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A Margin maximization for entropy-based clustering1

(a) γ = 0 (b) γ = 0.001 (c) γ = 0.01

Figure 4: Margin maximization term γ ∥v∥2 in our loss (a): low-level clustering results for the
softmax linear classifier model (3) with N = 2 and different weights γ. The dots represent data
points. The optimal softmax clustering of the data and the decision regions over the whole space are
visualized by σ-weighted color transparency, as in Fig.1(b). The “margin” is a weak-confidence “soft”
region around the linear decision boundary lacking color-saturation. For small γ the classifier can
“squeeze” a narrow-margin linear decision boundary just between the data points, while maintaining
arbitrarily hard “decisiveness” on the data points themselves.

The average entropy term in (1), a.k.a. “decisiveness”, is recommended in Grandvalet & Bengio2

(2004) as a general regularization term for semi-supervised problems. They argue that it produces3

decision boundaries away from all training examples, labeled or not. This seems to suggest larger4

classification margins, which are good for generalization. However, the decisiveness may not5

automatically imply large margins if the norm of classifier v in posterior models (2, 3) is unrestricted,6

see Figure 4(a). Technically, this follows from the same arguments as in Xu et al. (2004) where7

regularization of the classifier norm is formally related to the margin maximization in the context of8

their SVM approach to clustering.9

Interestingly, regularization of the norm for all network parameters [v,w] is motivated in (4) dif-10

ferently Krause et al. (2010). But, since the classifier parameters v are included, coincidentally, it11

also leads to margin maximization. On the other hand, many MI-based methods Bridle et al. (1991);12

Ghasedi Dizaji et al. (2017); Asano et al. (2020) do not have regularizer ∥v∥2 in their clustering13

loss, e.g. see (5). One may argue that practical implementations of these methods implicitly benefit14

from the weight decay, which is omnipresent in network training. It is also possible that gradient15

descent may implicitly restrict the classifier norm Soudry et al. (2018). In any case, since margin16

maximization is important for clustering, ideally, it should not be left to chance. Thus, the norm17

regularization term ∥v∥2 should be explicitly present in any clustering loss for posterior models.18

We extend MI loss (1) by combining it with the regularization of the classifier norm ∥v∥ encouraging19

margin maximization, as shown in Figure 420

Lmi+mm := H(σ) − H(σ) + γ ∥v∥2
c
= H(σ) + KL(σ ∥u) + γ ∥v∥2. (a)

We note that Jabi et al. (2021) also extend their entropy-based loss (6) with the classifier regularization21

∥v∥2, but this extra term is used mainly as a technical tool in relating their loss (6) to K-means, as22

detailed in Section 2.1. They do not discuss its relation to margin maximization.23

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



B Proof24

Lemma B.1. Given fixed σi ∈ ∆K where i ∈ {1, ...,M} and u ∈ ∆K , the objective
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is convex for y, where yi ∈ ∆K .25

Proof. First, we rewrite E(y)26
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Next, we prove that fk : RM
(0,1) → R is concave based on the definition of concavityBoyd &27

Vandenberghe (2004) for any k ∈ {1, ...,K}. Considering x = (1 − α)x1 + αx2 where x1, x2 ∈28

RM
(0,1) and α ∈ [0, 1], we have29
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The inequality uses Jensen’s inequality. Now that fk is proved to be concave, −fk will be convex.30

Then E(y) can be easily proved to be convex using the definition of convexity with the similar steps31

above.32

C Our Algorithm33

Algorithm 1 Optimization for our loss
Input :network parameters [v,w] and dataset
Output :network parameters [v∗,w∗]
for each epoch do

for each iteration do
Initialize y by the network output at current stage as a warm start
while not convergent do
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end
Update [w,v] using loss HB(σ, y) + γ ∥v∥2 via stochastic gradient descent

end
end
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D Loss Curve34

In this section, we empirically show the faster convergence if we update y for each batch after every35

iteration.

Figure 5: Loss (14) curves for different update setting on y. This is generated with just a linear
classifier on MNIST. We use the same initialization and run both for 50 epochs. The gray line has an
accuracy of 52.35% while the yellow one achieves 63%.

36

E Experiments37

E.1 Network Architecture38

The network structure of VGG4 is adapted from Ji et al. (2019).39

Grey(28x28x1) RGB(32x32x3) RGB(96x96x3)

1xConv(5x5,s=1,p=2)@64 1xConv(5x5,s=1,p=2)@32 1xConv(5x5,s=2,p=2)@128
1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2)
1xConv(5x5,s=1,p=2)@128 1xConv(5x5,s=1,p=2)@64 1xConv(5x5,s=2,p=2)@256
1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2)
1xConv(5x5,s=1,p=2)@256 1xConv(5x5,s=1,p=2)@128 1xConv(5x5,s=2,p=2)@512
1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2)
1xConv(5x5,s=1,p=2)@512 1xConv(5x5,s=1,p=2)@256 1xConv(5x5,s=2,p=2)@1024
1xLinear(512x3x3,K) 1xLinear(256x4x4,K) 1xLinear(1024x1x1,K)

Table 1: Network architecture summary. s: stride; p: padding; K: number of clusters. The first
column is used on MNIST Lecun et al. (1998); the second one is used on CIFAR10/100 Torralba
et al. (2008); the third one is used on STL10 Coates et al. (2011). Batch normalization is also applied
after each Conv layer. ReLu is adopted for non-linear activation function.

We used standard ResNet-18 from PyTorch library as the backbone architecture for Figure 3. As for40

the ResNet-18 used for Table 4, we used the code from this repository 1.41

E.2 Ablation Study on Toy Example42

We conducted an ablation study on toy examples as shown in Figure. 6. We use the normalized X-Y43

coordinates of the data points as the input. We can see that each part of our loss is necessary for44

obtaining a good result. Note that, in Figure 6 (a), (c) of 3-label case, the clusters formed are the45

1https://github.com/wvangansbeke/Unsupervised-Classification
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same, but the decision boundaries which implies the generalization are different. This emphasizes the46

importance of including L2 norm of v to enforce maximum margin for better generalization.
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(a) γ = ∞ (b) λ = 0 (c) full setting
Figure 6: “Shallow” ablation study on toy examples.

47

E.3 Deep Clustering48

Here we present the missing experimental settings in Section 4.2. As for the training of VGG4,49

we use Adam Kingma & Ba (2015) with learning rate 1e−4 for optimizing the network parameters.50

We set batch size to 250 for CIFAR10, CIFAR100 and MNIST, and we use 160 for STL10. We51

achieved the self-augmentation by setting σi = Et[σ(v
⊤fw(t(Xi))]. For each image, we generate52

two augmentations sampled from “horizontal flip", “rotation" and “color distortion". We set the λ to53

100 in our loss and use 1.3 as the weight of fairness term in (1). The weight decay coefficient is set to54

0.01. We report the mean accuracy and Std from 6 runs with different initializations while we use the55

same initialization for all methods in each run. We use 50 epochs for each run and all methods reach56

convergence within 50 epochs.57

As for the training of ResNet-18, we still use the Adam optimizer, and the learning rate is set to 1e−158

for the linear classifier and 1e−5 for the backbone. The weight decay coefficient is set to 1e−4. The59

batch size is 200 and the number of total epochs is 50. The λ is still set to 100. We only use one60

augmentation per image, and we use an extra reverse cross-entropy loss to enforce the prediction of61

the augmentation to be close to the pseudo-label. The coefficient for such extra loss is set to 0.5, 0.262

and 0.4 respectively for STL10, CIFAR10 and CIFAR100 (20) datasets. We will release the training63

code.64

E.4 Weakly-supervised Classification65

We additionally conducted experiments for weakly-supervised classification on STL10. We split the66

STL10 dataset into 5000 training images and 8000 testing images. We only keep a certain percentage67

of ground-truth labels for each class of training data. The accuracy is calculated on test set by68

comparing the hard-max of prediction to the ground-truth.69

We use the same experimental settings as that in unsupervised clustering with VGG4 except for two70

points: 1. We add cross-entropy loss on labelled data; 2. We separate the training data from test data71

while we use all the data for training and test in unsupervised clustering. The results are shown in the72

following table.73
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0.1 0.05 0.01
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+ Our 47.20% 41.13% 26.76%

Table 2: Quantitative results for weakly-supervised classification on STL10. 0.1, 0.05 and 0.01
correspond to different ratios of labels used for supervision. “Only seeds” means that we only use
standard cross-entropy loss on labeled training data.
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