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ABSTRACT

Subspace clustering is a classical unsupervised learning task, built on a basic
assumption that high-dimensional data can be approximated by a union of sub-
spaces (UoS). Nevertheless, the real-world data are often deviating from the UoS
assumption. To address this challenge, state-of-the-art deep subspace clustering
algorithms attempt to jointly learn UoS representations and self-expressive coef-
ficients. However, the general framework of the existing algorithms suffers from
a catastrophic feature collapse and lacks a theoretical guarantee to learn desired
UoS representation. In this paper, we present a Principled fRamewOrk for Deep
Subspace Clustering (PRO-DSC), which is designed to learn structured represen-
tations and self-expressive coefficients in a unified manner. Specifically, in PRO-
DSC, we incorporate an effective regularization on the learned representations into
the self-expressive model, prove that the regularized self-expressive model is able
to prevent feature space collapse, and demonstrate that the learned optimal repre-
sentations under certain condition lie on a union of orthogonal subspaces. More-
over, we provide a scalable and efficient approach to implement our PRO-DSC and
conduct extensive experiments to verify our theoretical findings and demonstrate
the superior performance of our proposed deep subspace clustering approach.

1 INTRODUCTION

Subspace clustering is an unsupervised learning task, aiming to partition high dimensional data that
are approximately lying on a union of subspaces (UoS), and finds wide-ranging applications, such as
motion segmentation (Costeira & Kanade, 1998; Vidal et al., 2008; Rao et al., 2010), hybrid system
identification (Vidal, 2004; Bako & Vidal, 2008), image representation and clustering (Hong et al.,
2006; Lu et al., 2012), genes expression clustering (McWilliams & Montana, 2014) and so on.

Existing subspace clustering algorithms can be roughly divided into four categories: iterative meth-
ods (Tseng, 2000; Ho et al., 2003; Zhang et al., 2009), algebraic geometry based methods (Vidal
et al., 2005; Tsakiris & Vidal, 2017), statistical methods (Fischler & Bolles, 1981), and spectral
clustering-based methods (Chen & Lerman, 2009; Elhamifar & Vidal, 2009; Liu et al., 2010; Lu
et al., 2012; You et al., 2016a; Zhang et al., 2021). Among them, spectral clustering based methods
gain the most popularity due to the broad theoretical guarantee and superior performance.

The vital component in spectral clustering based methods is a so-called self-expressive model (El-
hamifar & Vidal, 2009; 2013). Formally, given a dataset X := {x1, · · · ,xN} where xj ∈ RD,
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self-expressive model expresses each data point xj by a linear combination of other points, i.e.,

xj =
∑
i ̸=j

cijxi, (1)

where cij is the corresponding self-expressive coefficient. The most intriguing merit of the self-
expressive model is that the solution of the self-expressive model under proper regularizer on the
coefficients cij is guaranteed to satisfy a subspace-preserving property, namely, cij ̸= 0 only if
xi and xj are in the same subspace (Elhamifar & Vidal, 2013; Soltanolkotabi & Candes, 2012; Li
et al., 2018). Having had the optimal self-expressive coefficients {cij}Ni,j=1, the data affinity can be
induced by |cij |+ |cji| for which spectral clustering is applied to yield the partition of the data.

Despite the broad theoretical guarantee, the vanilla self-expressive model still faces great challenges
when applied to the complex real-world data that may not well align with the UoS assumption.
Earlier works devote to address this deficiency by learning a linear transform of the data (Patel
et al., 2013; 2015) or introducing a nonlinear kernel mapping (Patel & Vidal, 2014) under which the
representations of the data are supposed to be aligned with the UoS assumption. However, there is
a lack of principled mechanism to guide the learning of the linear transforms or the design of the
nonlinear kernels to guarantee the representations of the data to form a UoS structure.

To handle complex real-world data, in the past few years, there is a surge of interests in designing
deep subspace clustering frameworks, e.g., (Ji et al., 2017; Peng et al., 2018; Zhou et al., 2018;
Zhang et al., 2019a; Dang et al., 2020; Peng et al., 2020; Lv et al., 2021; Wang et al., 2023b; Zhao
et al., 2024). In these works, usually a deep neural network-based representation learning module
is integrated to the self-expressive model, to learn the representations Z ∈ Rd×N and the self-
expressive coefficients C = {cij}Ni,j=1 in a joint optimization framework. However, as analyzed
in (Haeffele et al., 2021) that, the optimal representations Z of these methods tend to catastrophically
collapse into subspaces with dimensions much lower than the ambient space, which is detrimental to
subspace clustering and there is no evidence that the learned representations form a UoS structure.

In this paper, we attempt to propose a Principled fRamewOrk for Deep Subspace Clustering (PRO-
DSC), which is able to simultaneously learn structured representations and self-expressive coeffi-
cients. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned rep-
resentations into the self-expressive model and prove that our PRO-DSC can effectively prevent
feature collapse. Moreover, we demonstrate that our PRO-DSC under certain condition can yield
structured representations forming a UoS structure and provide a scalable and efficient approach to
implement PRO-DSC. We conduct extensive experiments on the synthetic data and six benchmark
datasets to verify our theoretical findings and the superior performance of our proposed approach.

Contributions. The contributions of the paper are highlighted as follows.

1. We propose a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC) that learns both
structured representations and self-expressive coefficients simultaneously, in which an effective
regularization on the learned representations is incorporated to prevent feature space collapse.

2. We provide a rigorous analysis for the optimal solution of our PRO-DSC, derive a sufficient
condition that guarantees the learned representations to escape from feature collapse, and further
demonstrate that our PRO-DSC under certain condition can yield structured representations of a
UoS structure.

3. We conduct extensive experiments to verify our theoretical findings and to demonstrate the supe-
rior performance of the proposed approach.

To the best of our knowledge, this is the first principled framework for deep subspace clustering that
is guaranteed to prevent feature collapse problem and is shown to yield the UoS representations.

2 DEEP SUBSPACE CLUSTERING: A PRINCIPLED FRAMEWORK,
JUSTIFICATION, AND IMPLEMENTATION

In this section, we review the popular framework for deep subspace clustering, called Self-
Expressive Deep Subspace Clustering (SEDSC) at first, then present our principled framework for
deep subspace clustering and provide a rigorous characterization of the optimal solution and the

2



Published as a conference paper at ICLR 2025

property of the learned structured representations. Finally we describe a scalable implementation
based on differential programming for the proposed framework. Please refer to Appendix A for the
detailed proofs of our theoretical results.

2.1 PREREQUISITE

To apply subspace clustering to complex real-world data that may not well align with the UoS
assumption, there has been a surge of interests in exploiting deep neural networks to learn represen-
tations and then apply self-expressive model to the learned representations, e.g., (Peng et al., 2016;
2018; Ji et al., 2017; Zhou et al., 2018; Zhang et al., 2019a; Dang et al., 2020; Peng et al., 2020; Lv
et al., 2021; Wang et al., 2023b; Zhao et al., 2024).

Formally, the optimization problem of these SEDSC models can be formulated as follows:1

min
Z,C

1

2
∥Z −ZC∥2F + β · r(C) s.t. ∥Z∥2F = N, (2)

where Z ∈ Rd×N denotes the learned representation, C ∈ RN×N denotes the self-expressive
coefficient matrix, and β > 0 is a hyper-parameter. The following lemma characterizes the property
of the optimal solution Z for problem (2).
Lemma 1 (Haeffele et al., 2021). The rows of the optimal solution Z for problem (2) are the eigen-
vectors that associate with the smallest eigenvalues of (I −C)(I −C)⊤.

In other words, the optimal representation Z in SEDSC is restricted to an extremely “narrow” sub-
space whose dimension is much smaller than d, leading to an undesirable collapsed solution. 2

2.2 OUR PRINCIPLED FRAMEWORK FOR DEEP SUBSPACE CLUSTERING

In this paper, we attempt to propose a principled framework for deep subspace clustering that prov-
ably learns structured representations with maximal intrinsic dimensions.

To be specific, we try to optimize the self-expressive model (2) while preserving the intrinsic di-
mension of the representation space. Other than using the rank, which is a common measure of the
dimension, inspired by (Fazel et al., 2003; Ma et al., 2007; Yu et al., 2020; Liu et al., 2022), we
propose to prevent the feature space collapse by incorporating the log det(·)-based concave smooth
surrogate which is defined as follows:

R(Z;α) := log det(I + αZ⊤Z), (3)

where α > 0 is the hyper-parameter. Unlike the commonly used nuclear norm, which is a convex
surrogate of the rank, the log det(·)-based function is concave and differentiable, offers a tighter
approximation and encourages learning subspaces with maximal intrinsic dimensions.3

By incorporating the maximization of R(Z;α) as a regularizer into the formulation of SEDSC in
(2), we have a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC):

min
Z,C

−1

2
log det

(
I + αZ⊤Z

)
+

γ

2
∥Z −ZC∥2F + β · r(C) s.t. ∥Z∥2F = N, (4)

where γ > 0 is a hyper-parameter. Now, we will give our theoretical findings for problem (4).
Theorem 1 (Eigenspace Alignment). Denote the optimal solution of PRO-DSC in (4) as (Z⋆,C⋆),
G⋆ := Z⋆

⊤Z⋆ and M⋆ := (I −C⋆)(I −C⋆)
⊤. Then G⋆ and M⋆ share eigenspaces, i.e., G⋆ and

M⋆ can be diagonalized simultaneously by U ∈ O(N) where O(N) is an orthogonal group.

Note that Theorem 1 provides a perspective from eigenspace alignment for analyzing the property
of the optimal solution. Figure 1(a) and (b) show empirical evidences to demonstrate that alignment
occurs during the training period, where Gb = Z⊤

b Zb, Mb = (I −Cb)(I −Cb)
⊤, Zb ∈ Rd×nb ,

Cb ∈ Rnb×nb and nb is batch size, are computed in mini-batch training at different epoch.

1Without loss of generality, we omit the constraint diag(C) = 0 throughout the analysis.
2The dimension equals to the multiplicity of the smallest eigenvalues of (I −C)(I −C)⊤.
3Please refer to (Ma et al., 2007) for a packing-ball interpretation.
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Figure 1: Empirical Validation to Eigenspace Alignment and Noncollapse Representation in
Mini-batch on CIFAR-100. (a): Alignment error curve during the training period. (b): Eigenspace
correlation curves measured via ⟨uj ,

Gbuj

∥Gbuj∥2
⟩ for j = 1, · · · , nb. (c) and (d): Eigenvalue curves.
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Figure 2: Empirical Validation to Noncollapse Representation on CIFAR-10 and CIFAR-100.
Clustering accuracy (ACC%) and subspace-preserving representation error (SRE%) are displayed
under varying α and γ. When collapse occurs, both ACC and SRE dramatically degenerate. The
perceivable phase transition phenomenon is consistent with the condition to avoid collapse.

Next, we will analyze problem (4) from the perspective of alternating optimization. When Z is
fixed, the optimization problem with respect to (w.r.t.) C reduces to a standard self-expressive
model, which has been extensively studied in (Soltanolkotabi & Candes, 2012; Pimentel-Alarcon &
Nowak, 2016; Wang & Xu, 2016; Li et al., 2018; Tsakiris & Vidal, 2018). On the other hand, when
C is fixed, the optimization problem w.r.t. Z becomes:

min
Z

−1

2
log det

(
I + αZ⊤Z

)
+

γ

2
∥Z −ZC∥2F s.t. ∥Z∥2F = N, (5)

which is a non-convex optimization problem, whose optimal solution remains under-explored.

In light of the fact that G and M converge to share eigenspaces, we decompose G and M

to U Diag(λ
(1)
G , · · · , λ(N)

G )U⊤ and U Diag(λ
(1)
M , · · · , λ(N)

M )U⊤, respectively. Recall that G :=
Z⊤Z, M := (I −C)(I −C)⊤, by using the eigenvalue decomposition, we reformulate problem
(5) into a convex problem w.r.t. {λ(i)

G }
min{d,N}
i=1 (See Appendix A) and have the following result.

Theorem 2 (Noncollapse Representation). Suppose that G and M are aligned in the same
eigenspaces and γ < 1

λmax(M)
α2

α+min{ d
N ,1} . Then we have: a) rank(Z⋆) = min{d,N}, and b)

the singular values σ(i)
Z⋆

=
√

1

γλ
(i)
M+ν⋆

− 1
α for all i = 1, . . . ,min{d,N}, where Z⋆ and ν⋆ are the

optimal primal solution and dual solution, respectively.

Theorem 2 characterizes the optimal solution for problem (5). Recall that SEDSC in (2) yields a
collapsed solution, where rank(Z⋆) ≪ min{d,N}; whereas the rank of the minimizers for PRO-
DSC in (5) satisfies that rank(Z⋆) = min{d,N}. In Figure 1(c) and (d), we show the curves of
the eigenvalues of Gb and Mb, which are computed in the mini-batch training at different epoch,
demonstrating that the learned representation does no longer collapse. In Figure 2, we show the
subspace clustering accuracy (ACC) and subspace-representation error4 (SRE) as a function of the
parameters α and γ. The phase transition phenomenon around γ < 1

λmax(M)
α2

α+min{ d
N ,1} well

illustrates the sufficient condition in Theorem 2 to avoid representation collapse.

4For each column cj in C, SRE is computed by 100
N

∑
j(1−

∑
i wij · |cij |)/∥cj∥1, where wij ∈ {0, 1} is

the ground-truth affinity.
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Figure 3: Empirical Validation to Structured Representation on CIFAR-10. Gram matrices for
CLIP features X and learned representations Z are shown in (a) and (b); whereas Data visualization
of the samples from three categories X(3) and Z(3) via PCA are shown in (c) and (d), respectively.

Furthermore, from the perspective of joint optimizing Z and C, the following theorem demonstrates
that PRO-DSC promotes a union-of-orthogonal-subspaces representation Z and block-diagonal self-
expressive matrix C under certain condition.

Theorem 3. Suppose that the sufficient conditions to prevent feature collapse are satisfied. With-
out loss of generality, we further assume that the columns in matrix Z are arranged into k blocks
according to a certain N × N permutation matrix Γ, i.e., Z = [Z1,Z2, · · · ,Zk]. Then the con-
dition for that PRO-DSC promotes the optimal solution (Z⋆,C⋆) to have desired structure (i.e.,
Z⊤

⋆ Z⋆ and C⋆ are both block-diagonal), is that ⟨(I − C)(I − C)⊤,G − G∗⟩ → 0, where
G∗ := Diag

(
G11,G22, · · · ,Gkk

)
and Gjj is the block Gram matrix corresponding to Zj .
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Figure 4: Empirical validation to Theorem 3 in
Mini-batch on CIFAR-10. The mean curves of the
absolute values of the in-block-diagonal entries (thick)
and the off-block-diagonal entries (thin) are displayed
along with the CSC condition (gray) during training
PRO-DSC.

Remark 1. Theorem 3 suggests that
our PRO-DSC is able to promote learning
representations and self-expressive matrix
with desired structures, i.e., the represen-
tations form a union of orthogonal sub-
spaces and accordingly the self-expressive
matrix is block-diagonal, when the condi-
tion ⟨(I −C) (I −C)

⊤
,G − G∗⟩ → 0

is met. We call this condition a compati-
bly structured coherence (CSC), which re-
lates to the properties of the distribution
of the representations in Z and the self-
coefficients in C. While it is not possi-
ble for us to give a theoretical justification
when the CSC condition will be satisfied
in general, we do have the empirical ev-
idence that our implementation for PRO-
DSC with careful designs does approxi-
mately satisfy such a condition and thus
yields representations and self-expressive
matrix with desired structure (See Fig-
ure 3).5

In Figure 4, we show the curves for the compatibly structured coherence (CSC) condition, and for
the average values of the entries in |G∗

b |, |Gb−G∗
b |, |C∗

b |, |Cb−C∗
b | computed in mini-batch during

training PRO-DSC on CIFAR-10. As illustrated, the CSC condition is progressively satisfied and
consequently the average off-block values |Gb −G∗

b | and |Cb −C∗
b | gradually decrease, while the

average in-block values |G∗
b | and |C∗

b | gradually increase, which empirically validates that PRO-
DSC promotes block-diagonal Gb and Cb.

5Please refer to Appendix B.2 for more details about Figures 1-4.
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2.3 SCALABLE IMPLEMENTATION

Existing SEDSC models typically use autoencoders to learn the representations and learn the self-
expressive matrix C through an N × N fully-connected layer (Peng et al., 2016; 2018; Ji et al.,
2017; Zhou et al., 2018; Zhang et al., 2019a). While such implementation is straightforward, there
are two major drawbacks: a) since that the number of self-expressive coefficients is quadratic to the
number of data points, solving these coefficients suffers from expensive computation burden; b) the
learning process is transductive, i.e., the network parameters cannot be generalized to unseen data.

To address these issues, similar to (Zhang et al., 2021), we reparameterize the self-expressive co-
efficients cij by a neural network. Specifically, the input data xi is fed into a neural network
h(·;Ψ) : RD → Rd to yield normalized representations, i.e.,

yi := h(xi;Ψ)/∥h(xi;Ψ)∥2, (6)

where Ψ denotes all the parameters in h(·). Then, the parameterized self-expressive matrix CΨ is
generated by:

CΨ := P(Y ⊤Y ), (7)

where Y := [y1, . . . ,yN ] ∈ Rd×N and P(·) is the sinkhorn projection (Cuturi, 2013), which has
been widely applied in deep clustering (Caron et al., 2020; Ding et al., 2023).6 To enable efficient
representation learning, we introduce another learnable mapping f(·;Θ) : RD → Rd, for which

zj := f(xj ;Θ)/∥f(xj ;Θ)∥2 (8)

is the learned representation for the input xj , where Θ denotes the parameters in f(·) to learn the
structured representation ZΘ := [z1, . . . ,zN ] ∈ Rd×N .

Therefore, our principled framework for deep subspace clustering (PRO-DSC) in (4) can be repa-
rameterized and reformulated as follows:

min
Θ,Ψ

L(Θ,Ψ) := −1

2
log det

(
I + αZ⊤

ΘZΘ

)
+

γ

2
∥ZΘ −ZΘCΨ∥2F + β · r (CΨ) . (9)

To strengthen the block-diagonal structure of self-expressive matrix, we choose the block-diagonal
regularizer (Lu et al., 2018) for r(CΨ). To be specific, given the data affinity AΨ, which is induced
by default as AΨ := 1

2

(
|CΨ|+ |C⊤

Ψ|
)
, the block diagonal regularizer is defined as:

r (CΨ) := ∥AΨ∥ κ , (10)

where ∥AΨ∥ κ is the sum of the k smallest eigenvalues of the Laplacian matrix of the affinity AΨ.7

Consequently, the parameters in Θ and Ψ of reparameterized PRO-DSC can be trained by Stochastic
Gradient Descent (SGD) with the loss function L(Θ,Ψ) defined in (9). For clarity, we summarize
the procedure for training and testing of our PRO-DSC in Algorithm 1.

Remark 2. We note that all the commonly used regularizers with extended block-diagonal property
for self-expressive model as discussed in (Lu et al., 2018) can be used to improve the block-diagonal
structure of self-expressive matrix. More interestingly, the specific type of the regularizers is not
essential owning to the learned structured representation (Please refer to Table 3 for details), and
using a specific regularizer or not is also not essential since that the SGD-based optimization also
induces some implicit regularization, e.g., low-rank (Gunasekar et al., 2017; Arora et al., 2019).

3 EXPERIMENTS

To validate our theoretical findings and to demonstrate the performance of our proposed framework,
we conduct extensive experiments on synthetic data (Sec. 3.1) and real-world data (Sec. 3.2). Im-
plementation details and more results are provided in Appendices B.1 and B.3, respectively.

6In practice, we set diag(CΨ) = 0 to prevent trivial solution CΨ = I .
7Recall that the number of zero eigenvalues of the Laplacian matrix equals to the number of connected

components in the graph (von Luxburg, 2007).
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Algorithm 1 Scalable & Efficient Implementation of PRO-DSC via Differential Programming

Input: Dataset X = Xtrain ∪ Xtest, batch size nb, hyper-parameters α, β, γ, number of iterations T ,
learning rate η

Initialization: Random initialize the parameters Ψ,Θ in the networks h(·;Ψ) and f(·;Θ)
Training:

1: for t = 1, . . . , T do
2: Sample a batch Xb ∈ RD×nb from Xtrain

# Forward propagation
3: Compute self-expressive matrix Cb ∈ Rnb×nb by Eqs. (6–7)
4: Compute representations Zb ∈ Rd×nb by Eq. (8)

# Backward propagation
5: Compute gradients: ∇Ψ := ∂L

∂Ψ ,∇Θ := ∂L
∂Θ

6: Update Ψ and Θ via: Ψ← Ψ− η · ∇Ψ, Θ← Θ− η · ∇Θ

7: end for
Testing:

8: Compute self-expressive matrix Ctest by Eqs. (6–7) for Xtest
9: Apply spectral clustering on the affinity Atest

3.1 EXPERIMENTS ON SYNTHETIC DATA

To validate whether PRO-DSC resolves the collapse issue in SEDSC and learns representations with
a UoS structure, we first follow the procedure in (Ding et al., 2023) to generate two sets of synthetic
data, as shown in the first column of Figure 5, and then visualize in Figure 5(b)-(e) the learned
representations which are obtained from different methods on these synthetic data.

We observe that the SEDSC model overly compress all the representations to a closed curve on the
hypersphere; whereas with increased weights (i.e., γ ↑) of the self-expressive term, the representa-
tions collapse to a few points. Our PRO-DSC yields linearized representations lying on orthogonal
subspaces in both cases, confirming the effectiveness of our approach. Nevertheless, MLC (Ding
et al., 2023) yields representations approximately on orthogonal subspaces.

(a) Input Data (b) SEDSC (c) SEDSC (γ ↑) (d) MLC (e) PRO-DSC

Figure 5: Visualization Experiments on Synthetic Data.

3.2 EXPERIMENTS ON REAL-WORLD DATA

To evaluate the performance of our proposed approach, we conduct experiments on six real-world
image datasets, including CIFAR-10, CIFAR-20, CIFAR-100, ImageNet-Dogs-15, Tiny-ImageNet-
200, and ImageNet-1k, with the pretrained CLIP features8 (Radford et al., 2021), and compare to
several baseline methods, including classical clustering algorithms, e.g., k-means (MacQueen, 1967)
and spectral clustering (Shi & Malik, 2000), subspace clustering algorithm, e.g., EnSC (You et al.,
2016a) and SENet (Zhang et al., 2021), deep clustering algorithms, e.g., SCAN (Van Gansbeke et al.,
2020), TEMI (Adaloglou et al., 2023) and CPP (Chu et al., 2024), and deep subspace clustering
algorithms, e.g., DSCNet (Ji et al., 2017) and EDESC (Cai et al., 2022). We measure clustering

8Please refer to Appendix B.3 for the results on other pre-trained models.
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Table 1: Clustering performance Comparison on the CLIP features. The best results are in bold
and the second best results are underlined. “OOM” means out of GPU memory.

Method CIFAR-10 CIFAR-20 CIFAR-100 TinyImgNet-200 ImgNetDogs-15 ImageNet-1k
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 83.5 84.1 46.9 49.4 52.8 66.8 54.1 73.4 52.7 53.6 53.9 79.8
SC 79.8 84.8 53.3 61.6 66.4 77.0 62.8 77.0 48.3 45.7 56.0 81.2
SSCOMP 85.5 83.0 61.4 63.4 55.6 69.7 56.7 72.7 25.6 15.9 44.1 74.4
EnSC 95.4 90.3 61.0 68.7 67.0 77.1 64.5 77.7 57.9 56.0 59.7 83.7
SENet 91.2 82.5 65.3 68.6 67.0 74.7 63.9 76.6 58.7 55.3 53.2 78.1

SCAN 95.1 90.3 60.8 61.8 64.1 70.8 56.5 72.7 70.5 68.2 54.4 76.8
TEMI 96.9 92.6 61.8 64.5 73.7 79.9 - - - - 64.0 -

CPP 96.8 92.3 67.7 70.5 75.4 82.0 63.4 75.5 83.0 81.5 62.0 82.1
EDESC 84.2 79.3 48.7 49.1 53.1 68.6 51.3 68.8 53.3 47.9 46.5 75.5
DSCNet 78.5 73.6 38.6 45.7 39.2 53.4 62.3 68.3 40.5 30.1 OOM OOM
Our PRO-DSC 97.2±0.2 92.8±0.4 71.6±1.2 73.2±0.5 77.3±1.0 82.4±0.5 69.8±1.1 80.5±0.7 84.0±0.6 81.2±0.8 65.0±1.2 83.4±0.6

performance using clustering accuracy (ACC) and normalized mutual information (NMI), and report
the experimental results in Table 1, where the results of our PRO-DSC are averaged over 10 trials
(with ±std). Since that for most baselines, except for TEMI, the clustering performance with the
CLIP feature has not been reported, we conduct experiments using the implementations provided by
the authors. For TEMI, we directly cited the results from (Adaloglou et al., 2023).

Performance comparison. As shown in Table 1, our PRO-DSC significantly outperforms subspace
clustering algorithms, e.g., SSCOMP, EnSC and SENet, and deep subspace clustering algorithms,
e.g., DSCNet and EDESC. Moreover, our PRO-DSC obtains better performance than the state-of-
the-art deep clustering and deep manifold clustering methods, e.g., SCAN, TEMI and CPP.

Validation to the theoretical results. To validate whether the alignment emerges and when rep-
resentations collapse occurs during the training period, we compute Gb = Z⊤

b Zb and Mb =
(I−Cb)(I−Cb)

⊤ in mini-batch at different epoch during the training period, and then measure the
alignment error via ∥GbMb −MbGb∥F and the eigenspace correlation via ⟨uj ,

Gbuj

∥Gbuj∥2
⟩ where

uj is the j-th ending eigenvector9 of Mb for j = 1, · · · , nb, and plot the eigenvalues of Gb and
Mb, where nb is the sample size per mini-batch. Moreover, we also record empirical performance
ACC and SRE on CIFAR-10 and CIFAR-100 under varying hyper-parameters α and γ to validate
the condition in Theorem 2 to avoid collapse. Experimental results are displayed in Figures 1 and 2.
We observe that Gb and Mb are increasingly aligned and the representations will no longer collapse
provided that the parameters are properly set. More details are provided in Section B.2.

Evaluation on learned representations. To quantitatively evaluate the effectiveness of the learned
representations, we run k-means (MacQueen, 1967), spectral clustering (Shi & Malik, 2000), and
EnSC (You et al., 2016a) on four datasets with three different features: a) the CLIP features, b) the
representations learned via CPP, and c) the representations learned by our PRO-DSC. Experimental
results are shown in Figure 6 (and more results are given in Table B.4 of Appendix B.3). We observe
that the representations learned by our PRO-DSC outperform the CLIP features and the CPP repre-
sentations in most cases across different clustering algorithms and datasets. Notably, the clustering
accuracy with the representations learned by our PRO-DSC exceeds 90% on CIFAR-10 and 75% on
CIFAR-100, whichever clustering algorithm is used. Besides, the clustering performance is further
improved by using the learnable mapping h(·;Ψ), indicating a good generalization ability.
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Figure 6: Clustering accuracy with CLIP features and learned representations.

9The eigenvectors are sorted according to eigenvalues of Mb in ascending order.
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Sensitivity to hyper-parameters. In Figure 2, we verify that our PRO-DSC yields satisfactory
results when the conditions in Theorem 2 to avoid collapse are met. Moreover, we evaluate the
performance sensitivity to hyper-parameters γ and β by experiments on the CLIP features of CIFAR-
10, CIFAR-100 and TinyImageNet-200 with varying γ and β. In Figure 7, we observe that the
clustering performance maintains satisfactory under a broad range of γ and β.
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Figure 7: Evaluation on sensitivity to hyper-parameters γ and β on three datasets.

Time and memory cost. The most time-consuming operations in our PRO-DSC are computing
the term involving log det(·) and the term ∥A∥ κ involving eigenvalue decomposition, respectively.
The time complexity for log det(·) isO(min{n3

b , d
3}) due to the commutative property of log det(·)

function (Yu et al., 2020), and the time complexity for ∥A∥ κ is O(kn2
b).

10 Therefore the overall
time complexity of our PRO-DSC is O(kn2

b + min{n3
b , d

3}). Note that TEMI (Adaloglou et al.,
2023) employs H = 50 cluster heads during training, adding further time and memory costs and
CPP (Chu et al., 2024) involves computing log det(·) for nb + 1 times, leading to complexity
O((nb +1)min{n3

b , d
3}). The computation time and memory costs are shown in Table 2 for which

all the experiments are conducted on a single NVIDIA RTX 3090 GPU and Intel Xeon Platinum
8255C CPU. We read that our PRO-DSC significantly reduces the time consumption, particularly
for datasets with a large number of clusters.

Table 2: Comparison on time (s) and memory cost (MiB). “OOM” means out of GPU memory.

Methods Complexity CIFAR-10 CIFAR-100 ImageNet-1k
Time Memory Time Memory Time Memory

SEDSC O(N2d) - OOM - OOM - OOM
TEMI O(Hnbd

2) 6.9 1,766 5.1 2,394 262.1 2,858
CPP O((nb + 1)min{n3

b , d
3}) 3.5 3,802 7.1 10,374 1441.2 22,433

PRO-DSC O(kn2
b +min{n3

b , d
3}) 4.5 2,158 4.0 2,328 90.0 2,335

Table 3: Ablation studies on different loss functions and regularizers.

Loss Term CIFAR-10 CIFAR-100 ImgNetDogs-15
L1 L2 ∥A∥ κ ∥C∥1 ∥C∥2F ∥C∥∗ ACC NMI ACC NMI ACC NMI

A
bl

at
io

n √ √
56.9 47.7 54.6 60.9 46.7 37.1√ √
69.6 56.4 64.7 71.7 10.5 1.7√ √
97.0 93.0 74.6 80.9 80.9 78.8

R
eg

ul
ar

iz
er

√ √ √
97.0 92.6 75.2 81.1 81.3 79.1√ √ √
97.0 92.6 75.2 80.9 80.9 78.8√ √ √
96.7 91.9 76.4 81.8 81.0 78.8√ √ √
97.2 92.8 77.3 82.4 84.0 81.2

Ablation study. To verify the effectiveness of each components in the loss function of our PRO-
DSC, we conduct a set of ablation studies with the CLIP features on CIFAR-10, CIFAR-100, and
ImageNetDogs-15, and report the results in Table 3, where L1 := − 1

2 log det
(
I + αZ⊤

ΘZΘ

)
and

L2 := 1
2∥ZΘ − ZΘCΨ∥2F . The absence of the term L1 leads to catastrophic feature collapse (as

demonstrated in Sec. 2.1); whereas without the self-expressive L2, the model lacks a loss function

10For an N × N matrix, the complexity of computing its k eigenvalues by Lanczos algorithm is O(kN2)
and the complexity of computing its det(·) is O(N3).
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for learning the self-expressive coefficients. In both cases, clustering performance drops signifi-
cantly. More interestingly, when we replace the block diagonal regularizer ∥A∥ κ with ∥C∥1, ∥C∥∗,
and ∥C∥2F or even drop the explicit regularizer r(·), the clustering performance still maintains sat-
isfactory. This confirms that the choice of the regularizer is not essential owning to the structured
representations learned by our PRO-DSC.

4 RELATED WORK

Deep subspace clustering. To tackle with complex real world data, a number of Self-Expressive
Deep Subspace Clustering (SEDSC) methods have been developed in the past few years, e.g., (Peng
et al., 2016; 2018; Ji et al., 2017; Zhou et al., 2018; Zhang et al., 2019a;b; Dang et al., 2020; Peng
et al., 2020; Lv et al., 2021; Cai et al., 2022; Wang et al., 2023b). The key step in SEDSC is to adopt
a deep learning module to embed the input data into feature space. For example, deep autoencoder
network is adopted in (Peng et al., 2016; 2018), deep convolutional autoencoder network is used in
(Ji et al., 2017; Zhou et al., 2018; Zhang et al., 2019a). Unfortunately, as pointed out in (Haeffele
et al., 2021), the existing SEDSC methods suffer from a catastrophic feature collapse and there is no
evidence that the learned representations align with a UoS structure. To date, however, a principled
deep subspace clustering framework has not been proposed.

Deep clustering. Recently, most of state-of-the-art deep clustering methods adopt a two-step proce-
dure: at the first step, self-supervised learning based pre-training, e.g., SimCLR (Chen et al., 2020a),
MoCo (He et al., 2020), BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020), is adopted to learn
the representations; and then deep clustering methods are incorporated to refine the representations,
via, e.g., pseudo-labeling (Caron et al., 2018; Van Gansbeke et al., 2020; Park et al., 2021; Niu
et al., 2022), cluster-level contrastive learning (Li et al., 2021), local and global neighbor match-
ing (Dang et al., 2021), graph contrastive learning (Zhong et al., 2021), self-distillation (Adaloglou
et al., 2023). Though the clustering performance has been improved remarkably, the underlying
geometry structure of the learned representations is unclear and ignored.

Representation learning with a UoS structure. The methods for representation learning that favor
a UoS structure are pioneered in supervised setting, e.g., (Lezama et al., 2018; Yu et al., 2020). In
(Lezama et al., 2018), a nuclear norm based geometric loss is proposed to learn representations that
lie on a union of orthogonal subspaces; in (Yu et al., 2020), a principled framework called Maximal
Coding Rate Reduction (MCR2) is proposed to learn representations that favor the structure of a
union of orthogonal subspaces (Wang et al., 2024). More recently, the MCR2 framework is modified
to develop deep manifold clustering methods, e.g., NMCE (Li et al., 2022), MLC (Ding et al., 2023)
and CPP (Chu et al., 2024). In (Li et al., 2022), the MCR2 framework combines with constrastive
learning to perform manifold clustering and representation learning; in (Ding et al., 2023), the MCR2

framework combines with doubly stochastic affinity learning to perform manifold linearizing and
clustering; and in (Chu et al., 2024), the features from large pre-trained model (e.g., CLIP) are
adopted to evaluate the performance of (Ding et al., 2023). While the MCR2 framework has been
modified in these methods for manifold clustering, none of them provides theoretical justification to
yield structured representations. Though our PRO-DSC shares the same regularizer defined in Eq.
(3) with MLC (Ding et al., 2023), we are for the first time to adopt it into the SEDSC framework to
attack the catastrophic feature collapse issue with theoretical analysis.

5 CONCLUSION

We presented a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which jointly
learn structured representations and self-expressive coefficients. Specifically, our PRO-DSC incor-
porates an effective regularization into self-expressive model to prevent the catastrophic representa-
tion collapse with theoretical justification. Moreover, we demonstrated that our PRO-DSC is able to
learn structured representations that form a desirable UoS structure, and also developed an efficient
implementation based on reparameterization and differential programming. We conducted extensive
experiments on synthetic data and six benchmark datasets to verify the effectiveness of our proposed
approach and validate our theoretical findings.
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Laurent Bako and René Vidal. Algebraic identification of MIMO SARX models. In International
Workshop on Hybrid Systems: Computation and Control, pp. 43–57, 2008.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training
of deep networks. Advances in Neural Information Processing Systems, pp. 153–160, 2006.

Jinyu Cai, Jicong Fan, Wenzhong Guo, Shiping Wang, Yunhe Zhang, and Zhao Zhang. Efficient
deep embedded subspace clustering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21–30, 2022.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In European Conference on Computer Vision, pp. 132–149,
2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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Derek Lim, René Vidal, and Benjamin D Haeffele. Doubly stochastic subspace clustering. arXiv
preprint arXiv:2011.14859, 2020.

Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmentation by low-rank represen-
tation. In International Conference on Machine Learning, pp. 663–670, 2010.

Xin Liu, Zhongdao Wang, Ya-Li Li, and Shengjin Wang. Self-supervised learning via maximum
entropy coding. Advances in Neural Information Processing Systems, 35:34091–34105, 2022.

Canyi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. Robust
and efficient subspace segmentation via least squares regression. In European Conference on
Computer Vision, pp. 347–360, 2012.

13



Published as a conference paper at ICLR 2025

Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao Mei, and Shuicheng Yan. Subspace clustering by block
diagonal representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2):
487–501, 2018.

Juncheng Lv, Zhao Kang, Xiao Lu, and Zenglin Xu. Pseudo-supervised deep subspace clustering.
IEEE Transactions on Image Processing, 30:5252–5263, 2021.

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data via
lossy coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(9):1546–1562, 2007.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceed-
ings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297,
1967.

Ryan McConville, Raul Santos-Rodriguez, Robert J Piechocki, and Ian Craddock. N2d:(not too)
deep clustering via clustering the local manifold of an autoencoded embedding. In Proceedings
of the International Conference on Pattern Recognition, pp. 5145–5152, 2021.

Brian McWilliams and Giovanni Montana. Subspace clustering of high dimensional data: a predic-
tive approach. Data Mining and Knowledge Discovery, 28(3):736–772, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, pp. 807–814, 2010.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics & Image
Processing, pp. 722–729, 2008.

Chuang Niu, Hongming Shan, and Ge Wang. SPICE: Semantic pseudo-labeling for image cluster-
ing. IEEE Transactions on Image Processing, 31:7264–7278, 2022.

Foivos Ntelemis, Yaochu Jin, and Spencer A Thomas. Information maximization clustering via
multi-view self-labelling. Knowledge-Based Systems, 250:109042, 2022.
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René Vidal. Identification of PWARX hybrid models with unknown and possibly different orders.
In Proceedings of the American Control Conference, pp. 547–552, 2004.
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SUPPLEMENTARY MATERIAL FOR “EXPLORING A PRINCIPLED
FRAMEWORK FOR DEEP SUBSPACE CLUSTERING”

The supplementary materials are divided into three parts. In Section A, we present the proofs of our
theoretical results. In Section B, we present the supplementary materials for experiments, including
experimental details (Sec. B.1), empirical validation on our theoretical results (Sec. B.2), and more
experimental results (Sec. B.3). In Section C, we discuss about the limitations and failure cases of
PRO-DSC.

A PROOFS OF MAIN RESULTS

As a preliminary, we start by introducing a lemma from (Haeffele et al., 2021) and provide its proof
for the convenience of the readers.
Lemma 1 (Haeffele et al., 2021). The rows of the optimal solution Z for problem (2) are the eigen-
vectors that associate with the smallest eigenvalues of (I −C)(I −C)⊤.

Proof. We note that:

∥Z −ZC∥2F = Tr
(
Z (I −C) (I −C)

⊤
Z⊤

)
=

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤,

where z(i) is the ith row of Z, thus problem (2) is reformulated as:

min
{z(i)}d

i=1,C

1

2

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤ + β · r(C)

s.t. ∥Z∥2F = N.

(11)

Without loss of generality, the magnitude of each row of Z is assumed to be fixed, i.e., ∥z(i)∥22 =

τi, i = 1, . . . , d, where
∑d

i=1 τi = N . Then, the optimization problem becomes:

min
{z(i)}d

i=1,C

1

2

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤ + β · r(C)

s.t. ∥z(i)∥22 = τi, i = 1, . . . , d.

(12)

The Lagrangian of problem (12) is:

L({z(i)}di=1,C, {νi}di=1) :=
1

2

d∑
i=1

z(i)(I −C)(I −C)⊤z(i)⊤ + β · r(C) +
1

2

d∑
i=1

νi(∥z(i)∥22 − τi),

(13)

where {νi}di=1 are the Lagrangian multipliers. The necessary conditions for optimal solution are:{∇z(i)L = z(i)(I −C)(I −C)⊤ + νiz
(i) = 0,

∥z(i)∥22 = τi, i = 1, . . . , d,
(14)

which implies that the optimal solutions z(i) are eigenvectors of (I −C)(I −C)⊤.

By further considering the objective functions, the optimal solution z(i) should be the eigenvectors
w.r.t. the smallest eigenvalues of (I−C)(I−C)⊤ for all i ∈ {1, . . . , d}. The corresponding optimal
value is 1

2λmin((I −C)(I −C)⊤)
∑d

i=1 τi + β · r(C) = N
2 λmin((I −C)(I −C)⊤) + β · r(C),

which is irrelevant to {τi}di=1.

Therefore, we conclude that the rows of optimal solution Z to problem (2) are eigenvectors that
associate with the smallest eigenvalues of (I −C)(I −C)⊤.
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Lemma A1. Suppose that matrices A,B ∈ Rn×n are symmetric, then AB = BA if and only if
A and B can be diagonalized simultaneously by U ∈ O(n), where O(n) is an orthogonal group.

Now we present our theorem about the optimal solution of problem PRO-DSC in (4) with its proof.

Theorem 1. Denote the optimal solution of PRO-DSC in (4) as (Z⋆,C⋆), then G⋆ and M⋆ share
eigenspaces, where G⋆ := Z⋆

⊤Z⋆,M⋆ := (I − C⋆)(I − C⋆)
⊤, i.e., G⋆ and M⋆ can be diago-

nalized simultaneously by U ∈ O(N) where O(N) is an orthogonal matrix group.

Proof. We first consider the subproblem of PRO-DSC problem in (4) with respect to Z and prove
that for all C ∈ RN×N , the corresponding optimal Z⋆,C satisfies G⋆,CM = MG⋆,C , where
G⋆,C = Z⋆,C

⊤Z⋆,C ,M := (I − C)(I − C)⊤, implying that G⋆,C and M share eigenspace.
Then, we will demonstrate that G⋆ and M⋆ share eigenspace.

The subproblem with respect to ZC is reformulated into the following semi-definite program:

min
GC

− 1

2
log det (I + αGC) +

γ

2
tr(GCM)

s.t. GC ⪰ 0, tr(GC) = N,

(15)

which has the Lagrangian as:

L(GC ,∆, ν) := −1

2
log det (I + αGC) +

γ

2
tr(GCM)− tr(∆GC) +

ν

2
(tr(GC)−N), (16)

where scalar ν and N ×N symmetric matrix ∆ are Lagrange multipliers.

The KKT conditions is:

−α

2
(I + αG⋆,C)−1 +

γ

2
M −∆⋆ +

ν⋆
2
I = 0, (17)

G⋆,C ⪰ 0, (18)
tr(G⋆,C) = N, (19)
∆⋆ ⪰ 0, (20)
∆⋆G⋆,C = 0, (21)

which are the sufficient and necessary condition for the global optimality of the solution G⋆,C .

From Eqs. (18),(20) and (21), we have that ∆⋆G⋆,C − G⋆,C∆⋆ = ∆⋆G⋆,C − (∆⋆G⋆,C)⊤ =
0, implying that ∆⋆ and G⋆,C share eigenspace. By eigenvalue decomposition ∆⋆ =
QΛ∆⋆

Q⊤,G⋆,C = QΛG⋆,C
Q⊤, where Λ∆⋆

,ΛG⋆,C
are diagonal matrices, we have:

2 ·QΛ∆⋆
Q⊤ = −αQ(I + αΛG⋆,C

)−1Q⊤ + γM + ν⋆I (22)

⇒ γM + ν⋆I = Q
(
2Λ∆⋆

+ α
(
I + αΛG⋆,C

)−1
)
Q⊤, (23)

where the first equality is from Eq. (17). Since that 2Λ∆⋆ +α(I+αΛG⋆,C
)−1 is a diagonal matrix,

γM +ν⋆I can be diagonalized by Q. In other words, for ∀M ∈ S+N in problem (15), M will share
eigenspace with the corresponding optimal solution G⋆,C . Next, denote (Z⋆,C⋆) as the optimal
solution of problem (4), C := {Z | ∥Z∥2F = N} as the feasible set and f(·, ·) as the objective
function. Since that Z⋆ = argminZ∈C f(Z,C⋆), otherwise contradicts with the optimality of
(Z⋆,C⋆), we conclude that G⋆ and M⋆ share eigenspace, where M⋆ := (I −C⋆)(I −C⋆)

⊤.

Theorem 2. Suppose that G and M are aligned in the same eigenspaces and γ <
1

λmax(M)
α2

α+min{ d
N ,1} , then we have that: a) rank(Z⋆) = min{d,N}, and b) the singular val-

ues σ(i)
Z⋆

=
√

1

γλ
(i)
M+ν⋆

− 1
α for all i = 1, . . . ,min{d,N}, where Z⋆ and ν⋆ are the primal optimal

solution and dual optimal solution, respectively.

18



Published as a conference paper at ICLR 2025

Proof. Since ∥Z−ZC∥2F = Tr
(
Z⊤Z (I −C) (I −C)

⊤
)

and ∥Z∥2F = Tr(Z⊤Z), problem (5)
is equivalent to:

min
G

− 1

2
log det (I + αG) +

γ

2
Tr(GM)

s.t. Tr(G) = N,G ⪰ 0,
(24)

where G := Z⊤Z and M := (I −C)(I −C)⊤.

Since that G and M have eigenspaces aligned, we can have G and M diagonalized simultaneously
by an orthogonal matrix U , i.e., G = UΛGU⊤,M = UΛMU⊤. Therefore, problem (24) can be
transformed into the eigenvalue optimization problem as follows:

min
{λ(i)

G }min{d,N}
i=1

− 1

2

min{d,N}∑
i=1

log(1 + αλ
(i)
G ) +

γ

2
λ
(i)
Mλ

(i)
G

s.t.

min{d,N}∑
i=1

λ
(i)
G = N, λ

(i)
G ≥ 0, for all i = 1, . . . ,min{d,N},

(25)

where {λ(1)
M , · · · , λ(min{d,N})

M } are the diagonal entries of ΛM and {λ(1)
G , · · · , λ(min{d,N})

G } are the
diagonal entries of ΛG. Surprisingly, problem (25) is a convex optimization problem. Thus, the
KKT condition is sufficient and necessary to guarantee for the global minimizer.

The Lagrangian of problem (25) is:

L
(
{λ(i)

G }
min{d,N}
i=1 , {µi}min{d,N}

i=1 , ν
)
:=

− 1

2

min{d,N}∑
i=1

log(1 + αλ
(i)
G ) +

γ

2
λ
(i)
Mλ

(i)
G − µiλ

(i)
G +

ν

2

(min{d,N}∑
i=1

λ
(i)
G −N

)
, (26)

where µi ≥ 0, i = 1, . . . ,min{d,N} and ν are the Lagrangian multipliers. The KKT conditions are
as follows: 

∇
λ
(i)
G⋆

L = 0, ∀i = 1, . . . ,min{d,N}, (27)

λ
(i)
G⋆
≥ 0, ∀i = 1, . . . ,min{d,N}, (28)

min{d,N}∑
i=1

λ
(i)
G⋆

= N, (29)

µi⋆ ≥ 0, ∀i = 1, . . . ,min{d,N}, (30)

µi⋆λ
(i)
G⋆

= 0, ∀i = 1, . . . ,min{d,N}. (31)

Then, the stationary condition in (27) is equivalent to:

µi⋆ =
1

2

(
ν⋆ + γλ

(i)
M −

α

1 + αλ
(i)
G⋆

)
. (32)

By using Eqs. (28) and (30)-(32), we come up with the following two cases:
µi⋆ > 0⇒ λ

(i)
G⋆

= 0,
1

ν⋆ + γλ
(i)
M

− 1

α
<0, (33)

µi⋆ = 0⇒ λ
(i)
G⋆

> 0, λ
(i)
G⋆

=
1

ν⋆ + γλ
(i)
M

− 1

α
>0. (34)

From the above two cases, we conclude that:

λ
(i)
G⋆

= max
{
0,

1

ν⋆ + γλ
(i)
M

− 1

α

}
, (35)
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where ν⋆ satisfies:
min{d,N}∑

i=1

max
{
0,

1

ν⋆ + γλ
(i)
M

− 1

α

}
= N. (36)

Given that γ < (α − ν⋆)/λmax(M), we have 1

ν⋆+γλ
(i)
M

− 1
α > 0 for all i = 1, . . . ,min{d,N}.

Therefore, for the optimal solution Z⋆ of problem (5), we conclude that: rank(Z⋆) = min{d,N}
and the singular values σ(i)

Z⋆
=

√
1

γλ
(i)
M+ν⋆

− 1
α , for all i = 1, . . . ,min{d,N}.

Note that, the results we established just above rely on a condition γλmax(M) < α− ν⋆ where the
ν⋆ is the optimal Lagrangian multiplier, which is set as a fixed value related to α, γ and λmax(M).
Next, we will develop an upper bound for ν⋆ and justify the fact that we ensure ν⋆ to satisfy the
condition γλmax(M) < α− ν⋆ by only adjusting the hyper-parameters α and γ.

In Eq. (36), we can easily find an upper bound of ν⋆ as:

N =

min{d,N}∑
i=1

max
{
0,

1

ν⋆ + γλ
(i)
M

− 1

α

}
≤ min {d,N}

ν⋆ + γλmin(M)
− min {d,N}

α
, (37)

⇒ ν⋆ ≤
1

N
min{d,N} + 1

α

− γλmin(M), (38)

Therefore, we can find a tighten bound between α− ν⋆ and γλmax(M) as:

γλmax(M) <
α2

α+min
{

d
N , 1

} <
α2

α+min
{

d
N , 1

} + γλmin(M) ≤ α− ν⋆, (39)

which means that the condition of γλmax(M) < α− ν⋆ can be reformed as:

γ <
1

λmax(M)

α2

α+min
{

d
N , 1

} (40)

Remark 3. We notice that (25) is a reverse water-filling problem, where the water level is
controlled by 1/α, as shown in Figure A.1. When G and M have eigenspaces aligned and
γ < (α − ν⋆)/λmax(M), we have rank(Z⋆) = min{d,N} and λ

(i)
G⋆
̸= 0 for all i ≤ min{d,N}.

When γ ≥ (α− ν⋆)/λmax(M), non-zero λ
(i)
G first disappears for the larger λ(i)

M .

0 1 2 3 4 5 6

1/α

i

1

γλ
(i)
M+ν

λ
(2)
G

λ
(1)
G

λ
(3)
G

λ
(0)
G

Figure A.1: Illustration of the optimal solution for problem (25). The primal problem can be
transformed into a classical reverse water-filling problem.

Theorem 3. Suppose that the sufficient conditions to prevent catastrophic feature collapse are sat-
isfied. Without loss of generality, we further assume that the columns in matrix Z are arranged into
k blocks according to a certain N ×N permutation matrix Γ, i.e., Z = [Z1,Z2, · · · ,Zk]. Then the
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condition for that PRO-DSC promotes the optimal solution (Z⋆,C⋆) to be desired structure (i.e.,
Z⊤

⋆ Z⋆ and C⋆ are block-diagonal), is that ⟨(I −C)(I −C)⊤,G−G∗⟩ → 0, where

G∗ := Diag
(
G11,G22, · · · ,Gkk

)
=

G11

. . .
Gkk

 ,

and Gjj is the block Gram matrix corresponding to Zj .

Proof. We begin with the analysis to the first two terms of the loss function L̃ := L1 + γL2, where

L1 := −1

2
log det

(
I + α(ZΓ)⊤(ZΓ)

)
= −1

2
log det(I + αG),

L2 :=
1

2
∥ZΓ−ZΓΓ⊤CΓ∥2F =

1

2
∥Z −ZC∥2F =

1

2
Tr

(
G (I −C) (I −C)

⊤
)
,

since that Γ⊤Γ = ΓΓ⊤ = I . Thus, we have:

L̃(G,C) =
γ

2
Tr

(
G (I −C) (I −C)

⊤
)
− 1

2
log det(I + αG), (41)

which is a convex function with respect to (w.r.t) G and C, separately. By the property of convex
function w.r.t. C, we have:

L̃(G,C) ≥ L̃(G∗,C∗) +
〈
∇CL̃(G∗,C∗),C −C∗

〉
+

〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
= L̃(G∗,C∗) +

〈
− γG∗(I −C∗),C −C∗

〉
+

〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
,

where C∗ = Diag
(
C11,C22, · · · ,Ckk

)
=

C11

. . .
Ckk

 with the blocks associating to the

partition of Z = [Z1,Z2, · · · ,Zk]. Since that
〈
G∗(I − C∗),C − C∗

〉
= 0 due to the comple-

mentary between G∗ and I −C∗, we have:

L̃(G,C) ≥ L̃(G∗,C∗) +
〈γ
2
(I −C) (I −C)

⊤
,G−G∗

〉
.

It is easy to see that if
〈
(I −C) (I −C)

⊤
,G−G∗

〉
→ 0, then we will have:

L̃(G,C) ≥ L̃(G∗,C∗), (42)

where the equality holds only when G = G∗,C = C∗. Furthermore, if the regularizer r(·) satisfies
the extended block diagonal condition as defined in (Lu et al., 2018), then we have that r(C) ≥
r(C∗), where the equality holds if and only if C = C∗. Therefore, we have:

L(G,C) = L̃(G,C) + β · r(C) ≥ L̃(G∗,C∗) + β · r(C∗) = L(G∗,C∗). (43)

Thus we conclude that minimizing the loss function L(G,C) = L̃(G,C) + β · r(C) promotes the
optimal solution (G⋆,C⋆) to have block diagonal structure.

We note that the Gram matrix being block-diagonal, i.e., G⋆ = G∗, implies that Z⊤
⋆,j1

Z⋆,j2 = 0 for
all 1 ≤ j1 < j2 ≤ k, which is corresponding to the subspaces associated to the blocks Z⋆,j’s are
orthogonal to each other.
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B EXPERIMENTAL SUPPLEMENTARY MATERIAL

B.1 EXPERIMENTAL DETAILS

B.1.1 SYNTHETIC DATA

As shown in Figure 5a (top row), data points are generated from two manifolds. The first manifold
(colored in purple) is generated by sampling 100 data points from

x =

cos ( 1
5 sin (5φ)

)
cosφ

cos
(
1
5 sin (5φ)

)
sinφ

sin
(
1
5 sin (5φ)

)
+ ϵ, (44)

where φ is taken uniformly from [0, 2π] and ϵ ∼ N (0, 0.05I3) is the additive noise. The second
manifold (colored in blue) is generated by sampling 100 data points from a Gaussian distribution
N

(
[0, 0, 1]

⊤
, 0.05I3

)
. To further test more complicated cases, we generate the second manifold

by sampling 50 data points from a Gaussian distribution N
(
[0, 0, 1]

⊤
, 0.05I3

)
and 50 data points

from another Gaussian distribution N
(
[0, 0,−1]⊤ , 0.05I3

)
, as shown in Figure 5a (bottom row).

In PRO-DSC, the learnable mappings h(·;Ψ) and f(·;Θ) are implemented with two MLPs with
Rectified Linear Units (ReLU) (Nair & Hinton, 2010) as the activation function. The hidden dimen-
sion and output dimension of the MLPs are set to 100 and 3, respectively. We train PRO-DSC with
batch-size nb = 200, learning rate η = 5 × 10−3 for 1000 epochs. We set γ = 0.5, β = 1000, and
α = 3

0.1·200 .

We use DSCNet (Ji et al., 2017) as the representative of the SEDSC methods. In Figure 5b, we set
γ = 1 for both cases, whereas in Figure 5c, γ is set to 5 and 100 for the two cases, respectively.
The encoder and decoder of DSCNet are MLPs of two hidden layers, with the hidden dimensions
being set to 100 and 3, respectively. We train DSCNet with batch-size nb = 200, learning rate
η = 1× 10−4 for 1000 epochs.

B.1.2 REAL-WORLD DATASETS

Datasets description. CIFAR-10 and CIFAR-100 are classic image datasets consisting of 50,000
images for training and 10,000 images for testing. They are split into 10 and 100 classes, respec-
tively. CIFAR-20 shares the same images with CIFAR-100 while taking 20 super-classes as labels.
ImageNet-Dogs consists of 19,500 images of 15 different dog species. Tiny-ImageNet consists of
100,000 images from 200 different classes. ImageNet-1k is the superset of the two datasets, con-
taining more than 1,280,000 real world images from 1000 classes. For all the datasets except for
ImageNet-Dogs, we train the network to implement PRO-DSC on the train set and test it on the test
set to validate the generalization of the learned model. For ImageNet-Dogs dataset which does not
have a test set, we train the network to implement PRO-DSC on the train set and report the clustering
performance on the training set. For a direct comparison, we conclude the basic information of these
datasets in Table B.1.

To leverage the CLIP features for training, the input images are first resized to 224 with respect to
the smaller edge, then center-cropped to 224×224 and fed into the CLIP pre-trained image encoder
to obtain fixed features.11 The subsequent training of PRO-DSC takes the extracted features as input,
instead of loading the entire CLIP pre-trained model.

Network architecture and hyper-parameters. The learnable mappings h(·;Ψ) and f(·;Θ) are
two fully-connected layers with the same output dimension d. Following (Chu et al., 2024), for the
experiments on real-world data, we stack a pre-feature layer before the learnable mappings, which
is composed of two fully-connected layers with ReLU and batch-norm (Ioffe & Szegedy, 2015).

We train the network by the SGD optimizer with the learning rate set to η = 10−4, and the
weight decay parameters of f(·;Θ) and h(·;Ψ) are set to 10−4 and 5 × 10−3, respectively.

11We use the ViT L/14 pre-trained model provided by https://github.com/openai/CLIP for 768-
dimensional features.
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Table B.1: Basic statistical information of datasets. We summarize the information in terms of
the data with both the train and test split, as well as the number of classes involved.

Datasets # Train # Test # Classes

CIFAR-10 50,000 10,000 10
CIFAR-20 50,000 10,000 20
CIFAR-100 50,000 10,000 100
ImageNet-Dogs 19,500 N/A 15
TinyImageNet 100,000 10,000 200
ImageNet 1,281,167 50,000 1000

Following by (Chu et al., 2024), we warm up training f(·;Θ) by diversifying the features with
L1 = − log det(I + αZ⊤

ΘZΘ) for a few iterations and share the weights to h(·;Ψ). We set
α = d

0.1·nb
for all the experiments. We summarize the hyper-parameters for training the network to

implement PRO-DSC in Table B.2.

Table B.2: Hyper-parameters configuration for training the network to implement PRO-DSC
with CLIP pre-trained features. Here η is the learning rate, dpre is the hidden and output dimen-
sion of pre-feature layer, m is the output dimension of h and f , nb is the batch size for training, and
“# warm-up” is the number of iterations of warm-up stage.

η dpre d #epochs nb #warm-up γ β

CIFAR-10 1×10−4 4096 128 10 1024 200 300/nb 600
CIFAR-20 1×10−4 4096 256 50 1500 0 600/nb 300
CIFAR-100 1×10−4 4096 128 100 1500 200 150/nb 500
ImageNet-Dogs 1×10−4 4096 128 200 1024 0 300/nb 400
TinyImageNet 1×10−4 4096 256 100 1500 0 200/nb 400
ImageNet 1×10−4 4096 1024 100 2048 2000 800/nb 400
MNIST 1×10−4 4096 128 100 1024 200 700/nb 400
F-MNIST 1×10−4 1024 128 200 1024 400 50/nb 100
Flowers 1×10−4 1024 256 200 1024 200 400/nb 200

Running other algorithms. Since that k-means (MacQueen, 1967), spectral clustering (Shi &
Malik, 2000), EnSC (You et al., 2016a), SSCOMP (You et al., 2016b), and DSCNet (Ji et al., 2017)
are based on transductive learning, we evaluate these models directly on the test set for all the
experiments.

• For EnSC, we tune the hyper-parameter γ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 400, 800, 1600, 3200}
and the hyper-parameter τ in τ∥ · ∥1 + 1−τ

2 ∥ · ∥22 to balance the ℓ1 and ℓ2 norms in
{0.9, 0.95, 1} and report the best clustering result.

• For SSCOMP, we tune the hyper-parameter to control the sparsity kmax ∈
{1, 2, 5, 10, 20, 50, 100, 200} and the residual ϵ ∈ {10−4, 10−5, 10−6, 10−7} and report
the best clustering result.

• To apply DSCNet to the CLIP features, we use MLPs with two hidden layers to replace
the convolutional encoder and decoder. The hidden dimension of the MLPs are set to 128.
We tune the balancing hyper-parameters γ ∈ {1, 2, 3, 4} and β ∈ {1, 5, 25, 50, 75, 100}
and train the model for 100 epochs with learning rate η = 1 × 10−4 and batch-size nb

equivalent to number of samples in the test data set.

• As the performance of CPP is evaluated by averaging the ACC and NMI met-
rics tested on each batch, we reproduce the results by their open-source imple-
mentation and report the results on the entire test set. The authors provide two
implementations (see https://github.com/LeslieTrue/CPP/blob/main/
main.py and https://github.com/LeslieTrue/CPP/blob/main/main_
efficient.py), where one optimizes the cluster head and the feature head separately
and the other shares weights between the two heads. In this paper, we test both cases and
report the better results.
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• For k-means and spectral clustering (including when spectral clustering is used as the fi-
nal step in subspace clustering), we repeat the clustering 10 times with different random
initializations (by setting ninit = 10 in scikit-learn) and report the best results.

• For SENet, SCAN and EDESC, we adjust the hyper-parameters and repeat experiments for
three times, with only the best results are reported.

B.2 EMPIRICAL VALIDATION ON THEORETICAL RESULTS

Empirical Validation on Theorem 1. To validate Theorem 1 empirically, we conduct experiments
on CIFAR-100 with the same training configurations as described in Section B.1.2 but change the
training period to 1000 epochs. For each epoch, we compute Gb = Z⊤

b Zb and Mb = (I−Cb)(I−
Cb)

⊤ with the learned representations Zb and self-expressive matrix Cb in mini-batch of size nb

after the last iteration of different epoch. Then, to quantify the eigenspace alignment of Gb and Mb,
we directly plot the alignment error which is computed via the Frobenius norm of the commutator
L := ∥GbMb −MbGb∥F in mini-batch of size nb during the training period in Figure 1a. We also
show the standard deviation with shaded region after repeating the experiments for 5 random seeds.
As can be read, the alignment error decreases monotonically during the training period, implying
that the eigenspaces are progressively aligned. Moreover, we find the eigenvector {uj} of Mb by
eigenvalue decomposition, where uj denotes the j-th eigenvector which are sorted according to the
eigenvalues in the ascending order, and calculate the normalized correlation coefficient which is
defined as ⟨uj ,Gbuj/∥Gbuj∥2⟩. Note that when the eigenspace alignment holds, one can verify
that:

⟨uj ,
Gbuj

∥Gbuj∥2
⟩ =

{
1, λ

(j)
Gb
̸= 0

0, λ
(j)
Gb

= 0
for all j = 1, 2, . . . , nb. (45)

As shown in Figure 1b, the normalized correlation curves associated to the first d = 128 eigenvec-
tors converge to 1, whereas the rest converge to 0, implying the progressively alignment between
Gb and Mb.

Empirical Validation on Theorem 2. To verify Theorem 2, we conduct experiments on CIFAR-10
and CIFAR-100. The experimental setup keeps the same as described in Section B.1.2. In each
epoch, we compute Gb = Z⊤

b Zb and Mb = (I − Cb)(I − Cb)
⊤ from Zb and Cb in mini-batch

after the last iteration, respectively, and then find the eigenvalues of Gb and Mb. We display the
eigenvalue curves in Figure 1c and 1d, respectively. To enhance the clarity of the visualization,
the eigenvalues of Gb and Mb are sorted in descending and ascending order, respectively. As
can be observed, there are min {d, nb} = 128 non-zero eigenvalues in Gb, approximately being
inversely proportional to the smallest 128 eigenvalues of Mb. This results empirically demonstrate
that rank(Z⋆) = min{d,N} and λ

(i)
G⋆

= 1

γλ
(i)
M+ν⋆

− 1
α for minimizers.

Furthermore, to verify the sufficient condition of PRO-DSC to prevent feature space collapse,
we conduct experiments on CIFAR-10 and CIFAR-100 with varying α and γ, keeping all the
other hyper-parameters consistent with Table B.2. As can be read in Figure 2, Theorem 2 is
verified since that γ < 1

λmax(Mb)
α2

α+min{ d
N ,1} yields satisfactory clustering accuracy (ACC%)

and subspace-preserving representation error (SRE%). The satisfactory ACC and SRE confirm
that PRO-DSC avoids catastrophic collapse when γ < 1

λmax(M)
α2

α+min{ d
N ,1} holds. When γ ≥

1
λmax(Mb)

α2

α+min{ d
N ,1} , PRO-DSC yields significantly worse ACC and SRE. There is a phase tran-

sition phenomenon that corresponds to the sufficient condition to prevent collapse.12

Empirical Validation on Theorem 3. To intuitively visualize the structured representations learned
by PRO-DSC, we visualize the Gram matrices |Z⊤Z| and Principal Component Analysis (PCA)
results for both CLIP features and learned representations on CIFAR-10. The experimental setup
also keeps the same as described in Section B.1.2.

The Gram matrix shows the similarities between representations within the same class (indicated
by in-block diagonal values) and across different classes (indicated by off-block diagonal values).

12In experiments, we estimate that λmax(Mb) = 1 and thus the condition reduces to γ < α2

α+min{ d
N

,1}
.
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Moreover, we display the dimensionality reduction results via PCA for the CLIP features and the
learned representation of samples from three categories in CIFAR-10. We use PCA for dimension-
ality reduction as it performs a linear projection, well preserving the underlying structure.

As can be observed in Figure 3, the CLIP features from three classes approximately lie on different
subspaces. Despite of the structured nature of the features, the underlying subspaces are not orthog-
onal. In the Gram matrix of the CLIP feature, the average similarity between features from different
classes is greater than 0.6, resulting in an unclear block diagonal structure. After training with PRO-
DSC, the spanned subspaces of the learned representations become orthogonal.13 Additionally, the
off-block diagonal values of the Gram matrix decrease significantly, revealing a clear block diagonal
structure. These visualization results qualitatively verify that PRO-DSC aligns the representations
with a union of orthogonal subspaces.14

B.3 MORE EXPERIMENTAL RESULTS

B.3.1 MORE RESULTS OF PRO-DSC ON SYNTHETIC DATA

To explore the learning ability of our PRO-DSC, we prepare experiments on synthetic data with
adding an additional subspace, as presented in Figure B.1.

In case 1, we sample 100 points from Gaussian distribution x ∼ N ([ 1√
2
, 0, 1√

2
]⊤, 0.05I3) and

100 points from x ∼ N ([− 1√
2
, 0, 1√

2
]⊤, 0.05I3), respectively. We train PRO-DSC with batch-

size nb = 300, learning rate η = 5 × 10−3 for 5000 epochs and set γ = 1.3, β = 500, α =
3

0.1·300 . We observe that our PRO-DSC successfully eliminates the nonlinearity in representations
and maximally separates the different subspaces.

In case 2, we add a vertical curve

x =

cos ( 1
5 sin (5φ)

)
cosφ

sin
(
1
5 cos (5φ)

)
cos

(
1
5 sin (5φ)

)
sinφ

+ ϵ, (46)

from which 100 points are sampled, where ϵ ∼ N (0, 0.05I3). We use sin( 15 cos(5φ)) to avoid
overlap in the intersection of the two curves. We train PRO-DSC with batch-size nb = 200, learning
rate η = 5 × 10−3 for 8000 epochs and set γ = 0.5, β = 500, α = 3

0.1·200 . We observe that
PRO-DSC finds difficulties to learn representations of data which are located at the intersections of
the subspaces. However, for those data points which are away from the intersections are linearized
well.

(a) Case 1: Input data (b) Case 1: Learned Z (c) Case 2: Input data (d) Case 2: Learned Z

Figure B.1: Additional results on synthetic data.

B.3.2 EXPERIMENTS WITH BYOL PRE-TRAINING

To validate the effectiveness of our PRO-DSC without using CLIP features, we conduct a fair com-
parison with existing deep clustering approaches. Similar to most deep clustering algorithms, we

13The dimension of each subspace is much greater than one (see Figure B.4). The 1-dimensional subspaces
observed in the PCA results are a consequence of dimensionality reduction.

14Please refer to Figure B.3 and B.7 for the results on other datasets and the visualization of the bases of
each subspace.
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divide the training process into two steps. We begin with pre-training the parameters of the back-
bone with BYOL (Grill et al., 2020). Then, we leverage the parameters pre-trained in the first stage
and fine-tune the model by the proposed PRO-DSC loss function. Specifically, we set the learning
rate η = 0.05 and the batch size nb = 256. The output feature dimension d is consistent with the
setting for training with the CLIP features. Following (Li et al., 2021; Huang et al., 2023), We use
ResNet-18 as the backbone for the experiments on CIFAR-10 and CIFAR-20, and use ResNet-34
as the backbone for the experiments on other datasets, and use a convolution filter of size 3 × 3
and stride 1 to replace the first convolution filter. We use the commonly used data augmentations
methods to the input images, which are listed as follows:

transforms.RandomResizedCrop(size=img size, scale=(0.08, 1)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.2,
0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([transforms.GaussianBlur(kernel size=23,
sigma=(0.1, 2.0))], p=1.0).

When re-implementing other baselines, we use the code provided by the respective authors and
report the best performance after fine-tuning the hyper-parameters.

We report the clustering results based on BYOL pre-training in Table B.3. As can be read from
Table B.3, our PRO-DSC outperforms all the deep clustering baselines, including CC (Li et al.,
2021), GCC (Zhong et al., 2021), NNM (Dang et al., 2021), SCAN (Van Gansbeke et al., 2020),
NMCE (Li et al., 2022), IMC-SwAV (Ntelemis et al., 2022), and MLC (Ding et al., 2023).

Table B.3: Clustering performance comparison on BYOL pre-training. The best results are in
bold font and the second best results are underlined. Performance marked with “*” is based on our
re-implementation.

Method CIFAR-10 CIFAR-20 CIFAR-100 TinyImgNet-200 ImgNetDogs-15
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 22.9 8.7 13.0 8.4 9.2 23.0 2.5 6.5 10.5 5.5
SC 24.7 10.3 13.6 9.0 7.0 17.0 2.2 6.3 11.1 3.8
CC 79.0 70.5 42.9 43.1 26.9* 48.1* 14.0 34.0 42.9 44.5
GCC 85.6 76.4 47.2 47.2 28.2* 49.9* 13.8 34.7 52.6 49.0
NNM 84.3 74.8 47.7 48.4 41.2 55.1 - - 31.1* 34.3*
SCAN 88.3 79.7 50.7 48.6 34.3 55.7 - - 29.6* 30.3*
NMCE 89.1 81.2 53.1 52.4 40.0* 53.9* 21.6* 40.0* 39.8 39.3
IMC-SwAV 89.7 81.8 51.9 52.7 45.1 67.5 28.2 52.6 - -
MLC 92.2 85.5 58.3 59.6 49.4 68.3 28.7* 52.2* 71.0* 68.3*
Our PRO-DSC 93.0±0.6 86.5±0.2 58.3±0.9 60.1±0.6 56.3±0.6 66.7.0±1.0 31.1±0.3 46.0±1.0 74.1±0.5 69.5±0.6

B.3.3 MORE EXPERIMENTS ON CLIP, DINO AND MAE PRE-TRAINED FEATURES

Clustering on learned representations. To quantitatively validate the effectiveness of the struc-
tured representations learned by PRO-DSC, we illustrate the clustering accuracy of representations
learned by various algorithms in Figure 6. Here, to compared with the representations learned from
SEDSC methods, we additionally conduct experiments on DSCNet (Ji et al., 2017) and report the
performance in Table B.4. To apply DSCNet on CLIP features, we use MLPs with two hidden layers
to replace the stacked convolutional encoder and decoder. As demonstrated in Sec. B.1, we report
the best clustering results after the tuning of hyper-parameters. As analyzed in (Haeffele et al., 2021)
and Section 2.1, DSCNet overly compresses the representations and yields unsatisfactory clustering
results.

Out of domain datasets. We evaluate the capability to refine features by training PRO-DSC
with pre-trained CLIP features on out-of-domain datasets, namely, MNIST (Deng, 2012), Fash-
ion MNIST (Xiao et al., 2017) and Oxford flowers (Nilsback & Zisserman, 2008). As shown in
Table B.5, CPP (Chu et al., 2024) refines the CLIP features and yields better clustering performance
comparing with spectral clustering (Shi & Malik, 2000) and EnSC (You et al., 2016a). Our PRO-
DSC further demonstrates the best performance on all benchmarks, validating its effectiveness in
refining input features.
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Table B.4: Clustering accuracy of CLIP features and learned representations. We apply k-
means, spectral clustering, and EnSC to cluster the representations.

CIFAR-10 CIFAR-100 CIFAR-20 TinyImgNet-200
k-means SC EnSC k-means SC EnSC k-means SC EnSC k-means SC EnSC

CLIP 74.7 70.2 95.4 52.8 66.4 67.0 46.9 49.2 60.8 54.1 62.8 64.5
SEDSC 16.4 18.9 16.9 5.4 4.9 5.3 11.7 10.6 12.8 5.7 3.9 7.2
CPP 71.3 70.3 95.6 75.3 75.0 77.5 55.5 43.6 58.3 62.1 58.0 67.0
PRO-DSC 93.4 92.1 95.5 76.5 75.2 77.6 66.0 59.7 60.0 67.6 67.0 69.5

Table B.5: Experiments on out-of-domain datasets.

Methods MNIST F-MNIST Flowers
ACC NMI ACC NMI ACC NMI

Spectral Clustering (Shi & Malik, 2000) 74.5 67.0 64.3 56.8 85.6 94.6
EnSC (You et al., 2016a) 91.0 85.3 69.1 65.1 90.0 95.9
CPP (Chu et al., 2024) 95.7 90.4 70.9 68.8 91.3 96.4
PRO-DSC 96.1 90.9 71.3 70.3 92.0 97.4

Experiments on block diagonal regularizer with different k. To test the robustness of block diag-
onal regularizer ∥A∥ κ to different k, we vary k and report the clustering performance in Table B.6.
As illustrated, k does not necessarily equal to the number of clusters. There exists an interval within
which the regularizer works effectively.

Table B.6: Clustering performance with different k in block diagonal regularizer.

k 2 5 10 15 20 25 30

CIFAR-10 ACC 97.2 97.2 97.4 96.3 96.3 95.4 94.0
NMI 93.2 93.2 93.5 92.0 92.0 90.7 88.6

k 25 50 75 100 125 150 200

CIFAR-100 ACC 74.3 76.7 78.1 78.2 78.9 76.4 74.8
NMI 80.9 82.3 83.2 82.9 83.2 82.2 81.5

But if k is significantly smaller than the number of clusters, the effect of block diagonal regularizer
will be subtle. Therefore, the performance of PRO-DSC will be similar to that of PRO-DSC without
a regularizer (see ablation studies in Section 3). In contrary, if k is significantly larger than the
number of clusters, over-segmentation will occur to the affinity matrix, which has negative impact
on the subsequent clustering performance.

Clustering on ImageNet-1k with DINO and MAE. To test the performance of PRO-DSC based
on more pre-trained features other than CLIP (Radford et al., 2021), we further conduct experiments
on ImageNet-1k (Deng et al., 2009) pre-trained by DINO (Caron et al., 2021) and MAE (He et al.,
2022) (see Table B.7).

DINO and MAE are pre-trained on ImageNet-1k without leveraging external training data, thus
their performance on PRO-DSC is lower than CLIP. Similar to the observations in CPP (Chu et al.,
2024), DINO initializes PRO-DSC well, yet MAE fails, which is attributed to the fact that features
from MAE prefer fine-tuning with labels, while they are less suitable for learning inter-cluster dis-
criminative representations (Oquab et al., 2024). We further extract features from the validation
set of ImageNet-1k and visualize through t-SNE (Van der Maaten & Hinton, 2008) to validate the
hypothesis (see Figure B.2).

B.3.4 EXPERIMENTS WITHOUT USING PRE-TRAINED MODELS

Experiments on Reuters and UCI HAR. During the rebuttal, we conducted extra experiments
on datasets Reuters and UCI HAR. The dataset Reuters-10k consists of four text classes, containing
10,000 samples of 2,000 dimension. The UCI HAR is a time-series dataset, consisting of six classes,
10,299 samples of 561 dimension. We take EDESC (Cai et al., 2022) as the baseline method for
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Table B.7: Clustering Performance of PRO-DSC based on DINO and CLIP pre-trained features on
ImageNet-1k.

Method Backbone PRO-DSC k-means
ACC NMI ACC NMI

MAE (He et al., 2022) ViT L/16 9.0 49.1 9.4 49.3
DINO (Caron et al., 2021) ViT B/16 57.3 79.3 52.2 79.2
DINO (Caron et al., 2021) ViT B/8 59.7 80.8 54.6 80.5
CLIP (Radford et al., 2021) ViT L/14 65.1 83.6 52.5 79.7
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Figure B.2: The t-SNE visualization of CLIP and MAE features on the validation set of ImageNet-
1k.

deep subspace clustering on Reuters-10k, and take N2D (McConville et al., 2021) and FCMI (Zeng
et al., 2023) as the baseline methods for UCI HAR, in which the results are directly cited from the
respective papers. We conducted experiments with PRO-DSC on Reuters and UCI HAR following
the same protocol for data processing as the baseline methods. We train and test PRO-DSC on the
entire dataset and report the results over 10 trials. Experimental results are provided in Table B.8.
The hyper-parameters used for PRO-DSC is listed in Table B.9.

Table B.8: Experimental Results on Datasets Reuters and UCI HAR with 10 trials. The results of
other methods are cited from the respective papers.

Dataset REUTERS-10k UCI HAR
ACC NMI ACC NMI

k-means (MacQueen, 1967) 52.4 31.2 59.9 58.8
SC (Shi & Malik, 2000) 40.2 37.5 53.8 74.1
AE (Bengio et al., 2006) 59.7 32.3 66.3 60.7

VAE (Kingma & Welling, 2014) 62.5 32.9 - -
JULE (Yang et al., 2016) 62.6 40.5 - -
DEC (Xie et al., 2016) 75.6 68.3 57.1 65.5
DSEC (Chang et al., 2018) 78.3 70.8 - -
EDESC (Cai et al., 2022) 82.5 61.1 - -

DFDC (Zhang & Davidson, 2021) - - 86.2 84.5
N2D (McConville et al., 2021) - - 82.8 71.7
FCMI (Zeng et al., 2023) - - 88.2 80.7

PRO-DSC 85.7 ± 1.3 64.6 ± 1.3 87.1 ± 0.4 80.9 ± 1.2
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Table B.9: Configuration of hyper-parameters for experiments on Reuters, UCI HAR, EYale-B,
ORL and COIL-100.

Dataset η dpre d #epochs nb #warm-up γ β

REUTERS-10k 10−4 1024 128 100 1024 50 50 200
UCI HAR 10−4 1024 128 100 2048 20 100 300
EYale-B 10−4 1080 256 10000 2432 100 200 50
ORL 10−4 80 64 5000 400 100 75 10
COIL-100 10−4 12800 100 10000 7200 100 200 100

Comparison to AGCSC and SAGSC on Extended Yale B, ORL, and COIL-100. During the re-
buttal, we conducted more experiments on two state-of-the-art subspace clustering methods AGCSC
(Wei et al., 2023) and ARSSC (Wang et al., 2023a). Since that both of the two methods cannot handle
the datasets used for evaluating our PRO-DSC, we conducted experiments on the datasets: Extended
Yale B (EYaleB), ORL, and COIL-100. We set the architecture of pre-feature layer in PRO-DSC as
the same to the encoder of DSCNet (Ji et al., 2017). The hyper-parameters configuration for training
PRO-DSC is summarized in Table B.9. We repeated experiments for 10 trails and report the aver-
age with standard deviation in Table B.10. As baseline methods, we use EnSC (You et al., 2016a),
SSCOMP (You et al., 2016b), S3COMP (Chen et al., 2020b), DSCNet, DSSC (Lim et al., 2020)
and DELVE Zhao et al. (2024). The results of these methods, except for S3COMP and DELVE, are
directly cited them from DSSC (Lim et al., 2020), and the results of S3COMP and DELVE are cited
from their own papers.

• Comparison to AGCSC. Our method surpasses AGCSC on the Extended Yale B dataset
and achieves comparable results on the ORL dataset. However, AGCSC cannot yield the
result on COIL-100 in 24 hours.

• Comparison to ARSSC. ARSSC employs three different non-convex regularizers: ℓγ norm
Penalty (LP), Log-Sum Penalty (LSP), and Minimax Concave Penalty (MCP). While
ARSSC-MCP performs the best on Extended Yale B, our PRO-DSC outperforms ARSSC-
MCP on ORL. While AGCSC performs the best on ORL, but it yields inferior results on
Extended Yale B and it cannot yield the results on COIL-100 in 24 hours. Thus, we did
not report the results of AGCSC on COIL-100 and marked it as Out of Time (OOT). Our
PRO-DSC performs the second best results on Extended Yale B, ORL and the best results
on COIL-100. Since that we have not found the open-source code for ARSSC, we are un-
able to have their results on COIL-100. This comparison also confirms the scalablity of our
PRO-DSC which is due to the re-parametrization (similar to SENet).

Table B.10: Experiments on Extended Yale B, ORL and COIL-100.

EYale-B ORL COIL-100
ACC NMI ACC NMI ACC NMI

EnSC 65.2 73.4 77.4 90.3 68.0 90.1
SSCOMP 78.0 84.4 66.4 83.2 31.3 58.8
S3COMP-C (Chen et al., 2020b) 87.4 - - - 78.9 -
DSCNet 69.1 74.6 75.8 87.8 49.3 75.2
DELVE (Zhao et al., 2024) 89.8 90.1 - - 79.0 93.9
J-DSSC (Lim et al., 2020) 92.4 95.2 78.5 90.6 79.6 94.3
A-DSSC (Lim et al., 2020) 91.7 94.7 79.0 91.0 82.4 94.6

AGCSC (Wei et al., 2023) 92.3 94.0 86.3 92.8 OOT OOT
ARSSC-LP (Wang et al., 2023a) 95.7 - 75.5 - - -
ARSSC-LSP (Wang et al., 2023a) 95.9 - 71.3 - - -
ARSSC-MCP (Wang et al., 2023a) 99.3 - 72.0 - - -

PRO-DSC 96.0± 0.3 95.7± 0.8 83.2± 2.2 92.7± 0.6 82.8± 0.9 95.0± 0.6

B.4 MORE VISUALIZATION RESULTS

Gram matrices and PCA visualizations. To qualitatively validate that PRO-DSC learns represen-
tations aligning with a union-of-orthogonal-subspaces distribution, we visualize the Gram matrices
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and PCA dimension reduction results of CLIP features and learned representations from PRO-DSC
for each dataset. As shown in Figure B.3, the off-block diagonal values decrease significantly, im-
plying the orthogonality between representations from different classes. The orthogonal between
subspaces can also be observed from the PCA dimension reduction results.

Singular values visualization. To show the intrinsic dimension of CLIP features and the represen-
tations of PRO-DSC, We plot the singular values of CLIP features and PRO-DSC’s representations
in Figure B.4. Specifically, the singular values of features from all the samples are illustrated on
the left and the singular values of features within each class are illustrated on the middle and right.
As can be seen, the singular values of PRO-DSC decrease much slower than that of CLIP, implying
that the features of PRO-DSC enjoy a higher intrinsic dimension and more isotropic structure in the
ambient space.

Learning curves. We plot the learning curves with respect to loss values and performance of PRO-
DSC on CIFAR-100, CIFAR-20 and ImageNet-1k in Figure B.5a, Figure B.5b and Figure B.5c,
respectively. Recall that L1 := − 1

2 log det
(
I + αZ⊤

ΘZΘ

)
, L2 := 1

2∥ZΘ − ZΘCΨ∥2F , and L3 :=
∥AΨ∥ κ . Since L1 is the only loss function used in the warm-up stage, we plot all the curves
starting from the iteration when warm-up ends. As illustrated, the clustering performance of PRO-
DSC steadily increase as the loss values gradually decrease, which shows the effectiveness of the
proposed loss functions in PRO-DSC.

t-SNE visualization of learned representations. We visualize the CLIP features and cluster repre-
sentations learned by PRO-DSC leveraging t-SNE (Van der Maaten & Hinton, 2008) in Figure B.6.
As illustrated, the learned cluster representations are significantly more compact compared with the
CLIP features, which contributes to the improved clustering performance.

Subspace visualization. We visualize the principal components of subspaces learned by PRO-DSC
in Figure B.7. For each cluster in the dataset, we apply Principal Component Analysis (PCA) to
the learned representations. We select the top eight principal components to represent the learned
subspaces. Then, for each principal component, we display eight images whose representations are
most closely aligned with that principal component.

Interestingly, we can observe specific semantic meanings from the principal components learned by
PRO-DSC. For instance, the third row of Figure B.7a consists of stealth fighters, whereas the fifth
row shows airliners. The second row of Figure B.7c consists of birds standing and resting, while the
sixth row shows flying eagles. While Figure B.7j consists of all kinds of trucks, the first row shows
fire trucks.

C LIMITATIONS AND FAILURE CASES

Limitations: In this paper, we explore an effective framework for deep subspace clustering with
theoretical justification. However, it is not clear how to develop the geometric guarantee for our
PRO-DSC framework to yield correctly subspace-preserving solution. Moreover, it is an unsuper-
vised learning framework, we left the extension to semi-supervised setting as future work.

Failure Cases: In this paper, we evaluate our PRO-DSC framework on four scenarios of synthetic
data (Fig. 5 and B.1), six benchmark datasets with CLIP features (Table 1), five benchmark datasets
with BYOL pre-trained features (Table B.3), three out-of-domain datasets (Table B.5), using four
different regularization terms (Table 3), using different feature extractor (Table B.7) and varying
hyper-parameters (Fig. 7 and Table B.6). We also conduct experiments on two face image datasets
(Table B.10), text and temporal dataset (Table B.8) . However, as demonstrated in Fig. 1, our PRO-
DSC will fail if the sufficient condition to prevent catastrophic collapse is not satisfied by using
improper hyper-parameters γ and α.

Extensibility: As a general framework for self-expressive model based deep subspace clustering,
our PRO-DSC is reasonable, scalable and flexible to miscellaneous extensions. For example, rather
than using log det(·), there are other methods to solve the feature collapse issue, e.g., the nuclear
norm. In addition, it is also worthwhile to incorporate the supervision information from the pseudo-
label, e.g., (Huang et al., 2023; Jia et al., 2025; Li et al., 2017), for further improving the performance
of our PRO-DSC.
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(a) CIFAR-20
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(b) CIFAR-100
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(c) TinyImageNet-200
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(d) ImageNet-Dogs-15
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(e) ImageNet-1k

Figure B.3: Visualization of the union-of-orthogonal-subspaces structure of the learned repre-
sentations via Gram matrix and PCA dimension reduction on three categories. Left: |X⊤X|.
Mid-left: |Z⊤Z|. Mid-right: X(3) via PCA. Right: Z(3) via PCA.
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(a) CIFAR-100

0 10 20 30
Components

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue
s

Singular values of all samples

CLIP
PRO-DSC

0 10 20 30
Components

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue
s

Singular values of CLIP from each class

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

0 10 20 30
Components

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue
s

Singular values of PRO-DSC from each class

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

(b) TinyImageNet-200
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(c) ImageNet-1k

Figure B.4: Singular values of features from all samples (left) and features from each class (mid
and right). For the better clarity, we plot the singular values for the first ten classes.
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(c) ImageNet-1k

Figure B.5: The learning curves w.r.t. loss values and evaluation performance of PRO-DSC on
CIFAR-20, CIFAR-100 and ImageNet-1k dataset.
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Figure B.6: t-SNE visualization of CLIP features and PRO-DSC’s learned representations. The
experiments are conducted on CIFAR-10 and CIFAR-100 dataset.

33



Published as a conference paper at ICLR 2025

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6

(g) Cluster 7 (h) Cluster 8 (i) Cluster 9

(j) Cluster 10

Figure B.7: Visualization of the principal components in CIFAR-10 dataset. For each cluster,
we display the most similar images to its principal components.
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