
Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

A Homophily Metrics

Here we review some commonly used metrics to measure homophily [23, 64]. We denote z 2 RN as
labels of nodes, and Z 2 RN⇥C as the one-hot encoding of labels, where C is the number of classes.
Edge homophily Hedge and node homophily Hnode are defined as follows:

Hedge =
{eij |eij 2 E , zi = zj}

|E| , Hnode =
1

|V|
X

u2V

|yu = yv : v 2 N (v)|
|N (u)| . (18)

Adjusted edge homophily H⇤
edge considers classes imbalance and is defined as [50] :

H⇤
edge =

Hedge �
P

c p
2(c)

1�
P

c p
2(c)

. (19)

Here p(c) =
P

i:zi=c Dii/(2|E|), c = 1 : C, defines the degree-weighted distribution of class labels.
The class homophily is also proposed to take class imbalance into account [65]:

Hclass =
1

C � 1

X

c


hc �

|{vi|zi = c}|
N

�

+

(20)

hc =

P
vi:zi=c |{eij |eij 2 E , zi = zj}|P

vi:zi=c Dii
. (21)

Label informativeness, which indicates the amount of information a neighbor’s label provides about
node’s label, is defined as follows [50]:

LI = 2�
P

c1,c2
p(c1, c2) log p(c1, c2)P
c p(c) log p(c)

, (22)

where p(c1, c2) = |{eij |eij 2 E , zi = c1, zj = c2}|/(2|E|). The aggregation homophily HM
agg(G)

measures the proportion of nodes that assign greater average weights to intra-class nodes than
inter-class nodes. It is defined as follows [39]:

HM
agg(G) =

1

|V|
��{vi|Meanj({S(Â,Z)ij |zi = zj}) (23)

� Meanj({S(Â,Z)ij |zi 6= zj})}
��,

where S(Â,Z) = ÂZ(ÂZ)T defines the post-aggregation node similarity, with Â = A + I, and
Meanj({·}) takes the average over node vj of a given multiset of values. Under the homophily
metrics mentioned above, a smaller value indicates a higher degree of heterophily. While H⇤

edge can
assume negative values, the other metrics fall within the range [0, 1].

B Proof of Theorem

B.1 Proof of theorem 3.1

Proof. By Definition 3.1, we have

P
(↵,�) = I� L

(↵,�) = I� �[�D+ (1� �)I]�↵
L[�D+ (1� �)I]↵�1

= [�D+ (1� �)I]�↵[�D+ (1� �)I� �L][�D+ (1� �)I]↵�1

= [�D+ (1� �)I]�↵[�A+ (1� �)I][�D+ (1� �)I]↵�1

It is easy to see that all elements in P
(↵,�) are non-negative. Since A1 = D1, we have

P
(1,�)

1 = (�D+ (1� �)I)�1 (�A+ (1� �)I)1 = 1,

completing the proof.

14



Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

B.2 Proof of theorem 3.2

Proof. For any nonzero x 2 RN , write y := [�D+ (1� �)I]�1/2
x. Then we have

x
T
L
(1/2,�)

x

xTx
=

x
T�[�D+ (1� �)I]�1/2

L[�D+ (1� �)I]�1/2
x

xTx

=
�yTLy

yT[�D+ (1� �)I]y
=

�
2

P
ij aij(yi � yj)2

�
P

ij aijy
2
i + (1� �)

P
i y

2
i

By the Rayleigh quotient theorem,

�(0)(�) = min
y 6=0

�
2

P
ij aij(yi � yj)2

�
P

ij aijy
2
i + (1� �)

P
i y

2
i

= 0, (24)

where the minimum is reached when y is a multiple of 1 and

�(N�1)(�) = max
y 6=0

�
2

P
ij aij(yi � yj)2

�
P

ij aijy
2
i + (1� �)

P
i y

2
i

 max
y 6=0

P
ij aij(y

2
i + y2j )P

ij aijy
2
i

 2,

leading to Eq. (11). The proof of showing �(1)(�) 6= 0 if and only if G is connected is similar to [31],
thus we omit the details here.

By the Courant-Fischer min-max theorem, for � 6= 0,

�(i)(�) = min
{S:dim(S)=i+1}

max
{x:0 6=x2S}

x
T
L
(1/2,�)

x

xTx

= min
{S:dim(S)=i+1}

max
{y:0 6=y2S}

y
T
Ly

yT[D� I+ (1/�)I]y
.

It is obvious that the Rayleigh quotient yTLy
yT[D�I+(1/�)I]y is strictly increasing with respect to � 2 (0, 1]

if Ly 6= 0, i.e., y not a multiple of 1. Note that �(0)(�) = 0 and it is reached when Ly = 0, or
equivalently y is a multiple of 1. Thus, �(i)(�) is strictly increasing with respect to � for i = 1 : N�1.

From the eigendecomposition of the symmetric L(1/2,�) in (10), we can find the eigendecomposition
of L(↵,�) as follows:

L
(↵,�) = [�D+ (1� �)I]1/2�↵

L
(1/2,�)[�D+ (1� �)I]↵�1/2

= [�D+ (1� �)I]1/2�↵(U⇤
(�)

U
T)[�D+ (1� �)I]↵�1/2

=
⇣
[�D+ (1� �)I]1/2�↵

U

⌘
⇤

(�)
⇣
[�D+ (1� �)I]1/2�↵

U

⌘�1

Thus, �(i)(�) is also an eigenvalue of L(↵,�) for i = 0 : N � 1, and the i-th column of [�D+ (1�
�)I]1/2�↵

U is a corresponding eigenvector.

B.3 Proof of Theorem 3.3

Proof. The proof is similar to the proof of [8]. By [32], the diffusion distance at time t between node
vi and vj can be expressed as:

dt(vi, vj) =

 
n�1X

k=1

e�2t�(k)(�)(�(k)
i (�)� �(k)

j (�))2
! 1

2

, (25)

where �(1)(�)  �(2)(�)  · · ·  �(n�1)(�) are eigenvalues of L
(1,�), and

{�(1)(�),�(2)(�), . . . ,�(n�1)(�)} are the corresponding eigenvectors. We omit the zero �(0)(�).

15



Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

The inequality dt(vm, vj) < dt(vi, vj) is then equivalent as
 

n�1X

k=1

e�2t�(k)(�)(�(k)
m (�)� �(k)

j (�))2
! 1

2

<

 
n�1X

k=1

e�2t�(k)(�)(�(k)
i (�)� �(k)

j (�))2
! 1

2

.

(26)

We can take out �(1)(�) and �(1)(�) and rearrange the above inequality as:
n�1X

k=2

e�2t�(k)(�)
⇣
(�(k)

m (�)� �(k)
j (�))2 � (�(k)

i (�)� �(k)
j (�))2

⌘

< e�2t�(1)(�)
⇣
(�(1)

i (�)� �(1)
j (�))2 � (�(1)

m (�)� �(1)
j (�))2

⌘
.

(27)

The left-hand side of Eq. (27) has an upper bound:
n�1X

k=2

e�2t�(k)(�)
���(�(k)

m (�)� �(k)
j (�))2 � (�(k)

i (�)� �(k)
j (�))2

���

 e�2t�(2)(�)
n�1X

k=2

���(�(k)
m (�)� �(k)

j (�))2 � (�(k)
i (�)� �(k)

j (�))2
��� .

(28)

Then Eq. (27) holds if:

e�2t�(2)(�)
n�1X

k=2

���(�(k)
m (�)� �(k)

j (�))2 � (�(k)
i (�)� �(k)

j (�))2
���

 e�2t�(1)(�)
⇣
(�(1)

i (�)� �(1)
j (�))2 � (�(1)

m (�)� �(1)
j (�))2

⌘
,

(29)

which is equivalent to

log

0

@ (�(1)
i (�)� �(1)

j (�))2 � (�(1)
m (�)� �(1)

j (�))2

Pn�1
k=2

���(�(k)
m (�)� �(k)

j (�))2 � (�(k)
i (�)� �(k)

j (�))2
���

1

A

⇥ 1

2(�(1)(�)� �(2)(�))
< t.

(30)

Let the constant C be the left-hand side of Eq. (30), then if we take t � bCc + 1, we have
dt(vm, vj) < dt(vi, vj). Note that C exits if

(�(1)
i (�)� �(1)

j (�))2 � (�(1)
m (�)� �(1)

j (�))2

Pn�1
k=2

���(�(k)
m (�)� �(k)

j (�))2 � (�(k)
i (�)� �(k)

j (�))2
���
> 0, (31)

which is satisfied since we assume |�(1)
i (�)��(1)

j (�)| > |�(1)
m (�)��(1)

j (�)|. The original theorem [8]
is only based on �(1) and does not assume that vm must satisfy |�(1)

i � �(1)
j | > |�(1)

m � �(1)
j |, which

is necessary for the existence of C. In addition, the original theorem [8] assumes that vm is obtained
by taking a gradient step from vi, i.e., �m � �i = maxj:vj2N (vi)(�j � �i), while this property is
not needed for the proof. Therefore, Theorem 3.3 both extends and overcomes the shortcomings
of [8].

C Computational Complexity Analysis

The complexity of obtaining the first non-trivial eigenvector of the Laplacian is O(|E|), aligning with
previous research [8, 28]. Here, we further explain the algorithm, where full eigendecomposition is
not required since we only need the first non-trivial eigenvector.

16



Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

Suppose the symmetrically normalized Laplacian Ls has eigen-pairs {(ui,�i)}i=1:N with 0 = �1 <
�2  · · ·  �N  2. The eigenvector corresponding to the smallest eigenvalue 0 is u1 = D

1
2 e,

where D is the degree matrix and e is a all-ones vector. To compute the first non-trivial eigenvector
u2 of Ls, we define L̄s = 2I� Ls and denote the eigenvalues of L̄s as �̄i = 2� �i. We know that
L̄s and Ls shares eigenvectors, and �̄1 > �̄2 � · · · � �̄N . Thus, we want to get the eigenvector
associated with �̄2.

Next, we define the deflated matrix eLs = L̄s � 2u1u
T
1/ku1k22. The largest eigenvalue of eLs is �̄2,

and the corresponding eigenvector is u2. This eigenvector can be obtained using power method on
eLs. Note that during power iteration, we compute the multiplication of eLs with a vector b, where
we do not need to form the eLs explicitly and the complexity is O(|E|) with a reasonable precision
of stopping criterion: (1) L̄sb would take O(|E|), considering the sparsity of the graph; (2) The
multiplication of 2u1u

T
1/ku1k22 with b takes O(N) as we compute u

T
1b first. Thus, the overall

complexity of computing u2 is in O(|E|) given that N < |E|.

D Datasets

D.1 Real-world Datasets

The overall statistics of the real-world datasets are presented in Table D.1 and Table D.1 provides
their heterophily levels calculated using various homophily metrics.

#Nodes #Edges #Features #Classes Metric

cora 2,708 5,278 1,433 7 ACC
citeseer 3,327 4,552 3,703 6 ACC
pubmed 19,717 44,324 500 3 ACC
roman-empire 22,662 32,927 300 18 ACC
amazon-ratings 24,492 93,050 300 5 ACC
minesweeper 10,000 39,402 7 2 ROC AUC
tolokers 11,758 519,000 10 2 ROC AUC
questions 48,921 153,540 301 2 ROC AUC
squirrel-filtered 2,223 46,998 2,089 5 ACC
chameleon-filtered 890 8,854 2,325 5 ACC

Table 3: Statistics of the benchmark dataset. Following pre-processing, the graph has been trans-
formed into an undirected and simple form, without self-loops or multiple edges.

Hnode Hedge Hclass HM
agg(G) H⇤

edge LI

cora 0.83 0.81 0.77 0.99 0.77 0.59
citeseer 0.71 0.74 0.63 0.97 0.67 0.45
pubmed 0.79 0.80 0.66 0.94 0.69 0.41
roman-empire 0.05 0.05 0.02 1.00 -0.05 0.11
amazon-ratings 0.38 0.38 0.13 0.60 0.14 0.04
minesweeper 0.68 0.68 0.01 0.61 0.01 0.00
tolokers 0.63 0.59 0.18 0.00 0.09 0.01
questions 0.90 0.84 0.08 0.00 0.02 0.00
squirrel-filtered 0.19 0.21 0.04 0.00 0.01 0.00
chameleon-filtered 0.24 0.24 0.04 0.25 0.03 0.01

Table 4: Heterophily levels of benchmark datasets. The HM
agg(G) stands for the aggregation ho-

mophily, calculated using Â = A+ I. The H⇤
edge stands for the adjusted edge homophily, and the LI

stands for the label informativeness. The definitions of these metrics can be found in Appendix A.

17



Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

D.2 Synthetic Datasets

In addition to the real-world datasets, we also tested parameterized diffusion on synthetic graphs
generated with different homophily levels ranging from 0 to 1 using the method proposed in [20].
Here we give a review of the generation process.

More specifically, when generating the output graph G with a desired total number of nodes N , a
total of C classes, and a homophily coefficient µ, the process begins by dividing the N nodes into C
equal-sized classes. Then the synthetic graph G (initially empty) is updated iteratively. At each step,
a new node vi is added, and its class zi is randomly assigned from the set {1, . . . , C}. Whenever a
new node vi is added to the graph, we establish a connection between it and an existing node vj in G
based on the probability pij determined by the following rules:

pij =

⇢
dj ⇥ µ, if zi = zj
dj ⇥ (1� µ)⇥ wd(zi,zj), otherwise

. (32)

where zi and zj are class labels of node i and j respectively, and wd(zi,zj) denotes the “cost” of
connecting nodes from two distinct classes with a class distance of d(zi, zj). For a larger µ, the
chance of connecting with a node with the same label increases. The distance between two classes
simply implies the shortest distance between the two classes on a circle where classes are numbered
from 1 to C. For instance, if C = 6, zi = 1 and zj = 5, then the distance between zi and zj is 2. The
weight exponentially decreases as the distance increases and is normalized such that

P
d wd = 1. In

addition, the probability pij defined in Eq. (32) is also normalized over the exiting nodes:

p̄ij =
pijP

k:vk2N (vi)
pik

Lastly, the features of each node in the output graph are sampled from overlapping 2D Gaussian
distributions. Each class has its own distribution defined separately.

E Hyperparameters

The following table lists the optimal � and ↵ used in models with the proposed methods.

roman-empire amazon-ratings minesweeper tolokers questions squirrel-filtered chameleon-iltered
GCN (R(G)) � 0.1 0.3 0.1 0.9 0.1 0.1 0.1

↵ 0.6 0.3 0.3 0.9 0.2 0 0
GAT (R(G)) � 0.8 0.2 0.2 0.5 0.5 0.2 0.1

↵ 0.7 0 0.3 0.9 1 0.9 1
PD-GCN � 1 0.9 1 0.6 0.7 1 0.9

↵ 0 0.9 1 0.4 0.8 0.1 0
PD-GAT � 0 0.9 0.4 1 0.1 0.4 0.6

↵ 0 0.9 0.2 1 0.4 0.3 0.2
PD-GAT (R(G)) � 0.5 0.4 0.3 1 0.5 0.7 0.8

↵ 0.9 1 0 0.7 1 0.4 0.5
PD-GAT-sep � 0.9 0.1 0.9 0.5 0.2 0.5 0.1

↵ 0.4 0.9 0 1 0.2 0.3 0.9
PD-GAT-sep (R(G)) � 0.6 0.6 0.3 0.5 0.3 0.5 0.2

↵ 0.8 0.2 0 0.9 0.4 0.9 0.9

Table 5: Optimal � and ↵ for real-world datasets.

For BernNet, LINKX, APPNP and !GCN in real-world benchmark, we perform a grid search for
learning rate 2 {0.01, 0.05, 0.1}, weight decay 2 {0, 5e � 7, 5e � 6, 1e � 5, 5e � 5, 1e � 4, 5e �
4, 1e � 3, 5e � 3, 1e � 2}, dropout 2 {0, 0.1, 0.3, 0.5, 0.7}. Model specific parameters are: (1)
BernNet: the propagation steps K = 10; (2) LINKX: the numbder of layers of MLPA and MLPX in
{1, 2}; (3) APPNP: ↵ 2 {0.1, 0.2, 0.5, 0.9} and up to 10th power of the adjacency is used; (4) PGSO:
initialization 2 { "GCN", "all zeros", "SymLaplacian", "RWLaplacian", "Adjacency"}. According
to [12], the weight decay is 5e � 4, the learning rate is 0.005 for the exponential parameters and
0.01 for all other model parameters. We perform a grid search for dropout 2 {0, 0.1, 0.3, 0.5, 0.7};
(5) DGN: We compute the first two non-trivial eigenvectors of Lrw for DGN. We perform a grid
search for the hyperparameters of DGN according to [8] for the learning rate in {10�5, 10�4}, the
weight decay in {10�6, 10�5}, the dropout rate in {0.3, 0.5}, the aggregator in {"mean-dir1-av",
"mean-dir1-dx", "mean-dir1-av-dir1-dx" }, the net type in {"complex", "simple" }.

18



Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

F Comparison with Message Passing with Virtual Nodes

This section further demonstrates the effectiveness of the parameterized diffusion with rewiring by
comparing it to message passing with virtual nodes [51, 66], and the results are summarized in Table.
The virtual node is an additional node attached to the original graph and connected to all nodes in the
graph. While our rewiring strategy connects all nodes to the gradient node determined by L

(↵,�). The
difference between this and the virtual node approach is threefold: (1) the gradient node is selected
from the original graph’s nodes, while the virtual node an artificially added node; (2) the selection
of the gradient node is determined by ↵ and �; and (3) the virtual node is incompatible with the
proposed parameterized diffusion, as we cannot define the weights or features for edges connecting
the virtual nodes based the first non-trivial eigenvector of the L(↵,�) from the original graph topology.

We apply the virtual nodes method to the baseline GNNs, with results provided in Table 6. The same
experiment settings from Section 4.3 are used, and results for baselines and the proposed rewiring
strategy are also reported in Table 2. In conclusion, the proposed rewiring approach yields a greater
performance improvement over the baselines compared to the virtual node method.

roman-empire amazon-ratings minesweeper tolokers questions squirrel-filtered chameleon-filtered

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 39.47 ± 1.47 40.89 ± 4.12
GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20 35.62 ± 2.06 39.21 ± 3.08

GAT-sep 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 35.46 ± 3.10 39.26 ± 2.50

GCN-Virtual Nodes 74.47 ± 0.67 48.18 ± 0.64 89.92 ± 0.59 83.43 ± 0.92 77.26 ± 1.14 40.71 ± 2.67 43.94 ± 4.15
GAT-Virtual Nodes 79.35 ± 0.26 46.85 ± 0.56 92.62 ± 0.77 84.17 ± 0.70 78.47 ± 0.81 39.07 ± 1.81 43.47 ± 3.59

GAT-sep-Virtual Nodes 88.07 ± 0.61 48.92 ± 0.50 93.79 ± 0.46 84.11 ± 0.50 78.00 ± 0.96 37.76 ± 1.57 40.96 ± 3.54

PD-GAT (R(G)) 87.27 ± 0.64 48.03 ± 0.58 93.27 ± 0.56 84.74 ± 0.59 79.55 ± 0.81 42.09 ± 2.65 44.16 ± 4.20
PD-GAT-sep (R(G)) 89.23 ± 0.56 50.96 ± 0.43 94.03 ± 0.45 84.83 ± 0.40 78.88 ± 0.94 39.69 ± 2.28 41.15 ± 4.66

Table 6: Experiment results on heterophily datasets proposed by [50] for comparing baseline models
using virtual nodes methods [51, 66] and the proposed parameterized diffusion with topology-guided
rewiring.

G Comparison on Homophilic Datasets

The following table summarizes the results on homophilic datasets, where we perform a grid search
for learning rate 2 {0.01, 0.05, 0.1}, weight decay 2 {0, 5e� 7, 5e� 6, 1e� 5, 5e� 5, 1e� 4, 5e�
4, 1e � 3, 5e � 3, 1e � 2}, dropout 2 {0, 0.1, 0.3, 0.5, 0.7}, and 64 hidden states. Note that the
implementation of baselines follows [50], where residual connections are adopted in each layer.

Cora Citeseer Pubmed

ResNet 72.03 ± 0.24 70.77 ± 1.81 88.01 ± 0.41
GCN 86.15 ± 1.24 74.58 ± 0.97 89.63 ± 0.44
SAGE 85.12 ± 1.64 74.47 ± 1.93 89.69 ± 0.51
GAT 86.46 ± 1.02 74.13 ± 1.85 88.87 ± 0.65

GAT-sep 84.24 ± 1.72 73.93 ± 1.93 89.14 ± 0.57
GT 86.19 ± 0.99 74.23 ± 1.12 89.48 ± 0.52

GT-sep 86.3 ± 1.13 74.14 ± 0.91 89.63 ± 0.52

DGN 85.16 ± 1.17 72.70 ± 1.17 87.35 ± 0.53
!GCN 86.13 ± 1.38 74.74 ± 1.39 88.65 ± 0.42
PGSO 88.66 ± 0.94 76.55 ± 1.12 89.44 ± 0.53

PD-GCN 86.91 ± 1.45 75.17 ± 1.24 89.70 ± 0.45
PD-GAT 85.40 ± 1.41 74.83 ± 1.75 89.48 ± 0.45

Table 7: Experiments on homophily datasets proposed in [67].

H Training

In training and evaluating a model using a node classification benchmark dataset with C distinct
classes, each node vi 2 V has a label zi associated with it. We denote Z 2 RN⇥C as the one-

19



Flexible Diffusion Scopes with Parameterized Laplacian for Heterophilic Graph Learning

hot encoding of labels. Moreover, nodes are divided into three sets: the training set Vtrain, the
validation set Vval and the test set Vtest. In the training phase, the model uses features of all nodes
under transductive learning. The model only has access to labels of nodes in Vtrain and in Vval (for
hyperparameter tuning), while labels of nodes in Vtest = V \ (Vtrain [ Vval) remain unknown to the
model. The cost function used in node classification tasks is the standard categorical cross-entropy
loss [26], which is commonly used for multi-class classification tasks:

L = � 1

|Vtrain|
trace(ZT logY), (33)

where Y is the output from the model after softmax and log(·) is applied element-wise.

20


