
Under review as a conference paper at ICLR 2024

APPENDIX A NOTATION

Table 5: Major notations occurred in the paper.
Notations Dimension Description
k,K N number and total number of local update steps
c,N N client index, total number of clients
nc, n N number of samples of client c and overall
m N number of hidden neurons

⌘l, ⌘g R client-level learning rate, global learning rate
wc, u Rp local model of client c, global model
(xi, yi) Rm sample pair of index i

yc(t), y(t) R model prediction at time t with local model, global model
Sc set of size nc collection of samples of client c

APPENDIX B GLOBAL CONVERGENCE

B.1 FORMULATION

B.1.1 THE NEURAL NETWORK

For the following theoretical analysis, we follow Du et al. (2019)Song & Yang (2020)Huang et al.
(2021) to consider an one-hidden-layer neural network with ReLU activation:

f(u, x) =
1
p
m

mX

r=1

ar�(u
T

r
x)

where m is the total number of neurons in the hidden layer, ar’s are Rademacher random vari-
ables (take values {±1} with equal probability) and � is the activation function. Each client aim to
optimize its MSE loss:

L
mse

c
(u, x) =

1

2

X

i2Sc

(f(u, xi)� yi)
2

where Sc represents the collection of data of client c. The global loss is taken as the average of the
loss of each client:

L(u, x) =
1

N

X

c2[N]

Lc(u, x)

B.1.2 OUR ALGORITHM

We first formulate our proposed algorithm mathematically to establish consistent notations and fa-
cilitate analysis.

In FL, each client alternate between performing local updates on its local data and communicating
with the central server for global aggregation. Each client takes K local updates between each
communication round. The local update is performed using vanilla gradient descent with a local
learning rate ⌘l, and wc(t, k) represents the weight parameters of client c at global round t and local
step k:

wc(t, k + 1) wc(t, k)� ⌘l
@Lc(wc(t, k))

@wc(t, k)
After each communication, the global aggregation procedure is conducted by taking the average of
local updates of all N clients, and a learning rate of ⌘g is added for the global update:

�u(t) =
⌘g

N

X

c2[N]

�wc(t)

where �wc(t) = wc(t,K) � wc(t, 0) = �
P

k
⌘l

@Lc(wc(t,k))
@wc(t,k)

is the cumulative local updates of
client c at global round t. For the local step, a combination of local update and global update is
taken, with �(t) 2 [0, 1] being the combination factor:

wc(t+ 1, 0) wc(t, 0) + (1� �(t))�u(t) + �(t)�wc(t)

14

Under review as a conference paper at ICLR 2024

B.1.3 GRADIENT UPDATES

With the above setting, we can explicitly write out the gradient updates:

�wc,r(t) = �
X

k2[K]

⌘l
@L

mse

c
(wc,r(t, k))

@wc,r(t, k)
= �

⌘l
p
m

X

k2[K]

X

i2Sc

[f(wc,r, xi)� yi]arxi wT
c,r

xi�0

�ur(t) = �
⌘l⌘g

N
p
m

X

c2[N]

X

k2[K]

X

i2Sc

[f(wc,r(t, k), xi)� yi]arxi wT
c,r

xi�0

B.2 CONVERGENCE ANALYSIS

We analyze the convergence behavior of all clients collectively. That is, we consider the dynamics
of ky � y(t)k2 =

P
c
kyc � yc(t)k2, where

y(t) = (f(w1(t), x1), ..., f(w1(t), xn1), f(w2(t), x1),, f(wN (t), xnN
))T

yc(t) = (0, ..., 0, f(wc(t), x1), ..., f(wc(t), xnc
)| {z }

xi2Sc

, 0, ..., 0)T

are the stacked vector of predictions and y, yc are the corresponding ground truth.

Note first the following recurrence relation (†):

ky � y(t+ 1)k2 = k[y � y(t)]� [y(t+ 1)� y(t)]k2

= ky � y(t)k2 � 2(y � y(t))T (y(t+ 1)� y(t)) + ky(t+ 1)� y(t)k2

= ky � y(t)k2 � 2
X

c

(yc � yc(t))
T (yc(t+ 1)� yc(t))

| {z }
the cross term

+ky(t+ 1)� y(t)k2

We will express ky � y(t+ 1)k2 in terms of ky � y(t)k2 with a shrinking factor, by bounding each
of these terms, and hence prove the convergence of the algorithm.

B.2.1 THE CROSS TERM

We first investigate the cross term. Note that the difficulty in the analysis mainly comes from the
non-linear activation pattern. However, this is overcame by a key observation in classical NTK
theoryDu et al. (2019)Huang et al. (2021) that the activation patterns stay the same for most of the
neurons.

We follow their approaches to define

Qi := {r 2 [m] : 8m 2 Rd
s.t.kw � wr(0)k2  R, wr(0)T xi�0 = wT xi�0}

which represent the set of neurons whose activation pattern does not change during training for
sample xi, and let Q̄i denote its complement. Then for each sample i 2 Sc,

yi(t+ 1)� yi(t) =
1
p
m

X

r2[m]

ar

h
�(wT

r
(t+ 1)xi)� �(wT

r
(t)xi)

i

=
1
p
m

X

r2Qi

ar(1� �c(t))�u
T

r
(t)xi wT

r
(t)xi�0

| {z }
v1,i

+
1
p
m

X

r2Qi

ar�c(t)�w
T

c,r
(t)xi wT

r
(t)xi�0

| {z }
v2,i

+v3,i

15

Under review as a conference paper at ICLR 2024

where

v1,i = �
(1� �c(t))⌘l⌘g

Nm

X

k2[K],r2Qi

X

j2S0
c
,c02[N]

(y(t, k)j � yj)x
T

i
xj w

T

c0,r(t,k)xj�0,wT
c,r

(t)xi�0

v2,i = �
�c(t)⌘l

m

X

k2[K],r2Qi

X

j2Sc

(yc(t, k)j � yc,j)x
T

i
xj wT

c,r
(t,k)xj�0,wT

r
(t)xi�0

v3,i =
1
p
m

X

r/2Qi

ar

h
�(wT

r
(t+ 1)xi)� �(wT

r
(t)xi)

i

We can already notice the almost symmetric kernel factor in the terms above. We give the formal
definitions here.
Definition 1 (Global Gram matrix). For t 2 [T], k 2 [K], c, c0 2 [N], i 2 Sc and j 2 Sc0 , we define
the global gram matrix as:

H(t, k)i,j :=
1

m

X

r2[m]

x
T

i
xj wT

c,r
(t)xi�0,wT

c0,r(t,k)xj�0 2 Rn⇥n

H(t, k)?
i,j

:=
1

m

X

r/2Qi

x
T

i
xj wT

c,r
(t)xi�0,wT

c0,r(t,k)xj�0 2 Rn⇥n

Note that this definition is similar to, but not exactly the same as, the definition in FL-NTKHuang
et al. (2021). This is because they considered the vanilla FedAvg with no personalization of model
parameters.
Definition 2 (Local Gram matrix). For t 2 [T], k 2 [K], c 2 [N] and i, j 2 Sc0 , we define the local
gram matrix as:

Hc(t, k)i,j =
1

m

X

r

x
T

i
xj wT

c,r
(t)xi�0,wT

c,r
(t,k)xj�0 2 Rnc⇥nc

Hc(t, k)
?
i,j

=
1

m

X

r/2Qi

x
T

i
xj wT

c,r
(t)xi�0,wT

c,r
(t,k)xj�0 2 Rnc⇥nc

However, in order to maintain consistent dimensions and correspond to our definition of yc, we can
extend the dimension of Hc to n⇥ n by adding zeros to the undefined entries, i.e.,

0

B@
0 · · · 0
... Hc

...
0 · · · 0

1

CA 2 Rn⇥n

From now on, the symbol Hc will refer to this n⇥ n matrix. Note that (Hc)i,j = Hi,j i,j2Sc
.

We will show that the convergence can be governed by the spectral property of these Gram matrices.
Substitute them into the cross term, we get:

X

c

(yc � yc(t))
T (yc(t+ 1)� yc(t)))

=
X

c

(1� �c)⌘l⌘g
N

X

i2Sc

(yc,i � yc(t)i)
X

k2[K],j2[n]

(y(t, k)j � yj)(H(t, k)i,j �H(t, k)?
i,j
)

+
X

c

�c⌘l

X

i2Sc

(yc,i � yc(t)i)
X

k2[K],j2Sc

(yc(t, k)j � yc,j)(Hc(t, k)i,j �Hc(t, k)
?
i,j
)

�

X

c

X

i2Sc

(yc,i � yc(t)i)v3,i

16

Under review as a conference paper at ICLR 2024

Let

C1 := �
X

c

(1� �c(t))⌘l⌘g
N

X

i2Sc

(yc,i � yc(t)i)
X

k,j

(y(t, k)j � yj)(H(t, k)i,j �H(t, k)?
i,j
)

C
(c)
2 := ��c(t)⌘l

X

i2Sc

(yc,i � yc(t)i)
X

k,j2Sc

(yc(t, k)j � yc,j)(Hc(t, k)i,j �Hc(t, k)
?
i,j
)

C2 :=
X

c

C
(c)
2

C3 := �
X

c

X

i2Sc

(yc,i � yc(t)i)v3,i

Then by substituting them back into the recursive relation (†), we get:

ky � y(t+ 1)k2 = ky � y(t)k2 + 2(C1 + C2 + C3) + ky(t+ 1)� y(t)k2

We will bound each of these terms and hence prove the result.

B.3 CONVERGENCE ANALYSIS - MAIN THEOREM

We first restate the main convergence theorems.

Theorem 1. For uniform �c(t) = �(t), 8c, for m = ⌦(��4
n
4 log(n/�)), randomly initialized

parameters (i.e. w(0) ⇠ N (0, I)), and ⌘l = O(�/Kn
2), ⌘g = O(1), then with probability at

least 1� � over the random initialization, we have for 8t:

ky � y(t+ 1)k2  ky � y(t)k2 � ⇣⌘g(1� �(t))s(H)
min
ky � y(t)k2 � ⇣

X

c

�(t)s(Hc)
min
kyc � yc(t)k

2

where ⇣ := ⌘lK

2N .

Theorem 2. For non-uniform �c(t), let �min(t) := minc �c(t) and �max(t) := maxc �c(t),
For m = ⌦(��4

n
4 log(n/�)), randomly initialized parameters (i.e. w(0) ⇠ N (0, I)), and

⌘l = O(�/Kn
2), ⌘g = O(1), then with probability at least 1 � � over the random initializa-

tion, we have for 8t:

ky�y(t+1)k2  ky�y(t)k2�⇣⌘g(1��min(t))s
(H)
min

Kky�y(t)k2�⇣
X

c

�max(t)s
(Hc)
min
kyc�yc(t)k

2

where ⇣ := ⌘lK

2N .

We will give the proof of theorem 1 in the subsequent sections, and we note that theorem 2 is a
natural extension of theorem 1 so the proof also naturally extends.

B.4 USEFUL LEMMAS

Before giving the proof of the theorem, we state two useful lemmas.

The first lemma gives bounds on the norm of the local and global updates.

Lemma 1. With kxik2 = 1, we have

k�ur(t)k2 
2⌘l⌘gK(1 + 2⌘lnK)

p
n

N
p
m

ky � y(t)k2

k�w
(c)
r

(t)k2 
2⌘lK(1 + 2⌘lncK)

p
nc

p
m

kyc � yc(t)k2

17

Under review as a conference paper at ICLR 2024

Proof. The first inequality follows from FL-NTK. For the second inequality, consider:

k�w
(c)
r

(t)k2 = ⌘l

���
ar
p
m

X

k2[K]

X

i2Sc

[y(t, k)i � yi]xi w
T

k,c
xi�0

���


⌘l
p
m

X

k2[K]

X

i2Sc

|yi � y(t, k)i|


⌘l
p
nc

p
m

X

k2[K]

kyc � yc(t, k)k


⌘lK(1 + 2⌘lncK)

p
nc

p
m

kyc � yc(t)k2

The second lemma bounds the sum of client prediction error by that of the global error.
Lemma 2. X

c

kyc � yc(t)k 
p

Nky � y(t)k

Proof. By Jensen’s inequality, and since the square root function is concave,
s

1

N

X

c

kyc � yc(t)k2 �
1

N

X

c

kyc � yc(t)k

B.5 PROOF OF THEOREM 1

We provide here a detailed proof of theorem 1, and we note that the same proof naturally extends to
prove theorem 2. We will use � to represent �(t) for ease of notation.

Firstly, here are two results that directly follow from FL-NTK. They provide bounds on the effect of
global and local updates respectively.
Proposition 2. With probability at least 1� n exp(�mR) over random initialization, we have

C1 
⌘l⌘g(1� �)

N
ky � y(t)k2(�Ks

(H)
min

+ 40
p
nRK(1 + 2⌘lK

p
n) + 2⌘ls

(H)
max

K
2p

n))

+
8⌘g⌘l(1� �)

N
K(1 + 2⌘lnK)nRky � y(t)k2

Proposition 3. With probability at least 1� n exp(�mR) over random initialization, we have

C
(c)
2 

�⌘l

N
kyc � yc(t)k

2(�Ks
(Hc)
min

+ 40
p
nRK(1 + 2⌘lK

p
n+ 2⌘ls

(Hc)
max

K
2p

n))

+
8�⌘l
N

K(1 + 2⌘lnK)nRkyc � yc(t)k
2

For the following two propositions, we assume that all clients possess the same number of samples,
i.e., nc = n/N, 8c. Additionally, let ⌘̃g denote max{1, ⌘g}.

The following proposition aims to bound the effect of updates on neurons whose activation pattern
changed during the algorithm.
Proposition 4. With probability at least 1� n exp(�mR) over random initialization, we have

C3 
8⌘l⌘̃gK

N
(1 + 2⌘lnK)nRky � y(t)k2

18

Under review as a conference paper at ICLR 2024

Proof. Consider

kv3k
2
2 

1� �

m

X

i2[n]

⇣ X

r2Q̄i

|�ur(t)
T
xi|

⌘2

| {z }
A

+
�

m

X

i2[n]

⇣ X

r2Q̄i

|�wr(t)
T
xi|

⌘2

| {z }
B

and

A 

⇣8(1� �)⌘g⌘lK

N
(1 + 2⌘lnK)nRky � y(t)k

⌘2

As for B,

B =
�

m

X

c

X

i2Sc

⇣ X

r2[m]

r2Q̄i
|�ur(t)

T
xi|

⌘2


�⌘

2
l

m

X

c

4K2(1 + 2⌘lncK)2nc

m
kyc � yc(t)k

2
· nc(4mR)2



⇣8�⌘lK
N

(1 + 2⌘lnK)nRky � y(t)k
⌘2

where for the second inequality we used the assumption made above. Then

C3 := �
X

i2[n]

(yi � yi(t))v3,i

 ky � y(t)k2kv3k2


8⌘l⌘̃gK

N
(1 + 2⌘lnK)nRky � y(t)k2

Now we have bounded the cross term. For the last term, we have the following inequality:

Proposition 5. We have

ky(t+ 1)� y(t)k2 
4⌘2

l
⌘̃
2
g
n
2
K

2(1 + 2⌘lnK)2

N2
ky � y(t)k2

Proof.

ky(t+ 1)� y(t)k2 
1� �

m

X

i2[n]

⇣ X

r2[m]

|�ur(t)
T
xi|

⌘2
+

�

m

X

i2[n]

⇣ X

r2[m]

|�wr(t)
T
xi|

⌘2


(1� �)⌘2

g
⌘
2
l

m

⇣2K(1 + 2⌘lnK)
p
n

N
p
m

ky � y(t)k
⌘2

· nm
2

+
X

c

�⌘
2
l

m

⇣2K(1 + 2⌘lncK)
p
nc

p
m

kyc � yc(t)k
⌘2

· ncm
2


4⌘2

l
⌘̃
2
g
n
2
K

2(1 + 2⌘lnK)2

N2
ky � y(t)k2

where we have used the assumption that nc = n/N .

19

Under review as a conference paper at ICLR 2024

Now by substituting the above results to the recursion equation, we get:

ky � y(t+ 1)k2  ky � y(t)k2

+
2⌘l⌘g(1� �)

N
ky � y(t)k2(�Ks

(H)
min

+ 40
p
nRK(1 + 2⌘lK

p
n)

+ 2⌘ls
(H)
max

K
2p

n)) +
16⌘g⌘l(1� �)

N
K(1 + 2⌘lnK)nRky � y(t)k2

+
X

c

2�⌘l
N
kyc � yc(t)k

2(�Ks
(Hc)
min

+ 40
p
nRK(1 + 2⌘lK

p
n

+ 2⌘ls
(Hc)
max

K
2p

n)) +
16�⌘l
N

K(1 + 2⌘lnK)nR
X

c

kyc � yc(t)k
2

+
16⌘l⌘̃gK

N
(1 + 2⌘lnK)nRky � y(t)k2

+
4⌘2

l
⌘̃
2
g
n
2
K

2(1 + 2⌘lnK)2

N2
ky � y(t)k2

Then by the choice of ⌘l  min{
s
(H)
min

1000n2K
,minc{

s
(Hc)
min

1000cn
2K

}} where  := smax/smin and ⌘l⌘g 

min{
s
(H)
min

1000n2K
,minc{

s
(Hc)
min

1000cn
2K

}} and R  s
(H)
min

/(1000n), we have

ky � y(t+ 1)k2  ky � y(t)k2

�
(1� �)⌘l⌘gs

(H)
min

K

N
ky � y(t)k2 �

X

c

�⌘ls
(Hc)
min

K

N
kyc � yc(t)k

2

+ 40
⌘l⌘gKnR

N
ky � y(t)k2 ⇥ 2

+
⌘
2
l
⌘̃
2
g
n
2
K

2

N2
ky � y(t)k2

 ky � y(t)k2 �
(1� �(t))⌘l⌘gs

(H)
min

K

2N
ky � y(t)k2

�

X

c

�(t)⌘ls
(Hc)
min

K

2N
kyc � yc(t)k

2

by substituting in the condition on ⌘l and R.

Quod erat demonstrandum.

APPENDIX C GENERALIZATION

In this section, we prove the generalization bounds. That is, we aim to find a bound on

LD(f) := E(x,y)⇠D[l(f(x), y)]

where f refer to the prediction function we consider. Note that, in practice, this is approximated by
the empirical loss LS(f) = 1

n

P
i2[n] l(f(xi), yi). We also consider a more general initialization

scheme wr ⇠ N (0,�2
I).

C.1 SETUP

We follow Arora et al. (2019b); Huang et al. (2021) to consider a non-degenerate data distribution.
Definition 3 (Non-degenerate Data Distribution). A distribution D over Rb

⇥ R is (�, �, n)-non-
degenerate, if with probability at least 1��, for n iid samples {(xi, yi)}ni=1 chosen from D, s(H

1)
min �

s > 0.

20

Under review as a conference paper at ICLR 2024

We also state here the definition of the dynamic matrices which can be used to describe the evolution
of the neural network:
Definition 4 (Global Trajectory Matrix).

J(t, k) =
1
p
m

0

B@

a1x1 w
T

c1,1(t,k)x1�0 · · · a1xn w
T

cn,1(t,k)xn�0

...
. . .

...
amx1 wT

c1,m
(t,k)x1�0 · · · amxn wT

cn,m
(t,k)xn�0

1

CA 2 Rmd⇥n

Definition 5 (Local Trajectory Matrix).

Jc(t, k) =
1
p
m

0

B@

a1x1 w
T

c1,1(t,k)x1�0 · · · a1xnc w
T

cnc
,1(t,k)xnc

�0

...
. . .

...
amx1 wT

c1,m
(t,k)x1�0 · · · amxnc wT

cnc
,m

(t,k)xnc
�0

1

CA 2 Rmd⇥nc

for xi’s sample of client c, and where appropriate, we fill in the undefined entries with 0 to form a
matrix of dimension md⇥ n.

Note that H = J
T
J and Hc = J

T

c
Jc. We also give some useful notations following the above

definitions.
Notation 1.

J̃(t, k) = (Jc1(t, k), Jc2(t, k), · · · , JcN (t, k)) 2 Rmd⇥n

Notation 2.

H̃ =

0

B@
H1 · · · 0

...
. . .

...
0 · · · HN

1

CA 2 Rn⇥n

We also use a notation vec(A) to express the vectorization of a matrix A in column-first order. Then
the gradient update rule can be expressed as:

vec(Wc(t, k + 1)) = vec(Wc(t, k))� ⌘lJc(t, k)(yc(t, k)� yc)

vec(U(t+ 1)) = vec(U(t))�
⌘l⌘g

N

X

k

J(t, k)(y(t, k)� y)

vec(Wc(t+ 1)) = vec(Wc(t))� �⌘l

X

k

Jc(t, k)(yc(t, k)� yc) (8)

� (1� �)
⌘l⌘g

N

X

k

J(t, k)(y(t, k)� y)

C.2 SOME USEFUL RESULTS

We first quote a result from Huang et al. (2021) which will be used later.
Lemma 3. For J(t, k) as defined above, with probability at least 1�n exp(�m exp(�m(R�

�1 +
�)/10)), we have

kJ(t, k)� J(0, 0)kF  2n(R�
�1 + �)

The following lemma give an approximation on the dynamics of the global model.

Lemma 4. For A(�) = (1��)⌘l⌘gK

N
H

1+�⌘lKH̃
1
c

and �(�) = (1��)⌘l⌘gK

N
+�⌘lK, we have

y(t)� y = �(I �A(�))ty + e(t)

where

ke(t)k2  O

⇣
(1� �(�)smin)

t

⇣
p
n� +

t�(�)n7/2

smin�
p
m

⌘
poly(log(m/�)

⌘

21

Under review as a conference paper at ICLR 2024

Proof. Recall that from Appendix B, we have [y(t)� y]� [y(t� 1)� y] = v1 + v2 + v3, and that

v1,i = �
(1� �)⌘l⌘gK

N

X

j2[n]

(yj(t)� yj)H
1
i,j

�
(1� �)⌘l⌘g

N

X

j2[n],k

(yj(t, k)� yj(t))H
1
i,j

�
(1� �)⌘l⌘g

N

X

j2[n],k

(yj(t, k)� yj)(H(t, k)i,j �H
1
i,j
)

�
(1� �)⌘l⌘g

N

X

j2[n],k

(yj(t, k)� yj)(H
?(t, k)i,j)

and similar for v2,i except that i, j 2 Sc for some client c.

Let

⇠i(t) :=v1,i(t) + v2,i(t) + v3,i(t)

+
(1� �)⌘l⌘gK

N

X

j2[n]

(yj(t)� yj)H
1
i,j

+ �⌘lK

X

j2Sc

(yj(t)� yj)(H
1
c
)i,j

Note that by Appendix B, kv3(t)k = 16⌘l⌘̃gK

N
(1 + 2⌘lnK)nRky � y(t)k, kyc(t) � yc(t, k)k 

2⌘lnKkyc(t)�yck, ky�y(t, k)k2  2(1+2⌘lnK)ky�y(t)k2, kH(w,w)�H(w1, w2)kF  4nR
and kH(t, k)?kF  4nR etc. By taking the maximum order among the terms, we have that

k⇠(t)k2  O

⇣�(�)n3
smax

q
log(m�) log2(n/�)

��
p
m

ky � y(t)k2
⌘

where �(�) := (1��)⌘l⌘gK

N
+ �⌘lK.

Then

y(t)� y = (I �A(�))(y(t� 1)� y) + ⇠(t� 1)

= (I �A(�))t(y(0)� y) +
X

⌧2[t�1]

(I �A(�))⌧ ⇠(t� 1� ⌧)

= �(I �A(�))ty + e(t)

where

e(t) = (I �A(�))ty(0) +
X

⌧2[t�1]

(I �A(�))⌧ ⇠(t� 1� ⌧)

and since
ky(0)k22  n�

2
· 2 log(2mn/�) · log2(4n/�)

we have

ke(t)k2

 O

⇣
(1� �(�)smin)

t

⇣
p

n�2
p
2 log(2mn/�) log(8n/�) + t

�(�)n7/2 log(m/�) log2(n/�)

smin�
p
m

⌘⌘

 O

⇣
(1� �(�)smin)

t

⇣
p
n� +

t�(�)n7/2

smin�
p
m

⌘
poly(log(m/�)

⌘

22

Under review as a conference paper at ICLR 2024

C.3 AVERAGE GENERALIZATION

When examing a new OOD sample, we would use the average of all current parameters for predic-
tion. Therefore, we first examine the generalization performance of the average of all paramters:

W (t) :=
1

N

X

c

Wc(t)

By (8), we have:

vec(W (t+1)) = vec(W (t))�
�⌘l

N

X

k,c

Jc(t, k)(yc(t, k)�yc)�(1��)
⌘l⌘g

N

X

k

J(t, k)(y(t, k)�y)

Lemma 5. For A(�) = (1��)⌘l⌘gK

N
H

1+�⌘lKH̃
1
c

and �(�) = (1��)⌘l⌘gK

N
+�

⌘lK

N
, we have

kW (t)�W (0)kF  (yTA(�)�T
H

1
A(�)�1

y)1/2

+O

⇣
n�

smin

· poly(log(m/�)) +
n
4

�1/2m1/4
· poly(log(m/�))

⌘

Proof.

vec(W (T))� vec(W (0))

=
X

t2[T�1]

h
� (1� �)

⌘l⌘g

N

X

k

J(t, k)(y(t, k)� y)�
�⌘l

N

X

c

X

k

Jc(t, k)(yc(t, k)� yc)
i

=
X

t2[T�1],k

�
�(�)

K
J(t, k)(y(t, k)� y)

=
X

t2[T�1],k

�(�)

K
J(t, k)(I �A(�))ty �

X

t2[T�1],k

�(�)

K
J(t, k)(y(t, k)� y(t) + e(k))

=
X

t2[T�1]

�(�)J(0, 0)(I �A(�))ty

+
X

t2[T�1],k

�(�)

K
(J(t, k)� J(0, 0))(I �A(�))ty

�

X

t,k

�(�)

K
J(t, k)(y(t, k)� y(t) + e(k))

=B1 +B2 +B3

where

B1 =
X

t2[T�1]

�(�)J(0, 0)(I �A(�))ty

B2 =
X

t2[T�1],k

�(�)

K
(J(t, k)� J(0, 0))(I �A(�))ty

B3 =
X

t,k

�(�)

K
J(t, k)(y(t, k)� y(t) + e(k))

Then by substituing in the following claims, we have

kW (T)�W (0)kF

(yTA(�)�T
H

1
A(�)�1

y)1/2 +O

⇣
n�

smin

· poly(log(m/�)) +
n
4

�1/2m1/4
· poly(log(m/�))

⌘

23

Under review as a conference paper at ICLR 2024

Claim 1. With probability at least 1� � over random initialization, as t!1, we have

kB1k
2
2  y

T (A(�)�1)TH1
A(�)�1

y +O(
n
2
p
log(n/�)

s
2
min

p
m

)

Claim 2. With probability at least 1� � over random initialization, we have

kB2k2 
n
3/2poly(log(m/�))

m1/4�1/2s
3/2
min

Claim 3.

kB3k2  (
n�

smin

+
n
4

s
3
min

�
p
m
) · poly(log(m/�))

The above three claims are the slightly modified version of Claim C.8-10 in Huang et al. (2021), So
the proofs from there naturally extend to the proofs of these three claims.
Theorem 3. For T sufficiently large, � = O(�poly(log n, log(1/�))/n)), m =
⌦(��2(n16poly(log n, log(1/�),��1))), the loss function l being 1-Lipschitz in its first argument,
then with probability at least 1� � over the random initialization, the population loss LD(f) of the
global model W := 1

N

P
c
Wc is upper bounded by

LD(f) 
q
2yTA(�)�TH1A(�)�1y/n+O

�p
log(n/smin�)/2n)

�

where A(�) = (1� �)⌘l⌘gK

N
H

1 + �⌘lKH̃
1
c

.

Proof. This is an extension of the result in Huang et al. (2021), by substituting lemma 5 into the
proof of Theorem C.11 in Huang et al. (2021).

C.4 CLIENT LEVEL

For further inspection on the algorithm, we consider a client level generalization. That is, we con-
sider the generalization bound on a client’s parameter Wc. Note that:

vec(Wc(t+1)) = vec(Wc(t))��⌘l
X

k

Jc(t, k)(yc(t, k)�yc)�(1��)
⌘l⌘g

N

X

k

J(t, k)(y(t, k)�y)

We first define a matrix that will be used later.
Definition 6 (Cross Gram matrix).

H
⇥
c
(t, k)i,j =

1

m

X

r

x
T

i
xj w

T

0,rxi�0,wT
c,r

(t,k)xj�0 2 Rnc⇥n

where i 2 Sc and j spans all clients.

This matrix describes the effect of the global update on the client’s local model.
Theorem 4. For T sufficiently large, � = O(�poly(log n, log(1/�))/n)), m =
⌦(��2(n16poly(log n, log(1/�),��1))), the loss function l being 1-Lipschitz in its first argument,
then with probability at least 1� � over the random initialization, the population loss LD(f) of the
client model Wc is upper bounded by

LD(f) 
q

2yTA(�)�TGc(�)A(�)�1y/n+O
�p

log(n/smin�)/2n)
�

where Gc(�) = (1� �)2
⌘
2
l
⌘
2
g
K

2

N2 H + �
2
⌘
2
l
K

2
Hc + �(1� �)⌘2

l
⌘gK

2
H

⇥
c

.

This theorem is a natural extension of theorem 3, and the proof also naturally extends. Further
discussion is left for future work.

24

Under review as a conference paper at ICLR 2024

APPENDIX D EXPERIMENTS

In this section, we show more experimental results and implementation details. Sec. D.1 gives
more details for implementation, including dataset details, model architectures, training, and testing
details. Sec. D.2 shows more experiment results, including the performance regarding various batch
sizes, the complete evaluation metrics on the binary classification on the Camelyon17 dataset.

D.1 EXPERIMENTAL DETAILS

We here introduce the complete details of datasets, data splitting, and implementation details.

Digits5. Digits-5 zhou2020learning,fedbn with digits images showing drastic differences in font
style, color, and background. We take each data source/style as a client. We train a 6-layer convo-
lutional neural network for the digit classification, specifically, the model has 3 convolutional layers
and 3 fully-connected layers, we further add batch normalization layers after the first five layers to
fit the requirements of FedBN. We use the SGD optimizer with a learning rate of 0.01 and batch size
of 128. The loss function is the Cross Entropy loss. The total number of training rounds is 100 with
a local update epoch of 1. All input images are resized to 28⇥ 28.

Office-Caltech10. Office-Caltech10 gong2012geodesic contains images acquired in different cam-
eras or environments, with four different data sources in total. We take ResNet-18 as the backbone
and use the SGD optimizer with a learning rate of 0.01 and batch size of 32. The loss function is
the Cross Entropy loss. The total number of training rounds is 200 with a local update epoch of 1.
The input images are normalized using the mean and std of Imagenet in PyTorch, which is specifi-
cally mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. All input images are resized to
256⇥ 256

DomainNet. DomainNet peng2019moment has images with different image styles (clipart, info-
graph, painting, quickdraw, real, and sketch). Following FedBN, we choose the top-10 class based
on data amount from DomainNet containing images over 345 categories for simplicity. The training
settings are the same as the Office-Caltech10 dataset, and we change the training round from 200 to
100, since the model converges faster on the DomainNet dataset.

Camelyon17. Camelyon17 bandi2018detection shows histology images with different stains from
5 hospitals. All histopathology images are stained with the H.E. staining and show various appear-
ances. We use the DenseNet121 as the backbone, SGD optimizer with a learning rate of 0.01, and
batch size of 32. We train the model for 40 rounds in total, and the local update epoch is 1. The
image input size is 96 ⇥ 96. The loss function is the Cross Entropy loss. Note that this dataset is a
very large dataset which contains over 450,000 histology images.

Retinal. Retinal fundus dataset contains retinal fundus images acquired from 6 different institu-
tions (Fumero et al., 2011; Sivaswamy et al., 2015; Almazroa et al., 2018; Orlando et al., 2020).
We use the U-Net for segmentation, the optimizer is Adam with a learning rate of 1e�3 and
� = (0.9, 0.99). We train the model for 100 communication rounds in total with a local update
epoch of 1. The batch size is 8. We use the dice loss and report both the Dice score and HD
distance. All images are resized to 256⇥ 256.

For all datasets, we take each data source as one client and split the data of each client into train,
validation, and testing sets with a ratio of 0.6, 0.2, and 0.2. We choose the best model based on the
validation data and report the test performance accordingly. Code will be released after acceptance.

D.2 MORE EXPERIMENTS

Here we present more experiment results, which mainly include two parts. The first part is the
study on the effects of batch size on our method’s performance, and the second part is the complete
evaluation results on the Camelyon17 dataset.

Effects of batch sizes. As our implementation accumulates the feature matrix iteratively during
local steps (Line 7 in the algorithm box), the batch size may slightly change the values of the feature
matrix. In this case, we further explore the performance changes by using different batch sizes
(4,8,16,32,64,128) on the Digit5 dataset. The results are shown in Table. 6. From the results it can be
observed that changing batch size has very mild effects on the final performance, the overall accuracy

25

Under review as a conference paper at ICLR 2024

Table 6: Performance using different batch sizes on the Digits dataset.
Batchsize MNIST SVHN USPS Synth MNISTM Average

8 99.40 93.53 98.92 99.70 97.19 97.75
16 99.49 93.85 98.87 99.68 97.41 97.86
32 99.40 93.37 99.03 99.62 96.86 97.66
64 99.37 92.87 98.87 99.50 96.14 97.35

128 99.25 92.17 98.71 99.42 95.71 97.05

changes are less than 1%. This further supports our implementation of iteratively accumulating the
feature matrix during local SGD, which takes less computational cost than re-calculate all samples
again after 1 local epoch.

Complete evaluation on Camelyon17. As the classification task on the Camelyon17 dataset is a
binary classification, so we further report the full evaluation metrics, including the Accuracy, AUC,
sensitivity, specificity, and the F1-score. From the Table. 7, it can be observed that our proposed
method consistently outperforms all compared methods regarding all metrics.

Table 7: Complete evaluation metrics on the Camelyon17 dataset.
Accuracy AUC Sensitivity Specificity F1-score

FedAvg (McMahan et al., 2017) 95.30 98.90 94.91 95.69 95.30
APFL (Deng et al., 2020) 96.42 99.35 94.42 98.42 96.42

L2SGD (Hanzely et al., 2020) 95.93 99.22 95.12 96.73 95.92
FedAlt (Pillutla et al., 2022) 97.91 99.57 96.55 97.90 97.22

PerFedAvg (Fallah et al., 2020) 96.08 99.24 95.37 96.79 96.08
FedBN (Li et al., 2021c) 95.77 99.15 95.02 96.53 95.77

FedFOMO (Zhang et al., 2021) 95.62 99.15 95.35 95.90 95.62
FedRep (Collins et al., 2021) 96.78 99.39 96.78 96.79 96.78
FedBABU (Oh et al., 2022) 95.77 99.15 95.03 96.52 95.77
FedHKD (Chen et al., 2023) 95.89 98.43 93.89 94.67 94.28

LG-Mix (Ours) 98.75 99.89 98.63 98.87 98.75

26

	Introduction
	Related Works
	LG-Mix: Local-Global Updates Mixing via Converngence
	Local and Global Updates Mixing
	Mixing Ratio Calculation by NTK-convergence
	Algorithm Implementation

	Convergence Analysis
	Experiments
	Experimental Settings
	Performacne Comparison Results
	Analytical Studies

	Conclusion
	Notation
	Global Convergence
	Formulation
	The Neural Network
	Our Algorithm
	Gradient updates

	Convergence analysis
	The Cross Term

	Convergence analysis - Main Theorem
	Useful Lemmas
	Proof of Theorem 1

	Generalization
	Setup
	Some Useful Results
	Average Generalization
	Client level

	Experiments
	Experimental Details
	More Experiments

