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This supplementary material provides additional details, results,
and analyses to support the main paper “MovingColor: Seamless
Fusion of Fine-grained Video Color Enhancement”. We present the
detailed architecture of MovingColor and discuss the implementa-
tion details, including data augmentation and training procedures.
The proposed Texture Difference (TD) metric for quantifying tex-
tural differences between input and output frames is elaborated
upon. We report additional quantitative results on the DAVIS and
YouTube-VOS datasets, confirming MovingColor’s effectiveness
across multiple benchmarks. Comprehensive ablation studies are
conducted to investigate the impact of structural variants and loss
functions on the model’s performance. Robustness tests with vary-
ing input resolutions and color adjustments demonstrate Moving-
Color’s resilience to different conditions. The construction of the
D5 dataset, a new benchmark for video color fusion, is described
in detail. Finally, we provide insights from a user study and an
interview with a professional colorist, highlighting the practical
applicability and usability of MovingColor in real-world scenarios.
The supplementary materials aim to offer a deeper understand-
ing of MovingColor’s architecture, performance, and potential for
seamless video color enhancement.

A MORE VISUAL RESULTS IN
ACCOMPANYING VIDEO WEBSITE

We would be immensely appreciative if you would kindly visit
our supplementary video website at https://mm24-anonymous-
id-279.github.io/, where you will find a compelling showcase of
MovingColor’s superior performance in achieving spatiotemporal
consistency for color fusion across a diverse range of video clips.
The website includes side-by-side comparisons with related base-
lines, clearly showcasing MovingColor’s effectiveness. As videos
cannot be properly displayed in the PDF format, the anonymized
URL provides access to these essential multimedia research objects
while fully complying with the double-blind review process.

B NETWORK STRUCTURE

We present the detailed architecture of our MovingColor in Table 1,
where a batch of 15 frames (10 local + 5 global) is assumed. For the
downsample stages (Stage 1 to Stage 3), FFC_BN_ACT indicates a
Fast Fourier Convolution (FFC) block followed by batch normal-
ization and activation. The spatial dimensions are halved in each
stage while the channel dimensions are doubled. In Stage 3, the
features are split into local (convl2]) and global (convl2g) branches.
The FFC resnet blocks consist of a series of convolutional layers
with a SpectralTransform module. The temporal transformer block
incorporates a SlideWindowAttention module with a window size
of 5 9 and 4 attention heads, followed by layer normalization and
a FusionFeedForward module. For the upsample stages (Stage 1 to
Stage 3), we use transposed convolutions to increase the spatial di-
mensions while reducing the channel dimensions. Skip connections
2024-04-20 14:23. Page 1 of 1-7.

are used to concatenate features from the corresponding down-
sample stages. The final output is obtained through a reflection
padding and a convolutional layer. We will release the code and
pre-trained models for MovingColor upon acceptance, please refer
to code repository for more details.

C IMPLEMENTATION DETAILS
C.1 Data Augmentation

To enhance the robustness of our model to various real-world varia-
tions in video data, we employ a comprehensive data augmentation
strategy during training. The augmentation pipeline consists of
two main components:

e Edge Detection: Applying Canny edge detection [1] to
video frame masks, with randomized kernel sizes (3-5) and
dilation rates (1-16), enhances the model’s ability to general-
ize for color fusion tasks by exposing it to varied mask edge
conditions during training.

e Color Augmentation: We introduce random adjustments
to contrast, brightness, gamma, hue, saturation, vibrance,
and warmth, each applied with a probability of 0.2. These
color filters contribute to the model’s invariance to color
variations.

C.2 Training Procedure

The model is trained for 500,000 iterations on four NVIDIA Tesla
V100 GPUs, which typically takes approximately 5 days. The train-
ing procedure is configured as follows:

e Optimizer: We employ the Adam optimizer with $; = 0 and
P2 = 0.99. The initial learning rate is set to 0.0001.

e Scheduler: A MultiStepLR scheduler is used with y = 0.01
and milestones set at 4000 iterations.

e Batch Size: Despite the complexity of the model and the
extensive data augmentation, we maintain a batch size of
16 across the GPUs, striking a balance between memory
constraints and training dynamics.

The presented configuration and training strategies are carefully
selected to optimize the efficiency and effectiveness of our neural
network in learning robust color fusion tasks, as evidenced by its
good performance.

D TEXTURE DIFFERENCE METRIC

Texture Difference (TD) metric is introduced to quantify the percep-
tual difference in texture between input and output frames. Inspired
by [3], we decompose an image into base and detail layers using
a guided filter [2], an edge-preserving low-pass filter. The guided
filter parameters are set based on input from a professional colorist
to align with human color perception. TD is defined as the mean
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Table 1: Detailed architecture of MovingColor for a batch of 15 frames (10 local + 5 global).

Stage Output Size Block Details

Downsample stage 1 [15, 128, 128, 128] FFC_BN_ACT Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False, padding_mode=reflect)

Downsample stage 2 [15, 256, 64, 64] FFC_BN_ACT Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False, padding_mode=reflect)

Downsample stage 3 [15, 512, 32, 32] FFC_BN_ACT (convl2l): Conv2d(256, 128, kernel_size=(3, 3), stride=(2,
2), padding=(1, 1), bias=False, padding_mode=reflect)
(convl2g): Conv2d(256, 384, kernel_size=(3, 3), stride=(2,
2), padding=(1, 1), bias=False, padding_mode=reflect)

FFC resnet blocks [15, 512, 32, 32] FFCResnetBlock Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),

Temporal transformer [15, 512, 32, 32]

TemporalTransformer SlideWindowAttention

padding=(1, 1)), Conv2d(128, 384, kernel size=(3,
3), stride=(1, 1), padding=(1, 1)), Conv2d(384, 128,
kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), Spectral-
Transform

(dim=512,
dow_size=(5, 9)), LayerNorm, FusionFeedForward

head=4, win-

Upsample stage 1 [15, 256, 64, 64] ConvTranspose2d ConvTranspose2d(512, 256, kernel_size=(3, 3), stride=(2,
2), padding=(1, 1), output_padding=(1, 1))

Upsample stage 2 [15, 128, 128, 128] ConvTranspose2d ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2,
2), padding=(1, 1), output_padding=(1, 1))

Upsample stage 3 [15, 64, 240, 432] ConvTranspose2d ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), output_padding=(1, 1))

Output [15, 3, 240, 432] Final_Conv nn.ReflectionPad2d(3): Conv2d(64, 3, kernel_size=(7, 7),

stride=(1, 1))

absolute difference between the detail layers of the input and out-
put frames, effectively quantifying the model’s ability to preserve
textural details during color fusion.

E ADDITIONAL QUANTITATIVE RESULTS

We report MovingColor’s quantitative results on the D5 dataset
in the main paper. Here in this supplement, we further validate
performance on two additional datasets: DAVIS and YouTube-VOS.
Due to the coarse object masks in these datasets, we report non-
edge area differences rather than full-frame results. Table 2 and
Table 3 present the quantitative results, confirming our method’s
effectiveness across multiple benchmarks.

Table 2 presents the color fusion performance comparisons on
the DAVIS dataset. Our MovingColor method achieves the best
results in terms of non-edge difference metrics (PSNR and AE),
texture preservation (TD), and temporal consistency (PVCS). In
the non-edge difference category, MovingColor obtains a PSNR
of 29.80 and a AE of 2.93, outperforming the second-best method,
Color Matcher, by a significant margin. MovingColor also achieves
the lowest TD score of 2.02, indicating better texture preservation
compared to other methods. Regarding temporal consistency, our
method achieves the best PVCS score of 0.44, demonstrating its
superior ability to maintain visual steadiness across frames.

Table 3 shows the color fusion performance comparisons on the
YouTube-VOS dataset. Similar to the results on DAVIS, MovingColor
achieves the best performance in terms of non-edge difference met-
rics (PSNR and AE) and temporal consistency (PVCS). Our method
obtains a PSNR of 29.65 and a AE of 3.14, surpassing the second-best

method, Color Matcher. In terms of texture preservation, Moving-
Color and Color Matcher both achieve the lowest TD score of 1.10.
For temporal consistency, MovingColor achieves the second-best
PVCS score of 0.42, closely following Color Matcher’s score of 0.40.

It is worth noting that while some methods, such as Deflicker
and FSPBT, achieve better results in certain temporal consistency
metrics (PCpsnr, PCssim, and Ewarp), they perform poorly in non-
edge difference and texture preservation categories. In contrast,
MovingColor demonstrates a strong balance across all evaluation
categories, achieving state-of-the-art performance in both spatial
and temporal aspects of color fusion.

F MORE ABLATION STUDIES
F.1 Details of the Structural Variants Study

We have included a brief table with key metrics in the main paper.
Here, in this supplementary material, we report the full table with
all metrics.

Table 4 presents a comprehensive ablation study of Moving-
Color on the DAVIS, YouTube-VOS, and D5 datasets, considering
the inclusion or exclusion of the Fast Fourier Convolution (FFC)
encoder, local frame feature propagation, and global frame feature
propagation.

Across all datasets, the full MovingColor model (FFC + Local +
Global) achieves the best performance in most metrics. Removing
any of the components leads to a decrease in performance, with
the variant without the FFC encoder (Local + Global) exhibiting
the most significant drop, particularly in non-edge difference and
temporal consistency metrics.
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Table 2: Color fusion performance comparisons between Color Matcher, Harmonizer, S2CRNet, StyA2K, PCTNet, Deflicker,

StyA2K+Deflicker, and our method on the DAVIS dataset.

Category Method Non-Edge Difference Texture Temporal Consistency
PSNRT AE| TD] PCpsne T PCssiv T PVCS | Ewarp |
Color Matcher 26.84 4.08 2.06 33.24 0.88 0.48 1.04
Harmonizer 19.10 10.71 2.14 28.58 0.86 0.54 1.75
Space S2CRNet 19.08 11.17 2.19 28.13 0.85 0.63 1.99
PCTNet 21.47 8.15 2.16 28.97 0.86 0.47 1.53
StyA2K 22.54 6.05 2.15 30.30 0.86 0.73 1.88
Time Deflicker 18.71 8.31 2.70 35.05 0.90 1.50 1.25
Space + FSPBT 26.15 4.13 2.09 34.13 0.88 0.56 0.92
Time StyA2K+Deflicker 17.38 10.07 2.70 33.72 0.90 1.57 1.81
Ours MovingColor 29.80 2.93 2.02 32.86 0.88 0.44 1.06

Table 3: Color fusion performance comparisons between Color Matcher, Harmonizer, S2CRNet, StyA2K, PCTNet, Deflicker,
StyA2K+Deflicker, and our method on the YouTube-VOS dataset.

Category Method Non-Edge Difference Texture Temporal Consistency
PSNRT AE| TD|] PCpsne T PCssiv T PVCS | Ewarp |
Color Matcher 28.48 3.47 1.10 37.10 0.93 0.40 0.53
Harmonizer 19.98 10.44 1.42 34.72 0.92 0.50 0.78
Space S2CRNet 19.55 9.57 1.78 35.09 0.92 0.57 0.70
PCTNet 20.01 9.38 1.44 35.37 0.92 0.44 0.77
StyA2K 22.05 6.64 1.36 34.61 0.92 0.75 0.96
Time Deflicker 16.29 10.84 2.42 38.10 0.94 1.60 0.46
Space + FSPBT 27.81 3.99 1.17 38.25 0.94 0.49 0.44
Time StyA2K+Deflicker 15.03 13.10 2.28 36.53 0.94 1.75 0.74
Ours MovingColor 29.65 3.14 1.10 37.37 0.93 0.42 0.51

Table 4: Color fusion performance of various variants of MovingColor on DAVIS, YouTube-VOS, and D5 dataset.

Dataset Variants Non-Edge Diff | Texture Temporal Consistency

FFC Local Global [PSNRT AE | | TD| [PCpsng T PCssiv T PVCS | Ewarp |

v v 24.72 6.88 2.11 32.35 0.87 0.74 1.33

g | v v | 2977 293 | 204 | 3279 088 044  1.08

é v v 29.74 2.94 2.09 32.42 0.88 0.46 1.12

v v 29.80 2.93 2.02 32.86 0.88 0.44 1.06

8 v | 2306 828 | 125 3632 092 076 076

E v Vo | 2964 314 | 113 | 3717 093 043 052

[—j v v 29.61 3.14 1.17 36.83 0.93 0.43 0.55

2 v v 29.65 3.14 1.10 37.37 0.93 0.42 0.51

v 22.50 7.65 1.47 38.46 0.96 1.18 0.50

o |V v | 2822 339 | 104 | 3860 097 054 030

. v v 28.21 3.39 1.06 38.57 0.97 0.55 0.33

v v v 28.24 3.39 1.03 38.61 0.97 0.54 0.29

The variants without local or global frame feature propagation
(FFC + Global and FFC + Local, respectively) show slight perfor-
mance decreases compared to the full model, highlighting the im-
portance of both local and global context for optimal color fusion
results.

2024-04-20 14:23. Page 3 of 1-7.

In summary, the ablation study validates the effectiveness of
the proposed components in MovingColor. The Fast Fourier Con-
volution encoder captures rich spectral-spatial features, while the
local and global frame feature propagation modules improve spatial
and temporal consistency. The combination of these components
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enables MovingColor to achieve state-of-the-art performance in
color fusion tasks across multiple datasets.

F.2 Loss Function Ablation Study

Table 5 presents an ablation study of MovingColor’s loss functions
on the DAVIS, YouTube-VOS, and D5 datasets, considering the
inclusion or exclusion of the reconstruction loss (L), adversarial
loss (L), and perceptual loss (Lperc)-

Across all datasets, the full MovingColor model (with all three
loss components) achieves the best overall performance. The variant
without the reconstruction loss (LG + Lperc) excels in texture
preservation and temporal consistency, while the variant without
the adversarial loss (L1 + Lperc) shows competitive results in non-
edge difference and temporal consistency. The variant without the
perceptual loss (L1 + L) achieves the best PSNR on some datasets
but lacks in other metrics.

These observations suggest that each loss component contributes
to different aspects of MovingColor’s performance. The reconstruc-
tion loss captures low-level details, the adversarial loss enhances
realism and coherence, and the perceptual loss promotes semantic
similarity.

In summary, the ablation study demonstrates the effectiveness
of the proposed loss functions in MovingColor, enabling the model
to achieve state-of-the-art performance in color fusion tasks across
multiple datasets.

G DETAILED ROBUSTNESS TEST RESULTS

G.1 Resolution

We have included a brief chart with key metrics (AE & TD) in the
main paper. Here, in this supplementary material, we report the
full table with all metrics.

Table 6 presents a robustness test of MovingColor’s performance
on the DAVIS, YouTube-VOS, and D5 datasets, considering various
input resolutions: 240P, 360P, 480P, and 720P.

Across all datasets, MovingColor demonstrates consistent per-
formance improvements as the input resolution increases. The 720P
variant achieves the best results in non-edge difference (PSNR and
AE), texture preservation (TD), and temporal consistency metrics
(PCpsnr> PCssim, PVCS, and Evyarp), followed by the 480P variant.

On the DAVIS dataset, the 720P variant obtains a PSNR of 31.28
and a AE of 2.62, outperforming lower resolution variants. Similar
observations can be made on the YouTube-VOS and D5 datasets,
where the 720P variant consistently achieves the best results across
most metrics.

These results highlight the robustness of MovingColor across
different input resolutions. The model’s performance consistently
improves as the resolution increases, demonstrating its ability to
effectively exploit the additional information provided by higher-
resolution inputs.

In summary, the robustness test analysis demonstrates that Mov-
ingColor maintains its state-of-the-art performance across various
input resolutions on multiple datasets, further validating its effec-
tiveness and practicality in real-world color fusion applications.

Anonymous Authors

G.2 Detailed Color Adjustment Analysis

We have included a brief chart with key metrics in the main paper.
Here, in this supplementary material, we report the full table with
all metrics.

Table 7 presents the performance of MovingColor on the DAVIS,
YouTube-VOS, and D5 datasets under various color adjustments,
including brightness, contrast, exposure, gamma, hue, saturation,
vibrance, and warmth.

Across all datasets, MovingColor demonstrates robustness to
color adjustments, maintaining strong performance in non-edge
difference (PSNR and AE), texture preservation (TD), and temporal
consistency metrics (PCpsnr, PCssiv, PVCS, and Ewarp)-

On the DAVIS dataset, the Saturation™ adjustment achieves the
best PSNR (30.79) and AE (2.74), while the Contrast™ adjustment
yields the highest PCpsnr (33.23) and lowest Ewarp (0.97). Similar
trends are observed on the YouTube-VOS and D5 datasets, with
the Saturation™ adjustment consistently achieving top results in
non-edge difference metrics.

These results demonstrate MovingColor’s robustness to various
color adjustments, highlighting its ability to maintain state-of-the-
art performance under different color conditions. This robustness is
essential for practical applications, where input videos may exhibit
varying color characteristics.

In summary, the color adjustment analysis confirms Moving-
Color’s resilience to color variations, further validating its effec-
tiveness and reliability in real-world color fusion tasks.

H D5 DATASET CONSTRUCTION

We introduce the D5 dataset, a new benchmark for comprehensive
evaluation of video color fusion methods. The dataset comprises
121 high-quality video sequences sourced from 12 community 3D
scenes contributed by professional users in the D5 render commu-
nity. These scenes encompass a diverse range of content, including
nature scenes, urban environments, and human activities, ensuring
a broad spectrum of color variations, textures, and lighting condi-
tions. We will release the url to associated scenes and the whole
dataset at full resolution if the D5 community agrees to share it
publicly.

Each video sequence in the D5 dataset has a duration of 30 sec-
onds and a resolution of 3960 x 2160 pixels at 25 frames per second.
The high spatial and temporal resolution allows for a detailed assess-
ment of color fusion performance, particularly in terms of spatial
consistency and temporal stability.

Moreover, the majority of the video sequences in D5 feature
camera movement, introducing additional challenges that are repre-
sentative of real-world video color fusion scenarios. This inclusion
of dynamic camera motion enables a more rigorous evaluation of
a method’s ability to maintain spatio-temporal consistency and
handle complex scene geometry.

In summary, as shown in Table 8, the D5 dataset provides a com-
prehensive and effective benchmark for video color fusion methods,
with its diverse content, high-quality video sequences, and inclusion
of camera motion. This dataset facilitates a thorough evaluation of
MovingColor and other state-of-the-art techniques, promoting the
development of advanced video color fusion algorithms.
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Table 5: Color fusion performance of various loss functions of MovingColor on DAVIS, YouTube-VOS, and D5 dataset.

ACM MM 24, Oct 28 - Nov 01, 2024, Melbourne, Australia

Dataset Loss Function | Non-Edge Diff | Texture Temporal Consistency

L1 LG Lperc|PSNRT AE| | TD| |PCpsnr T PCssim T PVCS | Ewarp |

v v 29.59 3.14 2.01 32.80 0.88 0.41 1.09

E v v 29.40 3.22 2.02 32.69 0.88 0.45 1.07

S v v 29.91 3.02 | 2.06 3270 087 043  1.04

Vv v | 298 293 | 202 | 3286 088 044  1.06

8 v 29.04 3.52 1.09 37.32 0.93 0.39 0.54

E v v | 2963 327 | 110 | 3705 093 043 052

ES v v 28.87 3.50 1.17 37.24 0.93 0.40 0.54

= v v 29.65 3.14 1.10 37.37 0.93 0.42 0.51

v 27.71 3.74 1.00 38.32 0.97 0.50 0.30

n v v 27.90 3.69 1.04 38.46 0.97 0.56 0.29

s v v 28.86 3.33 1.11 38.15 0.97 0.56 0.31

vV v v | 2824 339 | 103 | 3861 097 054 0.29

Table 6: Color fusion performance of various resolutions of MovingColor on DAVIS, YouTube-VOS, and D5 dataset.

Dataset | Size Non-Edge Diff | Texture Temporal Consistency
PSNRT AE | TD] | PCpsnk T PCssiv T PVCS | Ewarp |
240P | 29.80 2.93 2.02 32.86 0.88 0.44 1.06
g 360P | 29.87 2.85 2.01 34.61 0.89 0.40 1.06
S |asop | 3055 275 1.95 35.75 0.90 037  1.00
720P | 31.28 2.62 1.78 36.40 0.89 0.38 1.03
° 240P | 29.65 3.14 1.10 37.37 0.93 0.42 0.51
'E 360P | 29.97 3.08 1.14 38.35 0.93 0.39 0.50
:o: 480P | 3047 3.0 1.06 38.67 0.94 0.37 0.50
720P | 31.26 2.84 0.96 39.11 0.94 0.36 0.46
240P | 28.24 3.39 1.03 38.61 0.97 0.54 0.29
0 360P | 28.54 3.22 0.98 38.71 0.97 0.52 0.29
S| 4sop | 2887 314 | 095 39.27 0.97 050 0.7
720P | 29.25 3.00 0.93 40.29 0.97 0.48 0.28

I USER STUDY

To further evaluate the performance of MovingColor, we have
conducted a set of user study and a professional colorist interview.
The user study aims to assess the visual quality of MovingColor’s
color fusion results compared to the baselines. Its results have been
reported in the main paper. The professional colorist interview
provides insights into the practicality and usability of MovingColor
in professional video post-production workflows.

I.1 User Study Settings and Demographics

We conducted a user study with 68 participants to evaluate the
performance and user experience of MovingColor. Its results have
been reported in the main paper. The demographic information of
the participants is as follows:

o Gender Distribution: The study included 47 male partici-
pants (69.12%) and 21 female participants (30.88%).
2024-04-20 14:23. Page 5 of 1-7.

e Age Distribution: The majority of the participants were
between 30 and 40 years old (28 participants, 41.18%), fol-
lowed by those between 20 and 30 years old (26 participants,
38.24%). The study also included 7 participants (10.29%) who
were 20 years old or younger and 7 participants (10.29%)
between 40 and 50 years old.

e Education Distribution: Most of the participants held a
Bachelor’s degree (43 participants, 63.24%), while 18 partici-
pants (26.47%) had a Master’s degree or above. The remaining
7 participants (10.29%) had a high school diploma.

e Experience Distribution: The participants’ experience lev-
els varied, with 35 participants (51.47%) identifying as ama-
teurs, 23 participants (33.82%) having no prior experience,
and 10 participants (14.71%) being professionals in the field
of video color enhancement or related areas.
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Table 7: Color fusion performance of various color adjustments of MovingColor on DAVIS, YouTube-VOS, and D5 dataset.

Dataset | Adjustments Non-Edge Diff | Texture Temporal Consistency
PSNRT AE| | TD| |PCpsxel PCssiuT PVCS| Bwarp |
Brightness* 28.73 3.04 2.01 32.80 0.88 0.47 1.06
Contrast* 30.00 2.92 2.01 32.34 0.87 0.42 1.14
Exposure® 29.39 3.01 2.01 32.78 0.88 0.44 1.07
Gamma* 30.01 2.89 2.02 32.78 0.88 0.47 1.07
Hue* 29.98 3.08 2.05 32.80 0.88 0.45 1.04
Saturation* 29.77 2.96 2.03 32.80 0.88 0.41 1.06
- Vibrance* 30.09 2.89 2.02 32.99 0.88 0.41 1.05
£ Warmth* 3028  2.77 2.02 32.89 0.88 0.42 1.04
= Brightness™ | 30.15  2.89 2.02 32.96 0.88 0.47 1.04
Contrast™ 30.15 2.85 2.02 33.23 0.88 0.42 0.97
Exposure™ | 30.39  2.83 2.02 33.08 0.88 0.44 1.03
Gamma~ 28.66 3.11 2.01 33.03 0.88 0.48 1.03
Hue™ 30.20 2.89 2.02 32.86 0.88 0.41 1.04
Saturation™ | 30.79 2.74 2.01 32.95 0.88 0.41 1.04
Vibrance™ 30.30 2.86 2.01 32.86 0.88 0.41 1.04
Warmth~ 29.23 3.01 2.01 32.89 0.88 0.44 1.06
Brightness* 28.85 3.21 110 37.36 0.93 0.47 0.51
Contrast* 29.81 3.06 111 36.92 0.93 0.43 0.59
Exposure® 29.43 3.17 1.09 37.17 0.93 0.42 0.52
Gamma* 29.93 3.05 111 37.46 0.93 0.42 0.54
Hue* 29.75 3.18 114 37.34 0.93 0.43 0.52
Saturation* 29.73 3.10 111 37.34 0.93 0.40 0.52
E Vibrance* 30.05 3.06 1.09 37.52 0.93 0.40 0.51
ﬁ Warmth* 29.44 3.11 110 37.35 0.93 0.41 0.51
2 Brightness™ 29.97 3.05 1.09 37.44 0.93 0.47 0.52
= Contrast™ 30.04 3.09 1.09 38.10 0.93 0.43 0.45
Exposure™ 30.12 3.03 1.10 37.69 0.93 0.43 0.50
Gamma~ 28.91 3.28 1.09 37.67 0.93 0.44 0.50
Hue™ 29.90 3.14 1.09 37.27 0.93 0.40 0.51
Saturation™ | 30.34 2.97 1.09 37.33 0.93 0.39 0.50
Vibrance™ | 3011  3.04 1.09 37.56 0.93 0.40 0.51
Warmth™ 29.60 3.20 1.09 37.50 0.93 0.42 0.51
Brightness* 27.58 3.46 1.02 38.58 0.97 0.63 0.30
Contrast* 28.55 3.29 1.04 38.26 0.96 0.52 0.33
Exposure® 28.25 3.37 1.02 38.43 0.97 0.55 0.30
Gamma* 27.94 3.40 1.04 38.57 0.96 0.59 0.29
Hue* 28.68  3.71 1.05 38.66 0.96 0.52 0.30
Saturation* 28.65 3.35 1.03 38.44 0.96 0.50 0.29
Vibrance* 28.81 3.29 1.02 38.52 0.97 0.48 0.29
0 Warmth* 28.23 3.38 1.03 38.58 0.97 0.52 0.30
a Brightness™ 27.96 3.38 1.03 38.41 0.96 0.62 0.29
Contrast™ 28.64 3.33 1.02 39.23 0.97 0.53 0.26
Exposure” 28.43 3.33 1.03 38.96 0.97 0.56 0.28
Gamma~ 27.53 3.53 1.01 38.70 0.97 0.62 0.30
Hue™ 28.84 3.33 1.02 38.51 0.97 0.48 0.29
Saturation™ | 29.05 3.21 1.02 38.80 0.97 0.47 0.29
Vibrance™ | 2894  3.25 1.02 38.61 0.97 0.48 0.29
Warmth~ 28.61 3.41 1.02 38.73 0.97 0.52 0.29

The diverse demographics of the participants in terms of gender,
age, education, and experience levels provide a representative sam-
ple for evaluating MovingColor’s performance and user experience

across a wide range of users.

1.2 User Interview with a Professional Colorist

To assess the real-world applicability and effectiveness of Moving-
Color, we conducted a qualitative interview with a professional
colorist. The colorist interacted directly with MovingColor’s demo
app to perform color enhancements and fusion on various video
sequences, comparing the results with those obtained using tradi-
tional methods.
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Table 8: D5 dataset summary. Example clips are available at https:/mm24-anonymous-id-279.github.io/.

Name # Camera Objects Moving Object In/Out Lighting
clips

Big Office 9 Pan, Zoom sky, chair, tree, table, electronic device  person Indoor Indoor light, Sun

Condo 12 Pan, Zoom, Still  sky, tree, flower, cat, house, grass dog, cat, person Outdoor Outdoor light,
Sun

Interior Design 8 Pan, Zoom, Still dog, chair, table dog Indoor Indoor light

Modern Home 18 Pan, Zoom, Still  sky, person, chair, table, book person Indoor Indoor light, Sun

Mooncakes 7 Pan, Zoom mooncake, table, tree, book Indoor Indoor light

Exhibition Hall 9 Pan, Zoom person, ball person, ball Indoor Indoor

Shopping Center 8 Pan, Zoom sky, building, tree, person, car car, person Outdoor  Outdoor light,
Sun

The Last of Us 6 Pan, Zoom sky, tree, grass, snow, person, house person Outdoor Outdoor light,
Sun

Wooden 11 Pan, Zoom sky, tree, grass, building, chair, table, person, bird Indoor Indoor light, Sun

Architecture person, bird

Indoor Pool 10 Pan, Zoom sky, swimming pool, chair Indoor Indoor light

French Manor 13 Pan, Zoom sky, tree, grass, building, bird bird Outdoor Outdoor light

Tower 10 Pan sky, building, bird, moon, tree Outdoor Outdoor light,
Sun

o Spatial and Temporal Consistency: The colorist praised
MovingColor’s exceptional ability to blend colors seamlessly
within the video frames while maintaining spatial and tem-
poral consistency, even in challenging scenarios involving
complex color gradients and transitions. The tool’s capability
to execute precise color adjustments without disrupting the
spatio-temporal harmony of the video was seen as a signifi-
cant advancement over traditional color grading methods.

o Texture Preservation: MovingColor’s architecture garnered
special praise for its innovative approach to texture preser-
vation. The colorist highlighted that while most color en-
hancement tools tend to compromise the video’s original
texture during color adjustment, MovingColor excelled in
retaining textural details, which is critical for high-quality
visual outputs.

e Temporal Consistency: The colorist commended Moving-
Color’s ability to maintain temporal consistency across video
frames. The tool’s global-local feature propagation module
was noted for its effectiveness in ensuring a smooth and
coherent color enhancement throughout the video sequence,
minimizing any flickering or inconsistencies that often arise
with traditional methods.

e User Experience and Integration: The user interface of
MovingColor was lauded for its intuitiveness and ease of
use, with the colorist appreciating the streamlined workflow
and the tool’s processing efficiency. The remarkable integra-
tion ease of MovingColor with existing color enhancement
pipelines was also highlighted, as it aligns seamlessly with
conventional workflows and requires no extensive reconfig-
uration or steep learning curve.

Overall, the detailed feedback from the professional colorist af-
firmed the effectiveness of MovingColor in addressing the nuances
2024-04-20 14:23. Page 7 of 1-7.

of video color enhancement, underscoring its potential to revolu-
tionize the field with its advanced features, user-centric design, and
seamless integration into traditional workflows.
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