
3D-GENERALIST: Vision-Language-Action Models for Crafting 3D Worlds

Supplementary Material

6. Additional Details of 3D-GENERALIST

Here, we provide more detail for the implementation of var-
ious components in 3D-GENERALIST.

6.1. Scene-Level Policy

The base prompt we use as input to our VLM is:

Task: As a programmer, you are required to complete

an implementation. Use a Chain-of-Thought approach

to break down the problem, create pseudocode, and

then write the code in Python language. Ensure that

your code is efficient, readable, and well-

commented.

Return the requested information from the function you

create. Remember to call the function your create

towards the end.

Dos and Don’ts:

* Only use the API functions provided. Please do not

import any of them. You can use the functions

directly, assuming they are already imported.

* Give scene elements unique and descriptive names. For

example, brown_leather_sofa, ceiling_light,

tall_floor_lamp.

* You can duplicate or remove assets and lights by

manipulating the attribute "placements" of the

asset instance or just delete the entry from the

scene.objects dictinoary.

* Make sure to provide detailed but key-word focused

descriptions of any new objects or materials you

aim to retrieve. For example, "L-shaped, brown

leather sofa with plush seat and colorful pillow"

instead of "a sofa".

* Positions are bounding box center in meters, given as

[x, y, z]. Rotations are in degrees. The assets are

upright, so you only have to change and specify

the one number: z-axis rotation.

* Make all modifications to the SceneDef instance named

"scene" as we will read out the results from the

variable named ‘scene‘.

* Do not re-initialize the scene by calling SceneDef()

again. The scene is already initialized and you can

access the current scene using the variable "scene

".

* Note that the lighting and material attributes are by

default None. You need to set them by instantiating

the class Lighting or Material if you want to

change the lighting or material of the scene

element.

* Make sure to always specify the position and rotation

of newly added objects, otherwise the objects will

be added at the origin.

3D Convention:

- We use a right-handed coordinate system.

- For the scene, the X-Y plane is the floor, the Z axis

points up to the ceiling.

- For each asset, the front face points in the positive

X axis. The Z-axis points up. For example, a z-axis

rotation of 90 means that the object will be

rotated to face the positive Y axis.

- The bounding box of the asset is aligned with the

asset’s local frame. The local origin is at the

center in the X-Y plane and the bottom of the asset

in the Z axis. An object having a z-axis position

of 0 means that object is on the floor.

Scene Domain Specific Language Here, we detail the
types of descriptors defined in our Scene DSL. The Cate-

gory descriptor, C, specifies the type of the scene element,
where C → {floors, walls, ceilings, objects}. The Place-

ment descriptor, P = [(x, y, z), ωz, s], defines the spatial
attributes of the element, where (x, y, z) → R3 specifies
the position in 3D space, ωz → [0, 2ε] represents the ro-
tation around the z-axis, and s → R3 is the scale of the
element. Placement can include a list of such tuples to al-
low for multiple placements of a particular scene element.
The Material descriptor, M = desc, provides a natural
language description (desc → NL) of the element’s surface
properties. The Lighting descriptor, L = (t, i, c), spec-
ifies the type of the light, t → {point, directional, area},
along with its intensity i → R+ and color c → R3, where
c = (r, g, b) and r, g, b → [0, 1] represent the normal-
ized RGB color values. Finally, the Metadata descriptor,
D, captures additional category-specific attributes, details
of which are provided in the supplementary materials. Be-
low, we provide the implementation in Python:

from pydantic import BaseModel, Field, conint

from typing import List, Optional, Dict, Literal, Any

import math

import numpy as np

class Placement(BaseModel):

position: List[float] = Field(description="(x, y, z)

position of the asset. z=0 means the asset is

on the ground.", default=[0, 0, 0])

rotation: List[float] = Field(description="(x, y, z-

axis) Rotation of the asset in degrees. Most

assets are upright in the source data, so

rotation is mostly around the z-axis.", default

=[0, 0, 0])

scale: float = Field(description="Axis-aligned size

of the bounding box before the rotation is

applied", default=1.)

class Material(BaseModel):

id: str = Field(description="ID of the material")

description: str = Field(description="Description of

the material")

class Lighting(BaseModel):

is_ceiling_light: bool = Field(description="Whether

the lighting is a ceiling light", default=False

)

light_type: Literal["spotlight", "directional", "

point"] = Field(description="Type of the light

", default="point")

energy: float = Field(description="Energy /

intensity of the light in lux (indoor lights

typically range from 100 to 1000)", default

=100)

color: List[float] = Field(description="Color of the

light in RGB format (0-1, not 0-255)", default

=[1, 0.75, 0.6])

class SceneElement(BaseModel):

description: str = Field(description="Detailed

natural language description of the scene

element", default="")

category: Literal["floors", "walls", "ceilings", "

doors", "windows", "objects"] = Field(

description="Category of the scene element")

placements: List[Placement] = Field(description="

Placement information for the scene element")

bbox_size: Optional[List[float]] = Field(description

="Axis-aligned size of the bounding box before

the rotation is applied", default=None)

material: Optional[Material] = Field(description="

Default material applied to the scene element (

applicable for floors, walls, ceilings, doors,

windows)", default=None)

lighting: Optional[Lighting] = Field(description="

Lighting attached to the scene element that

emits light (only applicable for ’objects’

category)", default=None)

metadata: Optional[Dict[str, Any]] = Field(

description="Additional metadata for the scene

element", default=None)

class SceneDef(BaseModel):

objects: Dict[str, SceneElement] = Field(description

="Dictionary of assets in the scene with asset

variable name as keys. The asset variable name

should be a valid Python variable name.",

default={})

room_type: Optional[str] = Field(description="room

type", default="an interior scene")

scene = SceneDef()

Asset-level policy details After mesh-based surface de-
tection, we find valid surfaces on the receptacle object by
identifying all planes with normals deviating from [0, 0, 1]
by less than 10 degrees then cluster them together and keep
the clusters above a threshold area.

Functional APIs We provide the set of functions that
we provide to our VLM in Scene-Level Policy, mainly re-
trieve material to retrieve materials and add object to re-
trieve 3D assets from language.
This is the documentation for the functions you have

access to. You may call any of these functions to

help you complete the task.

retrieve_material(description: str) -> scene_definition.

Material:

’retrieve_material’ is a tool that can retrieve a PBR

material from language description.

It returns a dictionary containing the id and

description of the retrieved material.

Parameters:

description (str): The description of the

material to change the wall to

Returns:

Material: A dictionary containing the id and

description of the retrieved material.

add_object(description: str, bbox_size: list = None, num

: int = 1) -> scene_definition.SceneElement:

’add_object’ is a tool that can retrieve an asset

from the database from language description.

It is necessary to call this function to add any new

object to the scene, including lighting

related objects.

It returns a dictionary containing the id,

description, size, and other optional metadata

of the retrieved asset.

Note that the asset is added to the origin (center

of the scene) with no rotation so you might

need to adjust the position and rotation of the

retrieved asset.

Parameters:

description (str): The description of the asset

to retrieve

bbox_size (list, optional): A list of 3 floats [

x, y, z] specifying the desired dimensions

of the object in meters.

This controls the

size of the

generated object

. The z-axis

value denotes

the height of

the object.

Defaults to

[1.0, 1.0, 1.0].

num (int, optional): Number of instances of this

object to create. Defaults to 1.

Returns:

SceneElement: a scene element containing the id,

description, size, and other optional

metadata of the retrieved asset.

load_image(image_path: str) -> numpy.ndarray:

’load_image’ is a utility function that loads an image

from the given file path string.

Parameters:

image_path (str): The path to the image.

Returns:

np.ndarray: The image as a NumPy array.

In-Context Library Our in-context library is a curated
collection of code snippets that have demonstrated at least a
10% improvement in CLIP-alignment metrics when modi-
fying a 3D environment. These snippets serve as in-context
examples during generation. By randomly sampling from
this library when producing candidate actions, the policy is
nudged toward more diverse and effective action codes. Af-
ter each self-improvement training round, newly discovered
high-quality prompt and action code pairs are appended to
this library. Below, we showcase an example code snippet
from our in-context library for the prompt: a chic hair salon

with round mirrors, pink chairs, and pot plants.
Add pink salon chairs

pink_salon_chairs = add_object("plush pink salon chair",

num=4)

scene.objects[’pink_salon_chairs’] = pink_salon_chairs

Position the chairs along a wall

scene.objects[’pink_salon_chairs’].placements[0].

position = [-1.5, 1.5, 0]

scene.objects[’pink_salon_chairs’].placements[0].

rotation = [0, 0, 0]

scene.objects[’pink_salon_chairs’].placements[1].

position = [-0.5, 1.5, 0]

scene.objects[’pink_salon_chairs’].placements[1].

rotation = [0, 0, 0]

scene.objects[’pink_salon_chairs’].placements[2].

position = [0.5, 1.5, 0]

scene.objects[’pink_salon_chairs’].placements[2].

rotation = [0, 0, 0]

scene.objects[’pink_salon_chairs’].placements[3].

position = [1.5, 1.5, 0]

scene.objects[’pink_salon_chairs’].placements[3].

rotation = [0, 0, 0]

Add round mirrors on the walls above the chairs

round_mirrors = add_object("large round mirror", num=4)

scene.objects[’round_mirrors’] = round_mirrors

scene.objects[’round_mirrors’].placements[0].position =

[-1.5, 1.5, 1.5] # Positional match to the chair

scene.objects[’round_mirrors’].placements[0].rotation =

[0, 0, 0]

scene.objects[’round_mirrors’].placements[1].position =

[-0.5, 1.5, 1.5]

scene.objects[’round_mirrors’].placements[1].rotation =

[0, 0, 0]

scene.objects[’round_mirrors’].placements[2].position =

[0.5, 1.5, 1.5]

scene.objects[’round_mirrors’].placements[2].rotation =

[0, 0, 0]

scene.objects[’round_mirrors’].placements[3].position =

[1.5, 1.5, 1.5]

scene.objects[’round_mirrors’].placements[3].rotation =

[0, 0, 0]

Add pot plants

pot_plants = add_object("stylish pot plant", num=4)

scene.objects[’pot_plants’] = pot_plants

scene.objects[’pot_plants’].placements[0].position =

[-2.9, 3.9, 0] # Corners of the room

scene.objects[’pot_plants’].placements[0].rotation = [0,

0, 0]

scene.objects[’pot_plants’].placements[1].position =

[-0.9, 3.9, 0]

scene.objects[’pot_plants’].placements[1].rotation = [0,

0, 0]

scene.objects[’pot_plants’].placements[2].position =

[1.1, 3.9, 0]

scene.objects[’pot_plants’].placements[2].rotation = [0,

0, 0]

scene.objects[’pot_plants’].placements[3].position =

[2.9, 3.9, 0]

scene.objects[’pot_plants’].placements[3].rotation = [0,

0, 0]

Update materials

scene.objects[’walls_0’].material = retrieve_material("

smooth light pink plaster wall")

scene.objects[’floors’].material = retrieve_material("

glossy light wood flooring")

scene.objects[’ceilings’].material = retrieve_material("

sleek white matte ceiling")

Add modern lighting

modern_ceiling_lights = add_object("modern ceiling light

fixture", num=1)

scene.objects[’ceiling_lights’] = modern_ceiling_lights

scene.objects[’ceiling_lights’].placements[0].position =

[0, 0, 3.5] # Center of the ceiling

scene.objects[’ceiling_lights’].placements[0].rotation =

[0, 0, 0]

Define the ceiling light parameters

modern_lighting = Lighting(

is_ceiling_light=True,

light_type="point",

energy=700, # Bright energy

color=[1.0, 1.0, 1.0] # Neutral white light for

natural illumination

)

Attach the lighting to the ceiling light fixture

scene.objects[’ceiling_lights’].lighting =

modern_lighting

6.2. Asset-Level Policy

We provide the base prompts we fed to our VLM policy
(i.e., Molmo-7B [13]) at each step of the iteration:

- Description prompt
You are iteratively placing small objects on the {

base_object_description} through multiple rounds

Your current goal is to add one object to the current

scene as shown in the image.

Give a concrete description in less than 15 words of the

appearance of a small object that makes sense to

be placed on {base_object_description} given what

you already see placed.

No need to justify your choice, just describe the placed

object in less than 15 words.

- Location prompt
You are looking at the following object: {

base_object_description}.

Point to one location where it makes the most sense to

place {retrieved_object_description} such that it

does not collide with other objects but could even

be on inside or on top of another object.

Initially, we prompted the VLM for O, a set of plau-
sible placement locations, and then iterated through them,
prompting the VLM for descriptions of objects to place at
each location o→

i. This did not work as the pointing mecha-
nism of the VLM tended to cluster points nearest the cam-
era, and much of the object was occluded from view. Empir-
ically, randomizing view points can alleviate this issue. We
also found qualitatively that it is important to use the VLM
prior to decide where to place an asset given the language
description of the asset, as illustrated in Figure 8.

Our final implementation prompts the VLM for an object
to place then prompts for a pixel location.

“Pantry shelf full of spices”

Figure 8. We experimented with two approaches for the asset level
policy: prompt the VLM to point to a location then prompt for a
description of the object to add (left) or prompt the VLM for a
description of the next object to add then prompt it for a location
(right). Note that in the right image, we provide the object as con-
text to the VLM which helps to better space out the placements.

6.3. Limitations
A key limitation of 3D-GENERALIST is that it is fine-tuned
to generate prompt-aligned 3D environments measure by
CLIP similarity score, which is a metric not inherently sen-
sitive to different spatial arrangements of the same set of
assets. As a result, generated scenes often lack nuanced
spatial reasoning, leading to layout that is not necessary
functionally correct as shown in the top-right example in
Figure 9.

Minimalistic bathroom with clean lines
and neutral tones

Domed observatory with a large telescope
and star charts on the walls

Biophilic lobby with water feature and
natural wood elements

Bar with brick walls and a large
marble bar counter

A Victorian-style Solarium

A teenager’s bedroom with a study desk

Figure 9. More results from 3D-GENERALIST. The rightmost column contains two examples of panoramic image renderings.

7. Details of our Experiments
We make design choices for our experiments to remain
within a reasonable time and compute budget. Instead
of using text or image-to-3D asset generators [59], diffu-
sion models for PBR material synthesis, or the latest state-
of-the-art Vision-Language Models to enhance generation
quality, we rely on asset and material repositories for re-
trieval and use GPT-4o as the base model (except that we
use Molmo-7B [13] to output pixel locations in Asset-Level

Policy) and its fine-tuning API. In all experiments and base-
lines, we applied a combination of manual and automated
filtering techniques to Objaverse [12], resulting in a curated
set of 200,000 3D assets, following the methodology out-
lined in [45]. Additionally, we scraped ambientCG2, ob-
taining 2,000 PBR materials. It is important to note that all
baselines utilized the same asset and material repositories.

Below, we first detail the two chosen general image-
domain benchmarks commonly used to evaluate Vision-
Language Models in one of our experiments in evaluating
3D-GENERALIST’s Scene-Level Policy. Subsequently, we
discuss our implementation of the baseline in our experi-
ment for Asset-Level Policy.

2
https://ambientcg.com/

7.1. VLM Benchmarks

Here we detail the two benchmarks we use in section 4.1
to evaluate 3D-GENERALIST’s Scene-Level Policy’s visual
grounding abilities.

Object HalBench [38] compares the objects mentioned in
the model’s generations to the annotated objects from
COCO images [27], thus providing an object-level hal-
lucination rate for the model’s image descriptions. We
follow [58]’s implementation with augmented prompt-
ing and gpt-4-turbo judging hallucinations, and
report the CHAIR scores (frequency of hallucinatory
objects in model responses) at both the response level
(CHAIRs) and object level (CHAIRi).

AMBER [47] assesses the VLM’s hallucinations with
fine-grained object, attribute, and relation annotations.
We follow the official implementation for the genera-
tive task of AMBER and report the metrics CHAIR,
COVER (ground-truth object coverage), HAL (rate of
hallucinated responses), and COG (rate of hallucina-
tory objects similar to human cognition).

7.2. Scene-Level Policy’s Evaluation
Baseline choice In our experiment, we compared to Lay-
outGPT [17] and Holodeck [55]. We were unable to com-
pare against SceneCraft [23], since its source code is not
available. Although AnyHome [19] has released part of the
source code, the full release has not yet occurred. PhyScene
[54] is not an open-vocabulary layout generation method, it
can only generate layout for a fixed set of categories.

7.3. Asset-Level Policy’s Evaluation
ProcTHOR [11] also has a method to place small objects
on surfaces of “receptacle objects”. However, rather than
being placed according to a natural language prompt, ob-
jects are placed based on the frequency that a given object
type appears on the receptacle in the hand-modeled AI2thor
and RoboTHOR datasets. Thus, we opt to compare with an
inpainting-based baseline mainly.

As ARCHITECT [50]’s code is unreleased at the time of
writing this paper, we implemented a similar method that
inpaints the placeable areas, uses a VLM to identify the ob-
jects, gets each object’s bounding box to determine place-
ment location, then retrieves objects according to their de-
scription and places them. More specifically, the inpainting
model takes as input a rendered view of the object and a
mask of the areas to generate. We render a front or top-
front view of the “receptacle asset” and generate a mask of
the placeable areas (on a table, between shelves) by placing
a cube in or on top of the asset slightly smaller than the ob-
ject’s bounding box. We then use GPT-4o to create a list of
objects and prompt GroundingDino [36] with the inpainted
image to retrieve bounding boxes. Using the pixel location
at the center of the bottom of each bounding box and the
camera parameters, we generate a 3D ray to get a precise
placement location. To remain consistent with our iterative
method, we restrict placement to a maximum of 10 of the
identified objects.

7.4. GPU cost
Unlike existing monolithic pipelines, 3D-GENERALIST’s
iterative design allows rendering and reasoning over com-
plex scenes in a way that can scale with compute. All our
experiments are conducted with A100s, with 1-3 minutes
needed to generate the 3D scenes shown in Figure 1. Un-
like existing monolithic pipelines, 3D-GENERALIST’s iter-
ative design allows rendering and reasoning over complex
scenes in a way that can scale with compute. All our exper-
iments are conducted with A100s, requiring 1-3 minutes to
generate the 3D scenes shown in Figure 1.

