning rate of 0.0001
for Office-Caltech-10 and DomainNet, and 0.1 for Fashion-MNIST and CIFAR-100. Additionally,
the batch size is set to 64 for CIFAR-100, 32 for Office-Caltech-10 and DomainNet, and 256 for
Fashion-MNIST. The local epoch is set to 5. For a fair comparison, all methods use the above
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Table 1: Test accuracy (%) on feature distribution skew scenario. For a detailed comparison,
we present the test accuracy of each client, i.e., Office-Caltech-10 (Gong et al., 2012): A(Amazon),
C(Caltech), D(DSLR), W(Webcam), DomainNet (Peng et al., 2019): C(Clipart), I(Infograph),
P(Painting), Q(Quickdraw), R(Real), S(Sketch). Avg. denotes the average accuracy of all clients.

Method
Office-Caltech-10 DomainNet

A C D W Avg. C I P Q R S Avg.

FedAvg 50.00 49.77 53.12 88.13 60.25 75.47 37.44 64.45 73.10 73.04 74.18 66.28
FedProx 57.81 46.66 56.25 76.27 59.25 75.28 36.68 62.68 71.20 68.94 71.84 64.43
FedNova 50.00 42.22 62.50 88.13 60.71 75.85 35.00 64.94 70.60 70.66 72.56 64.93
Scaffold 45.83 39.55 67.75 76.66 58.45 69.20 36.37 57.67 55.20 66.88 60.10 57.57
MOON 53.64 44.88 53.12 89.83 60.37 72.24 35.15 65.91 58.10 72.47 64.07 61.32
FedProto 52.08 40.88 78.12 86.44 65.23 76.42 22.83 60.90 89.60 79.86 70.03 66.61
FedBN 60.93 44.44 84.37 86.44 69.04 81.36 29.68 63.97 89.60 82.82 73.10 70.09
FedFA 61.45 49.77 84.37 89.83 71.36 83.27 20.24 71.40 91.40 87.75 83.57 72.94

FedGLCL (Ours) 75.52 64.00 75.00 94.91 77.35 84.60 37.44 79.96 88.50 86.27 82.49 76.54

Table 2: Test accuracy (%) on label distribution skew scenario. We evaluate all methods on
the test of CIFAR-100 (Krizhevsky et al., 2009) and Fashion-MNIST (Xiao et al., 2017) with
different partition strategies, where smaller β and C means higher heterogeneity.

Method
CIFAR-100 Fashion-MNIST

β = 0.1 β = 0.5 β = 1.0 C = 2 C = 3 β = 0.3 β = 0.5 β = 1.0

FedAvg 64.52 66.67 67.75 42.69 74.50 89.46 92.35 92.65
FedProx 63.98 68.64 69.21 38.98 74.04 87.84 92.11 92.51
FedNova 63.19 68.34 68.78 50.07 60.87 90.13 92.49 92.80
Scaffold 59.61 68.77 70.89 29.44 57.84 91.45 92.44 92.95
MOON 66.30 70.91 71.85 51.95 74.40 88.96 91.00 91.36
FedProto 66.64 70.04 70.51 43.95 72.82 88.64 91.92 92.33
FedLC 63.34 65.70 66.91 37.28 71.06 86.49 91.66 92.08
FedConcat 67.50 71.82 72.49 52.29 75.65 89.83 92.20 92.47

FedGLCL (Ours) 68.58 73.52 74.85 56.63 84.47 93.04 93.82 93.98
FedGLCL (Ours) + FedProx 68.95 74.02 75.15 58.69 85.28 93.34 93.86 93.93
FedGLCL (Ours) + MOON 69.36 74.38 75.56 59.71 84.61 93.36 93.85 93.89

settings. We use the popular language model, i.e., Bert-base (Devlin et al., 2018) as text encoder and
V is 640. The temperature is 0.07 as default (Wang & Liu, 2021). Notably, the image backbone is
trained from scratch without loading any pre-trained models. More details and experimental results
are presented in the Appendix §C and §D.

5.2 MAIN RESULTS

In this section, we present the overall results of all methods on four popular FL benchmarks under
two different scenarios: feature distribution skew in Table 1 and label distribution skew in Table 2.
The performance of the method is quantified using Top-1 accuracy.

Comparison with State-of-the-arts. As we can see, FedGLCL consistently outperforms all base-
lines across different scenarios, achieving new state-of-the-art performance. In particular, by making
lightweight modifications to the local training of FedAvg, our FedGLCL yields significant improve-
ments over FedAvg across four different datasets, e.g., Office-Caltech-10: 60.25% → 77.35 %,
DomainNet: 66.28% → 76.54%, CIFAR-100: 66.67% → 73.52%, and Fashion-MNIST: 42.69%
→ 56.63%. This indicates the effectiveness of language-driven representation learning in mitigat-
ing data heterogeneity in federated learning. Besides, the methods designed for specific scenarios
demonstrate their advantages in the corresponding setting, achieving better performance than other
general heterogeneous FL frameworks. For example, FedFA outperforms other baselines in the fea-
ture distribution skew scenario while FedGLCL yields higher accuracy than other baselines in the
label distribution skew. However, both of them achieve worse performance them our FedGLCL,
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which shows the robustness and generality of our method for different non-IID scenarios. More-
over, our FedGLCL also significantly outperforms the other baselines focused on local training such
as FedProx, MOON and FedProto. This indicates that global text embeddings possess a stronger
guiding capability than model relations (FedProx and MOON) or class prototypes (FedProto). It
is worth noting that FedLC, which proposed a calibrated cross-entropy loss, achieves worse per-
formance than FedAvg, consistent with the results in the previous study (Diao et al., 2024). This
highlights the inherent limitation of label-driven representation learning in non-IID scenarios. In
contrast, language-driven representation learning exhibits more generalized and robust performance.

Combined with Other Baselines. The core of FedGLCL lies in using language-driven represen-
tation learning to replace the traditional label-driven training paradigm. This means that FedGLCL
can substitute for the supervised loss component in the local objective of previous FL methods,
i.e., cross-entropy loss. To explore this, we combine our approach with FedProx and MOON and
the loss weight is unchanged. Their accuracy is presented in Table 2. Notably, after incorporating
our language-representation learning as the local training manner, the performance of FedProx and
MOON has significantly improved compared to their use of traditional label supervision. Surpris-
ingly, we find the approximation term in FedProx and the model contrastive loss term in MOON
also contribute to the performance improvement of FedGLCL, which provides additional guidance
information for language-driven training.

5.3 SCALABILITY

Table 3: Test accuracy (%) with different number of
clients (#K, #SF) on CIFAR-100 under two different partic-
ipation setting, i.e., Full and Partial, where #K is the total
number of clients, and #SF is the sample fraction of training
clients per round. The β is 0.5.

Method
Full Partial

(10, 1) (20, 1) (30, 1) (20, 0.5) (100, 0.1)

FedAvg 66.67 65.32 64.24 64.39 39.22
FedProx 68.04 66.02 65.30 65.32 40.78
FedNova 68.34 67.36 63.68 63.97 37.81
Scaffold 68.77 66.12 65.38 64.22 39.75
MOON 70.91 67.30 65.85 65.36 42.54
FedProto 70.04 69.44 66.61 63.24 38.32
FedLC 65.70 64.20 62.95 60.49 37.65
FedConcat 71.82 70.02 68.77 66.05 44.98

FedGLCL (Ours) 73.52 71.71 70.20 69.66 49.17

To investigate the scalability of
FedGLCL, we build up different
scales of federation by splitting the
dataset into more clients on CIFAR-
100 (Li et al., 2022c; Diao et al.,
2024). There are two different set-
tings: (1) Full: we increase the num-
ber of clients from 10 to 30 while
keeping the sample fraction at 1. (2)
Partial: we set the number of clients
and sample fraction to (20, 0.5) and
(100, 0.1), respectively, keeping the
number of clients participating in
each round of training the same as the
default setting (10 training clients per
round). Other experimental settings
remain the same as the default con-
figuration. As shown in Table 3, all
methods exhibit a decline in perfor-
mance as the number of clients in-
creases, but FedGLCL still outperforms other baselines. This suggests that our language-driven
training paradigm is resilient to changes in the number of clients and can be seamlessly deployed in
larger federations, even under partial participation settings.

5.4 EFFICIENCY ANALYSIS

Communication Cost. Since the size of global text embeddings is N × 640, which is smaller
the dimension of the classifier layer, i.e., N × 2048 for ResNet-50 and N × 4096 for AlexNet.
Therefore, FedGLCL does not incur additional communication overhead, and its communication
overhead is even slightly lower than that of FedAvg. For example, FedGLCL reduces the commu-
nication overhead per round by 0.12M on CIFAR-100 compared to FedAvg. This highlights the
advantage of FedGLCL over traditional label-driven representation learning in terms of communi-
cation efficiency.

Communication Efficiency. In Figure 3, we show the test accuracy of several FL frameworks versus
communication rounds on two scenarios. Our FedGLCL exhibits a faster convergence speed than
FedAvg in two data heterogeneity scenarios, which further indicates the superiority of language-
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FedAvg MOON FedProx Ours

(a) CIFAR-100 (b) Office-Caltech-10 (c) DomainNet

Figure 3: Test accuracy (%) of several FL frameworks versus communication rounds on three
benchmarks. The β is 0.5 for CIFAR-100 (Krizhevsky et al., 2009).

driven representation learning. Compared with FedProx and MOON, which also emphasize improv-
ing local training, FedGLCL achieves a faster and more stable convergence on Office-Caltech-10 and
DomainNet. It is worth noting that FedGLCL achieves high accuracy with just one communication
round on DomainNet, a larger dataset for feature distribution skew. This suggests that the alignment
of features between local images and global text in FedGLCL can effectively mitigate the feature
shift issue.

5.5 ABLATION STUDY

Table 4: Ablation studies of FedGLCL on three
benchmarks. The β is 0.5 for CIFAR-100 (Krizhevsky
et al., 2009).

Variant CIFAR-100 Office-Caltech-10 DomainNet

FedAvg 66.67 60.25 66.28
FedGLCL-L 63.47 56.80 58.75

FedGLCL 73.52 77.35 76.54

FedGLCL vs. FedGLCL-L. Global
text embedding is a core insight of our
method. To further validate our insights,
we construct FedGLCL-L: each client
has a trainable text encoder optimized by
Eq. (7), and after each round of local train-
ing, their encoders are averaged to obtain
a globally trainable text encoder. The re-
sults in Table 4 indicate that skewed local
text feature spaces fail to assist clients in learning consistent image feature representations, conse-
quently resulting in significant performance degradation.
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Figure 4: Hyper-parameter
analysis for τ on CIFAR-
100 (Krizhevsky et al., 2009)
under β = 0.5.

Hyper-parameter Analysis. FedGLCL involves only one
hyper-parameter, i.e., temperature τ . To explore its fluence for
our method, we tune τ from {0.01, 0.07, 0.1, 0.5, 1} on CIFAR-
100 with β = 0.5 and shows the results in Figure 4. We observe
that a smaller value for τ leads to better performance, aligning
with a common belief about τ in contrastive learning. This is
because a smaller temperature coefficient places more emphasis
on distinguishing challenging samples that are similar to the an-
chor, often resulting in more uniform representations (Wang &
Liu, 2021).

6 CONCLUSION

In this work, we focused on addressing the non-IID issue, a fun-
damental challenge in FL. Due to inherent limitations in label-driven FL, this paper explores the
applicability of language-driven representation learning in FL. We found that language-driven repre-
sentation learning can benefit local models to learn consistent representations and prevent overfitting
to majority classes, effectively addressing the non-IID problem, and yielding a novel FL framework,
i.e.,FedGLCL. The advantage of language-driven representation learning allows it to exhibit out-
standing performance across different scenarios. Finally, a comprehensive theoretical and empirical
analysis helps us better understand FedGLCL, thereby providing more insights into the applications
of language-driven representation learning in FL.
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A EMPIRICAL ANALYSIS

In this work, we found that language-driven representation learning has two inherent advantages for
FL under non-IID data. First, it effectively reduces the feature representation difference among local
models. We employ the Centered Kernel Alignment (Kornblith et al., 2019) (CKA) similarity to
quantify the differences in feature representations among different local models. CKA is a reliable
technique for quantifying the similarity between pairs of feature representations, widely used in
various applications as an analytical tool (Raghu et al., 2021). Specifically, we use the global model
as the anchor and calculate the CKA similarity for each layer of the network between all local models
and the anchor. We then visualize the average CKA scores of all local models in Figure 1 (c). The
results indicate that the representation disparity among local models under non-IID is primarily
concentrated in the deep layers of the network (A larger index means a deeper layer), and language-
driven representation learning can effectively mitigate these differences. This is facilitated by the
text-image feature alignment of language-driven representation learning. Second, it helps prevent
local models from overfitting to the majority classes. Label-driven representation learning can easily
lead to overfitting on the majority classes due to a lack of supervised information on minority classes.
In contrast, during the training process, language-driven representation learning not only brings the
features of images closer to the corresponding textual features of their corresponding class but also
pushes them away from the text features of other classes, thereby indirectly introducing supervisory
information from other classes. This process effectively prevents the overfitting of local models
and enhances their generalization performance (see Figure 1 (b)). Building upon the above two
aspects, language-driven representation learning achieves consistent improvements in two different
federated scenarios, and its enhancement for FedAvg is superior to that in centralized learning (see
Figure 1 (a)). Motivated by this, we suggest using language-driven representation learning as the
local training paradigm to address the non-IID issue.

B THEORETICAL ANALYSIS

B.1 ANALYSIS OF WORKING PRINCIPLE

As stated in §1, language-driven representation learning exhibits two empirical phenomenons, i.e.,
mitigating feature difference and preventing overfitting, which benefit for addressing the non-IID
issue. In this section, we provide a theoretical analysis to understand the working principle of
FedGLCL. We first explain why FedGLCL can reduce the feature representation differences among
local models from the perspective of mutual information (Belghazi et al., 2018), which is a com-
monly used method to quantify and optimize the differences in feature representations. First, we
introduce the following lemma from (Oord et al., 2018) for contrastive learning.

Lemma 1. Given a set X = {x1, . . . , xN} of N random samples containing one positive sample
and N − 1 negative samples for latent representation c, and optimized with the contrastive loss LN .
Then, the mutual information M(c, x+) between c and its positive samples x+ ∈ X has a lower
bound

M(c, x+) ≥ log(N)− LN . (12)

The above lemma illustrates that when we optimize the contrastive learning loss LN , it enhances
the lower bound of mutual information M(c, x+). In other words, it reduces the representation
difference between x+ and c. Since our FedGLCL has the same form with the LN of (Oord et al.,
2018), the above lemma can be directly applied in our setting. The set X can be considered as
global text embeddings T and c is replaced with local image embeddings I . Therefore, we provide
the following theorem:

Theorem 1. Consider a FL system with K clients, and K training instances {(xk, σ)Kk=1} from each
client, satisfy (xk, σ) ∼ Pk, where σ ∈ [N ] represents the class index. Let T = {T1, . . . ,TN}
be a set of N text embeddings containing one positive sample and N − 1 negative samples, local
image embedding Ik = f(xk;wk) . Then, the total mutual information between K local image
embeddings and their positive sample Tσ has a lower bound

K∑
k=1

M(Ik,Tσ) ≥ K log(N)−
K∑
k=1

Lk. (13)
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Proof. In FL, each local training is conducted independently and in parallel. Thus, for each client
k ∈ [K], we have

M(Ik,Tσ) ≥ log(N)− Lk (14)

Therefore, with sufficient updates of local models, Ik converges to Tv . The total mutual information
of K clients satisfy

K∑
k=1

M(Ik,Tσ) ≥ (log(N)− L1) + (log(N)− L2) + . . .+ (log(N)− LK)

= K log(N)−
K∑
k=1

Lk

(15)

Theorem 1 implies that minimizing the global empirical loss (Eq. (1)) is equivalent to maximiz-
ing the sum of mutual information between the feature representations of K clients and the posi-
tive text embedding. Due to the independent training of each client,

∑K
k=1 Lk is minimized and∑K

k=1 M(Ik,Tσ) is maximized only if ∀Ik → Tv . Since Tσ is consistent and fixed for all clients,
FedGLCL ensures that all local embeddings converge to the same target, thereby mitigating the fea-
ture difference. Notably, both the number of samples and the number of clients are K, so we use the
same notation.

Furthermore, we offer additional insight into how our introduced loss function regulates local train-
ing, aiming to prevent overfitting on the majority class of local datasets.
Theorem 2. In FedGLCL, the loss function Lk of client K can be expressed as:

Lk = ℓ+(xi;Tyi ;wk) + ℓ−(xi; {Tj}j∈[N ],j ̸=yi ;wk), (16)

where ℓ+ is the target objective, and ℓ− is the regulation term to prevent overfitting.

Proof. The local loss function can be transformed:

Lk = E(xi,yi)∼Pk
ℓ

= E(xi,yi)∼Pk
− log

exp(δi,yi/τ)∑
j∈[N ],j ̸=yi exp(δi,j/τ)

= E(xi,yi)∼Pk

∑
j∈[N ],j ̸=yi

δi,j/τ − δi,yi/τ

= E(xi,yi)∼Pk

1

τ

∑
j∈[N ],j ̸=yi

Ii · T⊤
j

∥Ii∥∥Tj∥
−

Ii · T⊤
yi

∥Ii∥∥Tyi∥

= E(xi,yi)∼Pk

1

τ

∑
j∈[N ],j ̸=yi

f(xi;wk) · T⊤
j

∥f(xi;wk)∥∥Tj∥
−

f(xi;wk) · T⊤
yi

∥f(xi;wk)∥∥Tyi∥

= ℓ−(xi; {Tj}j∈[N ],j ̸=yi ;wk) + ℓ+(xi;Tyi ;wk),

(17)

Then, we have

ℓ+(xi;Tyi ;wk) = E(xi,yi)∼Pk
− 1

τ

f(xi;wk) · T⊤
yi

∥f(xi;wk)∥∥Tyi∥
(18)

ℓ−(xi; {Tj}j∈[N ],j ̸=yi ;wk) = E(xi,yi)∼Pk

1

τ

∑
j∈[N ],j ̸=yi

f(xi;wk) · T⊤
j

∥f(xi;wk)∥∥Tj∥
(19)

Compared with traditional cross-entropy loss, our local loss function introduces the information
from all classes. By optimizing ℓ+(xi;Tyi ;wk), f(xi;wk) is forced to approach Tyi . Besides,
ℓ−(xi; {Tj}j∈[N ],j ̸=yi ;wk) can be considered as a regularization term to keep f(xi;wk) far away
from ∀T̂ ∈ {Tj}j∈[N ],j ̸=yi , which can prevent the local model overfitting to majority class of local
datasets.
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B.2 GENERALIZATION BOUNDS

In this section, we analyse the performance of FedGLCL from the perspective of generation error.
Before giving our error bound, we provide the following lemma from (Tan et al., 2022b), which is
a prototype-based FL framework.
Lemma 2. Consider a FL system with m clients. Let D1, D2, . . . , Dm be the true data distribution
and D̂1, D̂2, . . . , D̂K be the empirical data distribution. Denote the projector head h as the hypoth-
esis from H and d be the VC-dimension of H. The total number of samples overall clients is N .
Then, with probability at least 1− δ,

max
(θ1,θ2,...,θm)

∣∣∣∣∣
m∑
i=1

|Di|
N

LDi

(
θi;C, {Cp}mp=1

)
−

m∑
i=1

|Di|
N

LD̂i

(
θi;C, {Cp}mp=1

)∣∣∣∣∣
≤

√
N

2
log

(m+ 1)|C|
δ

+

√
d

N
log

eN

d
,

(20)

where (m + 1)C is the total number of local and global prototypes, e is the base of the natural
logarithm.

Since text embeddings T contain the class-wise information, we find the above lemma can be di-
rectly applied in our framework by considering T as a type of global prototype. This leads to the
below theorem.
Theorem 3. Let P1,P2, . . . ,PK be the empirical data distribution and P̂1, P̂2, . . . , P̂K be the true
data distribution. Denote the projector H as the hypothesis from hypothesis space Ĥ and d be the
VC-dimension of Ĥ. The number of text embeddings is N . With probability at least 1− δ,

max
(w1,w2,...,wK)

∣∣∣∣∣
K∑
k=1

γkLPk
(T ;wk)−

K∑
k=1

γkLP̂k
(T ;wk)

∣∣∣∣∣
≤

√∑K
k=1 nk
2

log
N

δ
+

√√√√ d∑K
k=1 nk

log
e
∑K
k=1 nk
d

,

(21)

The above theorem indicates that FedGLCL can achieve the expected performance with an appro-
priate projection network and the number of classes.

C DETAILS

C.1 DATASET

We illustrate the detailed information of four datasets: CIFAR-100 and Fashion-MNIST in Table 5,
Office-Caltech-10 in Table 6, and DomainNet in Table 7. For CIFAR-100 and Fashion-MNIST, the
ratio of training and testing is provided by the dataset, where there are 50000 training instances for
CIFAR-100 and 60000 training instances for Fashion-MNIST. Both of them have 10000 instances
for testing. The training set will be split into multiple clients for training by two different Non-IID
partition strategies (Diao et al., 2024; Zhang et al., 2022): 1) Sharding: we randomly allocate C
classes to each client and keep an equal number of samples for each client. 2) LDA: we utilize the
Latent Dirichlet Allocation (LDA) strategy to divide the data among clients, where each local dataset
is sampled from a Dirichlet distribution (Pk ∼ Dir(β)). C and β are hyper-parameters that control
the data heterogeneity of experiments, and the smaller value indicates higher data heterogeneity.
After training, we evaluate the global model of all methods on the testing set (Diao et al., 2024; Li
et al., 2021). For Office-Caltech-10 and DomainNet, following (Li et al., 2020c; Zhou & Konukoglu,
2023), we partition the dataset of each client into 8:2 for training:testing. We report the
test accuracy of each client and their average result for all methods.

C.2 METHOD

It’s worth noting that there are some important hyper-parameters in the compared baselines, which
can affect the performance of the method. For these hyper-parameters and experimental details,
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Table 5: Detailed information of CIFAR-100 (Krizhevsky et al., 2009), Fashion-MNIST (Xiao
et al., 2017), and Tiny-ImageNet.

Property CIFAR-100 Fashion-MNIST Tiny-ImageNet
# of train samples 50000 60000 100000
# of test samples 10000 10000 10000

# of classes 100 10 200
Image size (32, 32, 3) (28, 28, 1) (64, 64, 3)

Table 6: Detailed information of Office-Caltech-10 (Gong et al., 2012). There are 4 clients in
total.

Property Office-Caltech-10

Amazon Caltech DSLR Webcam
# of train samples 766 898 125 236
# of test samples 192 225 32 59

# of classes 10 10 10 10
Image size (256, 256, 3) (256, 256, 3) (256, 256, 3) (256, 256, 3)

Table 7: Detailed information of DomainNet (Peng et al., 2019). There are 6 clients in total.

Property DomainNet

Clipart Infograph Painting Quickdraw Real Sketch
# of train samples 2103 2626 2472 4000 4867 2213
# of test samples 526 657 619 1000 1217 554

# of classes 10 10 10 10 10 10
Image size (256, 256, 3) (256, 256, 3) (256, 256, 3) (256, 256, 3) (256, 256, 3) (256, 256, 3)

Table 8: Detailed structure of the projector for ResNet-50. The projector is a lightweight module,
consisting of two fully connected layers (FC). We list parameters with a sequence of input and output
dimensions.

Layer Details
Layer1 FC(2048, 2048), ReLU, Normalize

Layer2 FC(2048, 640), ReLU, Normalize

we strictly adhere to the descriptions provided by their paper. For example, the local objective
function of FedProx, MOON and FedProto can be expressed as L = L1 + µL2, where L1 and L2

are supervised loss and auxiliary Loss, µ is the hyper-parameter to control the influence of auxiliary
Loss. For FedProx, we tune µ from the range {0.0001, 0.001, 0.01, 0.1}, and empirically set to
0.001 for CIFAR-100 and Fashion-MNIST, and 0.0001 for Office-Caltech-10 and DomainNet. For
MOON and FedProto, the µ is set to 1, and the temperature parameter of MOON is set to 0.5.
As for FedConcat, the encoder and classifier are trained independently, with the encoder being
trained first, followed by the training of the classifier. The training communication rounds for the
encoder are 50 rounds, while for the classifier, they are 1000 rounds. To ensure a fair comparison,
all baselines employ the same model structure, integrating the projector into ResNet-50 (backbone,
projector, classifier). The projector is a two-layer Multi-Layer Perceptron (MLP), which is presented
in Table 8. However, FedGLCL differs by removing the classifier, retaining only the backbone and
projector components. In the case of AlexNet, its classifier comprises three consecutive linear layers.
FedGLCL discards the last linear layer of the classifier and utilises the remaining two linear layers
as the projector while all baselines maintain the full classifier structure.

D ADDITIONAL EXPERIMENTS

D.1 PROMPTING ENGINEERING

To explore the impact of prompting engineering on the method, we build up a variant M1 by re-
moving prompt templates and directly using class names “{class}”. The results in Table 9 show
a varying degree of performance decline across the three datasets after removing the prompts. This
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Table 9: Ablation studies about the prompting engineering of FedGLCL on three benchmarks.
The β is 0.5 for CIFAR-100.

Variant CIFAR-100 Office-Caltech-10 DomainNet

FedAvg 66.67 60.25 66.28
FedGLCL + “{class}” 72.42 75.91 75.29
FedGLCL + Prompt ensemble 74.30 77.92 77.02

FedGLCL + “a photo of {class}” 73.52 77.35 76.54

Table 10: Test accuracy (%) with different text embeddings on three benchmarks. The β is 0.5 for
CIFAR-100.

Variant CIFAR-100 Office-Caltech-10 DomainNet

Random initialization tensors 38.99 35.09 42.13
Random orthogonal tensors 67.58 62.60 69.22
Proxy text embeddings 72.80 77.52 75.83

FedGLCL 73.52 77.35 76.54

Table 11: Test accuracy (%) with vgg-11 on CIFAR-100. The β is 0.5.
FedAvg FedProx FedNova Scaffold MOON FedProto FedLC FedConcat FedGLCL
57.57 54.64 58.12 58.43 60.12 59.63 55.52 60.94 65.45

Table 12: Test accuracy (%) with vgg-11 on Office-Caltech-10.
FedAvg FedProx FedNova Scaffold MOON FedProto FedBN FedFA FedGLCL
74.97 73.54 73.27 72.44 75.05 78.64 81.55 82.68 85.30

suggests that text prompts contribute to enhancing the semantic information of text embeddings.
However, even after removing textual prompts, FedGLCL still significantly outperforms traditional
label-driven representation learning methods, demonstrating the superiority of language-driven rep-
resentation learning for heterogeneous data.

Besides, following previous works (Zhou et al., 2022), we employ prompt ensemble by feeding
prompt-engineered texts into the text encoder with 85 different prompt templates, and average 85
text embeddings of the same class. The results show that this ensemble strategy yields better text em-
beddings, leading to improved performance. This further demonstrates the scalability of FedGLCL.

D.2 DIFFERENT TEXT EMBEDDINGS

In this section, we explore the impact of different types of text embeddings on our approach. First,
we conduct experiments by replacing the global text embedding with randomly initialized and ran-
domly orthogonal tensors implemented by Pytorch. The main idea of FedGLCL is to leverage
the semantic information contained in global text embeddings for global supervision. However, as
shown in Table 10, randomly initialized feature embeddings struggle to provide effective semantic
supervision, leading to a sharp decline in performance. Random orthogonal matrices can be a type
of supervision, but manually crafted feature embeddings significantly lower the quality of global text
embeddings, which are learned from massive data. In addition, manually crafted feature embeddings
can hinder the convergence of the model.

Besides, we use fake class names as proxies by swapping the class names between Office-Caltech-
10 and DomainNet, and randomly selecting 100 class names from ImageNet (Deng et al., 2009) for
CIFAR-100. Then, we utilise the text encoder to encode them as the global text embedding for both
training and inference. Surprisingly, we found that it achieved comparable performance to using
text embeddings from real classes as shown in Table 10. In FedGLCL, local image encoders are
trained from scratch without any prior knowledge. Therefore, the critical factor is the consistency of
text embeddings between training and testing. This ensures that the encoded text embeddings can
effectively guide the learning process, regardless of whether the class names perfectly correspond to
the images. While the proxy class names are not the real classes of images, they are still in the do-
main covered by the pre-trained text encoder. Consequently, the global text embeddings still provide
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Table 13: Test accuracy (%) with different text encoders on three benchmarks. The β is 0.5 for
CIFAR-100.

Variant CIFAR-100 Office-Caltech-10 DomainNet

Glove 68.95 71.51 70.48
CLIP/ResNet-50 73.30 77.26 76.41
CLIP/ViTB-16 72.88 75.99 76.09

Bert-base (default) 73.52 77.35 76.54

Table 14: Test accuracy (%) with ResNet-50 on CIFAR-100-LT (Shang et al., 2022).
FedAvg FedProx FedNova Scaffold MOON FedProto FedLC FedConcat FedGLCL
45.29 48.23 45.49 49.40 51.13 50.76 48.92 50.53 56.14

Table 15: Training efficiency with ResNet-50 on CIFAR-100.
Method FedAvg FedProx FedNova Scaffold MOON FedProto FedLC FedGLCL
Time/Round (s) 12.58 21.69 13.68 18.83 21.14 15.05 13.13 14.13
Rounds 88 91 93 96 93 87 79 92
Total Time (s) 1107.04 1973.79 1272.24 1807.68 1966.02 1309.35 1037.27 1299.96

meaningful semantic supervision for training. This result highlights that the success of language su-
pervision is not dependent on the precise semantic relationships between class names and images
but rather on the overall structure and knowledge encoded in the global text embeddings. This not
only offers effective supervision for training local image encoders but, more importantly, ensures
the alignment of all local image feature spaces with the global text feature space for mitigating drift
in local models. Besides, this also suggests that we can use proxy texts to deal with the domain shift
of text and privacy encryption.

D.3 DIFFERENT IMAGE BACKBONES

We conducted experiments using vgg-11 (Simonyan & Zisserman, 2014) for all methods on CIFAR-
100 and Office-Caltech-10, where the β is set to 0.5 for CIFAR-100. The results are as shown in
Table 11 and 12. As one can see, after employing different network architectures, the improvement
of FedGLCL compared to FedAvg remains notable, i.e., 7.88% and 10.33% on the two datasets, re-
spectively. Besides, FedGLCL consistently outperforms all compared baselines under two different
non-IID settings. The above results demonstrate the generalizability of FedGLCL across different
network architectures

D.4 DIFFERENT TEXT ENCODERS

To explore the impact of different pre-trained language models, we used another popular vision-
language model, CLIP (Radford et al., 2021). Specifically, we only use the text encoder of
CLIP/ResNet-50 and CLIP/ViTB-16 as the text encoder of FedGLCL, and the results are presented
in Table 13. After using different text encoders, our method still outperformed the best baseline.
This demonstrates the robustness of FedGLCL to various text encoders.

Besides, we compared Glove (Pennington et al., 2014), a traditional word embedding method. The
results show that GloVe outperforms FedAvg, but achieves lower performance than Bert and CLIP.
This is because Bert and CLIP employ deep neural networks to learn data representations through
supervised learning on large-scale datasets, allowing them to capture semantic information more
effectively.

D.5 EXPERIMENT ON LONG-TAILED SETTING

To further validate the effectiveness of FedGLCL in mitigating overfitting to the major classes,
following previous work (Shang et al., 2022), we conducted long-tailed FL experiments on CIFAR-
100-LT. The long-tailed distribution is controlled by imbalance factors (IF), which is set to 10, and
β is set to 0.5. The results, as illustrated in Table 14, show that the improvement of FedGLCL over

21



Published as a conference paper at ICLR 2025

Table 16: Test accuracy (%) with ResNet-50 on Tiny-ImageNet. The β is 0.5.
FedAvg FedProx FedNova Scaffold MOON FedProto FedLC FedConcat FedGLCL
47.54 46.61 47.11 48.09 48.97 48.16 45.97 49.24 51.05

Table 17: Results of statistical significance. For accuracy, we report mean ± std over three trials.

Method
CIFAR-100 Office-Caltech-10 DomainNet

Accuracy P-value Accuracy P-value Accuracy P-value

FedAvg 66.64 ± 0.14 0.0016 60.57 ± 0.85 0.0003 66.58 ± 0.70 0.0007
FedConcat 71.09 ± 0.51 0.0138 - - - -
FedFA - - 71.50 ± 1.03 0.0026 72.27 ± 0.72 0.0031

FedGLCL 74.10± 0.41 - 77.84 ± 0.96 - 77.13 ± 0.53 -

Table 18: Test accuracy (%) with AlexNet on Office-Caltech-10 (Gong et al., 2012), where the
image backbone is initialized with pre-trained weights from ImageNet.

FedAvg FedProx FedNova Scaffold MOON FedProto FedBN FedFA FedPCL FedGLCL
64.99 62.46 65.50 61.33 66.78 69.37 71.87 74.91 72.46 81.81

FedAvg is more significant in long-tailed FL settings as large as 10.85% (higher than 6.85% in Table
2). This further demonstrates that FedGLCL can prevent overfitting to the major classes.

D.6 TRAINING EFFICIENCY

We present the local training time per round of single client on CIFAR-100, and the average result
of all clients is reported. We also report the number of rounds for each method to reach the best
accuracy. Notably, since FedConcat’s backbone and classifier are trained independently, the number
of rounds and training time for each stage differ, so it is a challenge to evaluate its time using the
above strategy. The results are presented in Table 15. Compared to FedAvg, the additional training
overhead in FedGLCL primarily comes from the similarity computation between image and text
features. However, this overhead is minimal as it leverages PyTorch’s efficient matrix operations,
resulting in only a slight increase in Time/Round. Additionally, we compared FedGLCL with other
methods that incorporate auxiliary losses, such as FedProx, MOON, and FedProto. The auxiliary
losses in FedProx and MOON lead to significantly higher overhead compared to our method. In
summary, both the training time per round and the total training time for FedGLCL are acceptable.

D.7 EXPERIMENTS ON LARGER-SCALE DATASETS

We conduct experiments using a larger-scale dataset, Tiny-ImageNet2, and its detailed information
is presented in Table 5. We use the same experimental setup as for CIFAR-100, and β is set to 0.5.
The results in Table 16 show that FedGLCL consistently achieves the best performance compared
to all baselines, further demonstrating the effectiveness of our method.

D.8 STATISTICAL SIGNIFICANCE

In this section, we conduct two additional trials using different random seeds and report the mean
and standard deviation (std) across all three trials. Furthermore, to evaluate the statistical signifi-
cance of the performance improvements, we perform a paired t-test between the baseline and our
method, reporting the corresponding p-value. The above results of FedAvg, FedGLCL, and two
best baselines, i.e., FedConcat and FedFA, are presented in Table 17. It can be observed that the
p-values for all baselines are less than 0.05, indicating the statistical significance of the performance
improvements achieved by our method.

2https://www.kaggle.com/c/tiny-imagenet/overview
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Table 19: Test accuracy (%) on ProstateMRI (Liu et al., 2020). For a detailed comparison, we
present the test accuracy of each client. Avg. denotes the average accuracy of all clients

Method
ProstateMRI

BIDMC HK I2CVB BMC RUNMC UCL Avg.

FedAvg 87.66 94.48 96.00 90.46 93.21 87.47 91.55
FedGLCL 91.81 94.89 95.95 92.08 93.34 90.68 93.12

D.9 EXPERIMENTS WITH PRE-TRAINED IMAGE MODELS

We conducted additional experiments on the Office-Caltech-10 dataset using a pre-trained image
backbone. In this experiment, the image backbone (AlexNet) was initialized with pre-trained
weights from ImageNet, while all other settings remained unchanged. The results in Table 18
demonstrate that incorporating the pre-trained image backbone improved the performance of all
methods, with our approach consistently achieving the best results. This confirms that under fair
comparisons (where all methods either utilize the pre-trained image backbone or do not), FedGLCL
significantly outperforms other methods, further highlighting its effectiveness and superiority.

Besides, we compared a new baseline, i.e., FedPCL (Tan et al., 2022b), a prototype-based FL method
specifically designed for pre-trained image backbones. As we can see, FedPCL performs signifi-
cantly worse than our method, demonstrating the superiority of FedGLCL over prototype-based FL
methods.

D.10 EXPLORATION ON MORE TASKS

In this section, we extend FedGLCL to more visual tasks. Inspired by (Li et al., 2022a), we extend
the image-text alignment to pixel-text alignment for image segmentation. We conducted experiments
on ProstateMRI (Liu et al., 2020), a widely used federated medical image segmentation benchmark.
This benchmark has six clients including BIDMC, HK, I2CVB, BMC, RUNMC, and UCL, each
from a different domain. We used U-Net as the segmentation network and aligned the output of
the final layer with the text features. Since this benchmark involves a binary segmentation task, we
use “foreground” and “background” as the class names. The communication rounds are set to 200,
with local rounds set to 1. The results are presented in Table 19. It can be observed that FedGLCL
achieves certain improvements compared to FedAvg, indicating that our method has the potential to
be applied to other tasks to address non-IID data issue.

E PRIVACY SECURITY

FedGLCL effectively utilizes language-driven representation without leaking privacy. (1) We share
the encoded text embeddings instead of directly sharing the category text. Additionally, we conduct
the text encoding process on the server side, making it invisible to individual clients, thus preventing
reverse inference of the text. (2) Furthermore, the introduced prompts can increase the complexity
of the text, thereby further enhancing privacy security. (3) Finally, we can further enhance privacy
security by using proxy texts.

F LIMITATION

Domain shift in pre-trained models is a fundamental challenge and can be mitigated in this work.
Actually, FedGLCL is not limited by domain shift issues because language exhibits consistency
in real-world applications. For example, the word ”cat” holds the same semantics in both natural
images and cartoon image tasks. However, for image backbones, the natural images and the car-
toon images hold two entirely different data distributions. On the contrary, the image encoder of
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FedGLCL is trained from scratch without any prior knowledge and thus is irrelevant to the pre-
trained CLIP image encoder. For the domains not covered by text encoder, we can utilize the corre-
sponding text encoder for specific data domains, e.g., BioBERT (Lee et al., 2020) for medical image
tasks. Besides, the ablation results in Table 10 indicate that we can use in-domain class names as
proxies when deployed in domains not well-covered by a pre-trained text encoder. This can broaden
the application scenarios of FedGLCL. Although FedGLCL is not limited by domain shift, it may
have limitations in larger vocabulary scenarios (e.g., 10,000 target categories). Text encoders may
struggle to effectively encode rich class vocabulary to provide effective semantic information. In the
future work, we will thoroughly explore it.
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