
6 Supplementary Material

6.1 Related Work

6.1.1 Generating synthetic data using known invariances

Making deep learning models robust when they are trained on limited data is critical. One approach
is to encode known invariances into the model directly [18]. For example a classifier trained to detect
cat images should be invariant to rotated, cropped or blurred images of cat. However, it is non-trivial
to encode all invariances directly into the model. A simpler way is to encode those invariances in the
training data by generating additional data using transformations. Traditional DA techniques used for
this purpose employ a limited set of invariances that are static, known a priori, and easy to implement
[13, 43, 40, 19]. Although considered best practices for a long time [30], this class of methods are
shown to have limitations such as incapability of exploring a large invariance space [1] and requiring
domain knowledge to design augmentation schemes [18].

6.1.2 Generating synthetic data by learning invariances

Recently a lot of work has been done in vision domain to infer invariances directly from training data
[28, 9, 10, 1, 18] using generative models like GANs/VAEs that have been successfully adapted to
TS domain [8, 39, 14, 34, 15], to generate synthetic TS samples that show effectiveness primarily
on the task of TS classification. [39] supplements a GAN based generative model with a supervised
autoregressive objective in the latent space and shows that it leads to more realistic TS that improve
performance on a classification task. [8] use a GAN based approach and learn a modal-agnostic
generative framework by jointly training a classifier in the latent space. Although the intuition behind
GANs is quite elegant as exhibited in these papers, they are difficult to train and often experience
mode collapse (which prevents from generalizing), vanishing gradients, and/or unstable updates.
In [11] authors use a deterministic approach and train a denoising auto encoder [36] to generate
financial TS data. Although impressive, there is no evidence that these complex GAN-based or
compression-based auto encoding methods would work equally well on anomalous TS where its
much harder to learn to generate sparse signals like point anomalies and level-shifts, in the synthetic
data. In [6, 7] authors show anomalous TS can synthetically be generated by sampling from a learned
latent space. Although impressive, there are two key limitations- (a) they still use a limited set of
known invariances (eg: jittering, scaling, permutation) to handle class imbalance to train a VAE; (b)
they pose AD task as a classification task to alleviate the problem of dealing with temporal labels
which limits this approach to be of use in a traditional TS AD setting [37].

Conditional Generative Models. Explicitly conditioning the generative models on class labels has
shown to learn a sharper and class-dependent data distribution. This idea has been adopted to modify
both VAEs [32] and GANs [31, 27, 14] for TS generation. In [31] authors train two Wasserstein
GANs [2] in a sequential manner where the spectograms generated from first WGAN are used to
condition the second WGAN, which is trained to generate synthetic TS data. In [27] authors apply
conditioning on timestamp information to handle irregular sampling while [14] applies conditioning
on class labels in a temporal fashion to both the generator and discriminator to learn a class-dependent
generative model.

VAEs for data imputation. Another interesting line of work involving VAEs for TS generation is data
imputation. In [26] authors show how VAEs can be used to fill missing data in a high-dimensional
heterogenous setting which was extend to TS by [16] by building a sequential latent variable model
and using a prior that exploits temporal dynamics in latent space. [42] is another recent work where
VAEs are proven to be useful for imputing missing TS data.

Inspired by these recent successes of VAEs we show how C-GATS adopts a factorized training
procedure and uses ideas from data imputation to train an unconditional VAE on just the normal
samples that acts as a foundation model [4] which is then used to fine-tune a conditional generative
model that learns to generate synthetic anomalous TS with labels and addresses the limitations of
previous approaches.

10

Figure 4: C-GATS Architecture. (a) Step 1: sample occlusion model is used to obtain X̃ from normal
TS; (b) Step 2: Paired samples (X̃,XN) are then used to train the foundation model ✓; (c) Step 3:
sample occlusion model is used to obtain X̃ from anomalous TS; (d) Step 4: Anomaly generation
model � is trained in a conditional manner using (X̃i, XA

i , Y A
i)mi=1. Solid lines around ✓ in (d) denote

frozen weights.

6.2 Dataset Description

Synthetic Sines– We simulate univariate sinusoidal sequences of different frequencies ⌘ and phases
✓, providing continuous-valued periodic samples each of fixed length, T = 240 timestamps; xi(t) =
sin(2⇡⌘t + ✓), where ⌘ ⇠ U [0, 1] and ✓ ⇠ U [�⇡,⇡]. We simulate a total of 64000 TS. Then we
insert point anomalies in the data. We sample 3 attributes randomly at uniform– (1) whether to insert
an anomaly or not s ⇠ {1, 0}; (2) the position where to insert the anomaly, p ⇠ range(240); (3) how
long will the anomaly be, l ⇠ range(10); (4) direction of anomaly, i.e, either positive of negative
spike d ⇠ {+1,�1}. Thus, for sequence xi in simulated data, we corrupt it by inserting anomaly
using the process- xA

i = f(xi; s, p, l, d).
KPI dataset

1– A univariate TS dataset consisting of KPI curves from different internet companies in
1 minute interval. We use a sliding window of 240 to downsample the long TS in the data and obtain
a fixed size datasets of 30000 TS each of length 240 timesteps.
NAB

2– A public anomaly detection benchmark dataset [23] that contain streaming data from different
domains. We select 4 different datasets from this benchmark- (a) RealTweets, (b) RealTraffic, (c)

RealAWSCloudWatch, (d) ArtificialWithAnomaly. Each dataset was resampled to sequences of
fixed length. Statistics of each dataset are provided in Table 4.

Table 4: Statistics of datasets

Dataset
Total Total Anomaly

Series Points Points

Synthetic Sines 64000 15360000 171071
KPI 30000 7200000 328527

RealTweets 4000 960000 159740
RealTraffic 1200 288000 14364

RealAWSCloudWatch 121 29040 3070
ArtificialWithAnomaly 180 43200 5040

6.3 Evaluation Mechanisms

• TRTR: Train on the 80% real train set and evaluate on the 20% held-out real test set.

1http://iops.ai/competition_detail/?competition_id=5&flag=1
2https://github.com/numenta/NAB/tree/master/data

11

(a) (b)

Figure 5: We augment 2 different sine curves with 2 popular DA methods from vision domain that
have been applied to TS [38]- first, CutOut [13] where we randomly replace a small section of TS
with 0; second, we add random noise sampled from a normal distribution. In both cases DA fails–
either Standard DA techniques either introduce new anomalous behavior in the data or corrupt the
anomalous timestamps leading to incorrect ground-truth labels.

Figure 6: Samples generated by four different augmentation methods. Column (a) shows 3 different
samples generated by a CVAE; Blue curve represents the input sample and orange curve represents
the generated sample. Column (b), (c) and (d) show samples generated by CutMix [40], Mixup [43]
and Combination (i.e jittering, scaling, permute and timewarp) augmentation methods.

• T(R+S)TR: Train on the combined data (i.e 80% train set and all of the generated synthetic
data) and test on the held-out 20% real test set.

• TSTR: Train on the all of the generated synthetic data and test on the held-out 20% real test
set.

• TRTS: Train on all the real data (80% + 20%) and test on a 20% random split of synthetic
data.

6.4 Evaluation Metrics

We observed that most of these AD methods [17, 29, 5] report performance scores using either a
point-adjusted scoring function [3] or a relaxed version of F1 [17], which leads to an overestimation
of detection performance [20]. We therefore use point-based evaluation metrics as recommended by
[20] and also use the baselines by [37] and [20]. We report the average point-based precision, recall
and F1 scores for each of the AD evaluation experiment performed. A series of AD experiments are
run on each of the 6 datasets where we evaluate all the 8 different AD algorithms with 6 different DA
strategies. Each experiment was run 5 times with different splits and we report the mean and standard
deviation of the F1 score in Table 3, 9, 10 and 11.

12

6.5 DA Baselines

We pick 7 different DA techniques to compare against C-GATS. We also include an eighth baseline
which is simply not using any augmentation method. Mixup [43] creates new training examples out
of original samples by using a convex combinations of the features and their labels (controlled by
↵) resulting into plausible new TS (e.g. see Figure 6.c). We choose ↵ = 0.2 for our experiments as
it yielded the best results across different values of ↵. CutMix [40] is another strategy popular in
vision domain which involves randomly cutting a patch from one sequence and pasting it into another
sequence. The new sequences generated by this method are not very ideal for anomaly detection task
as abruptly changing patterns in a sequence could introduce new anomalies that labels won’t account
for (see Figure 6.b). As third baseline we pick RCGAN [14] as it is a neural-network based approach
that applies conditionals in a temporal fashion like C-GATS. Out fourth baseline is a combination of
traditional TS augmentation methods 3 including Scaling, Jittering, Permutation and TimeWarping.
In this method, for each sequence in a given dataset, we randomly sample one DA strategy from the
mix and apply it to the sequence. (e.g. see Figure 6.d).

6.6 AD Baselines

We pick 3 supervised neural-network based AD algorithms– RobustTAD [17], SR-CNN [29] and
NCAD [5] as each claim to utilize DA techniques for better detection performance making them an
ideal choice for our experiments. Apart from these, we select 5 other baselines that are much simpler
but have been shown to be effective on the TS AD benchmark datasets [37, 20]. We refer to them
as One-liner A, One-liner B, Case 1, 2 and 3. Case 1 [20] baseline randomly assigns an anomaly
score for every timestamp in a given sequence, i.e A(xt) ⇠ U(0, 1). Case 2 [20] baseline assigns a
score proportional to the value at each timestamp, i.e A(xt) = ||xt � ⌘||2 where ⌘ = 0. Case 3 [20]
baseline is same as Case 2 but ⌘ is obtained from an untrained 2-layer LSTM neural network whose
parameters are fixed after being initialized from a Gaussian distribution N (0, 0.02). The scores are
then converted into anomaly labels using a threshold 0 � 1. We do a grid search for the value of
� and report the metrics for the best value. Another set of baselines obtained from [37] are one-liners.
There are 2 main types of one-liners proposed in [37] one with abs and without. We test both the
categories and pick the one that obtain best performance. We pick One-liner A as —

abs(diff(TS)) > b

and One-liner B as —

abs(diff(TS)) > movmean(diff(TS), k)
+ c * movstd(diff(TS), k) + b

As recommended by [37], we adopt a similar brute-force strategy to compute individual k, c, b for all
the datasets.

6.7 Ablation Study

To better understand the advantage brought by different components of our method, we perform an
ablation study on 6 different datasets and 3 different AD algorithms. We consider variations of the
framework by (a) varying the training procedure; and (b) altering the model architecture and train the
model in each configuration thrice. We report the average performance metrics of these runs.

6.7.1 Dual-step training strategy

In this experiment we remove the training phase-I from C-GATS and simply train a standard CVAE
with temporal conditionals with anomalous samples. Table 10 summarizes the performance of
C-GATS in these two different settings. Our study shows that the use of dual-training step contributes
to decoupling complex processes of representation learning and anomaly insertion which leads to
generation of more controlled and sharper anomalies and contributes to additional performance gain.
We further demonstrate this in Figure 7 where the left hand column represents sampled generated

3https://tsaug.readthedocs.io/en/stable/

13

Figure 7: For a fixed z and Y A in each row; Blue: samples generated by C-GATS in 1-phase training;
Green: samples generated by C-GATS in a 2-phase training.

Figure 8: For a fix latent vector z, we vary Y A in each row. Blue plots: represent samples generated
by C-GATS when temporal conditioning is applied at the very first layer of the generator. Green
plots: samples generated when conditioning is applied at the last layer of generator.

via one-step training procedure and right-hand column represents the dual-step training of C-GATS
on KPI dataset. For each row, we use a fixed noise vector z sampled from a normal distribution
along with a fixed condition vector Y A. The samples generated by on-step training fail to learn sharp
distinguishable anomalies in data which can be seen in the samples generated by the two-step training
strategy.

6.7.2 Positioning of Conditionals

We study the effectiveness of our proposed approach of applying temporal conditionals for anomaly
generation. By varying the position of the temporal conditionals we study its impact on the generation
process. Changing the position of applying conditionals from final-most layer to the very first layer of
the anomaly generator leads to a decline in AD performances by upto 12% in some cases, see Table
11. Neural networks are known to learn more fundamental and primitive features at the initial layers
while more advanced and developed ones at the later layers [41]. Similar phenomena is observed
when we assess the quality of generated anomalous samples in Figure 8. The study reveals that
applying conditionals at the first layer of the generator interferes with the basic reconstruction of TS

14

Figure 9: Top center: For a given conditional vector Y A and a latent vector z sampled from a standard
Gaussian, we generate an anomalous sequence. Then we vary z across each of its 16 dimensions one
by one keeping the rest constant. For a given conditional vector and a latent z C-GATS can generate
multiple reasonable and interesting synthetic anomalous signals.

signal and leads to ambiguous and inconsistent anomalous samples. Whereas when applied at the
final-most layer, the generated samples are consistent and better in quality and hence contribute to
better AD performance.

6.7.3 Diversity in generation of anomalies across a fixed input

Here we assess the generative power of C-GATS qualitatively in Figure 9. For a fixed condition
vector Y A we take a random noise z which is a 16-dimensional vector and generate an anomalous

15

Algorithm 1 Training the foundation model
Input: an anomaly label model p(Y A); a sample occlusion model p(X̃|XN , Y A); set of normal
sequences {XN

i }ni=1; batch size B.
Parameter: ✓ and initialized randomly.
Output: A learned posterior model p(z|X̃; ✓⇤).

1: while SGD not converged do

2: Sample a batch of B normal sequences (XN
i)Bi=1;

3: Initialize an empty buffer M of size B;
4: for i = 1, . . ., B do

5: Sample Y A from label model Y A ⇠ P (Y A);
6: Feed (XN

i , Y A) to sample occlusion model and obtain X̃i ⇠ p(X̃|XN
i , Y A);

7: Collect samples M M [{(X̃,XN)i};
8: end for

9: ✏ ⇠ p(✏); (Random noise for every datapoint in M)
10: Compute L✓, (M, ✏) via Eq.(7) and its corresponding gradientsr✓, L✓, (M, ✏);
11: Update ✓ and using SGD optimizer;
12: end while

Algorithm 2 Training the anomaly generation model
Input: a trained variational encoder p(z|X̃; ✓⇤); a sample occlusion model p(X̃|XA, Y A); set of
anomalous sequences and labels {XA

i , Y A
i }mi=1; batch size B.

Parameter: � initialized randomly.
Output: A learned generative model p(XA|z, Y A;�⇤).

1: while SGD not converged do

2: Sample a batch of B anomalous sequences pairs (XA
i , Y A

i)Bi=1;
3: Initialize an empty buffer M of size B;
4: for i = 1, . . ., B do

5: Feed (XA
i , Y A

i) to sample occlusion model and obtain X̃i ⇠ p(X̃|XA
i , Y A);

6: Feed X̃i to the trained encoder and obtain the latent representation zi ⇠ p(z|X̃i; ✓⇤)
7: Collect samples M M [{(zi, XA

i , Y A
i)};

8: end for

9: Compute L�(M) (8) and gradients r�L�(M);
10: Update � using SGD optimizer;
11: end while

sample as shown in the top-center of the figure. We then vary each of 16 dimensions of z one-by-one
between values (�1, 1) keeping the rest constant. The figure shows that on varying each dimension
of z, we control different attributes of the generated sample such as frequency, noise, etc. while
retaining the anomaly in the same desired location. This displays the generative power of C-GATS in
producing a diverse range of synthetic anomalous samples.

6.8 Future Work

In the future, we plan to further improve C-GATS’s generation quality by forcing it to generate not
just realistic but hard examples that can further improve the quality of AD models. Similar ideas
have been used in approaches like MODALS [8] where sampling in latent space is advised by a
classifier to pick samples that can potentially fool the classifier. We believe adapting a similar strategy
in C-GATS where we use a group of different anomaly detectors to aid the sampling process in latent
space could force C-GATS to generate samples in feature space that are not only anomalous but
can simultaneously fool these detectors, and hence improve downstream AD methods substantially.
Another area of improvement is to model the latent distribution using a prior that captures temporal
dynamics like [16].

16

Table 5: Performance of different AD algorithms in different augmentation settings on RealTweets
Dataset

AD Algorithm
TRTR T(R+S)TR TRTS TSTR

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.53 0.57 0.54 0.59 0.59 0.57 0.47 0.54 0.49 0.57 0.57 0.56
SR-CNN 0.49 0.51 0.46 0.55 0.54 0.53 0.45 0.50 0.47 0.52 0.53 0.50
NCAD 0.55 0.60 0.57 0.61 0.64 0.61 0.49 0.55 0.53 0.58 0.63 0.59

Table 6: Performance of different AD algorithms in different augmentation settings on RealTraffic
Dataset

AD Algorithm
TRTR T(R+S)TR TRTS TSTR

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.74 0.65 0.67 0.78 0.70 0.73 0.64 0.63 0.62 0.76 0.69 0.69
SR-CNN 0.69 0.60 0.64 0.71 0.63 0.66 0.68 0.55 0.58 0.70 0.61 0.65
NCAD 0.75 0.66 0.69 0.78 0.69 0.71 0.75 0.65 0.67 0.77 0.67 0.69

Table 7: Performance of different AD algorithms in different augmentation settings on RealAWSCloud-
Watch Dataset

AD Algorithm
TRTR T(R+S)TR TRTS TSTR

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.30 0.48 0.34 0.31 0.48 0.34 0.25 0.42 0.29 0.30 0.48 0.34
SR-CNN 0.27 0.42 0.25 0.29 0.43 0.27 0.22 0.37 0.25 0.26 0.42 0.25
NCAD 0.29 0.49 0.35 0.31 0.49 0.35 0.24 0.45 0.26 0.28 0.49 0.35

Table 8: Performance of different AD algorithms in different augmentation settings on ArtificialWith-
Anomaly Dataset

AD Algorithm
TRTR T(R+S)TR TRTS TSTR

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

RobustTAD 0.44 0.32 0.36 0.50 0.37 0.41 0.41 0.30 0.34 0.47 0.35 0.37
SR-CNN 0.39 0.17 0.28 0.43 0.26 0.34 0.37 0.15 0.25 0.41 0.21 0.29
NCAD 0.45 0.36 0.39 0.50 0.42 0.45 0.43 0.35 0.37 0.48 0.40 0.41

Table 9: Baseline TS AD algorithms performances across different datasets

Algorithm

Dataset w/o Aug. Mixup CutMix Combination RCGAN C-GATS
(alpha=0.2) (Scaling, Jitter,

Permute,TimeWarp)

One-liner A

Synthetic Sines 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000 0.70 ±0.000
KPI 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000 0.61 ±0.000

RealTweets 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000
RealTraffic 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000 0.51 ±0.000

RealAWSCloudWatch 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000 0.38 ±0.000
ArtificialWithAnomaly 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000 0.19 ±0.000

One-liner B

Synthetic Sines 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000 0.69 ±0.000
KPI 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000 0.56 ±0.000

RealTweets 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000 0.49 ±0.000
RealTraffic 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000 0.52 ±0.000

RealAWSCloudWatch 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000 0.36 ±0.000
ArtificialWithAnomaly 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000

Case 1

Synthetic Sines 0.09 ±0.004 0.09 ±0.008 0.09 ±0.003 0.09 ±0.002 0.09 ±0.003 0.09 ±0.001
KPI 0.08 ±0.006 0.09 ±0.003 0.08 ±0.009 0.08 ±0.010 0.09 ±0.004 0.08 ±0.001

RealTweets 0.12 ±0.009 0.11 ±0.004 0.12 ±0.001 0.12 ±0.010 0.11 ±0.008 0.12 ±0.003
RealTraffic 0.07 ±0.002 0.06 ±0.010 0.07 ±0.005 0.07 ±0.008 0.06 ±0.001 0.07 ±0.006

RealAWSCloudWatch 0.12 ±0.002 0.12 ±0.007 0.11 ±0.001 0.11 ±0.011 0.12 ±0.005 0.11 ±0.004
ArtificialWithAnomaly 0.14 ±0.000 0.13 ±0.003 0.14 ±0.003 0.14 ±0.001 0.14 ±0.003 0.14 ±0.001

Case 2

Synthetic Sines 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000 0.43 ±0.000
KPI 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000 0.33 ±0.000

RealTweets 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000 0.21 ±0.000
RealTraffic 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000 0.14 ±0.000

RealAWSCloudWatch 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000
ArtificialWithAnomaly 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000 0.18 ±0.000

Case 3

Synthetic Sines 0.43 ±0.002 0.43 ±0.001 0.42 ±0.001 0.43 ±0.003 0.43 ±0.005 0.43 ±0.004
KPI 0.33 ±0.003 0.33 ±0.004 0.32 ±0.001 0.32 ±0.009 0.32 ±0.006 0.32 ±0.005

RealTweets 0.20 ±0.003 0.21 ±0.005 0.21 ±0.001 0.20 ±0.001 0.20 ±0.002 0.20 ±0.000
RealTraffic 0.18 ±0.009 0.18 ±0.010 0.18 ±0.007 0.18 ±0.003 0.18 ±0.005 0.18 ±0.011

RealAWSCloudWatch 0.19 ±0.001 0.19 ±0.002 0.19 ±0.002 0.19 ±0.000 0.19 ±0.001 0.19 ±0.003
ArtificialWithAnomaly 0.19 ±0.004 0.19 ±0.001 0.19 ±0.008 0.19 ±0.002 0.19 ±0.003 0.19 ±0.001

17

Table 10: Comparison of change in detection performance under different training strategies.

AD Algorithm
Dataset w/o Aug. C-GATS w/ C-GATS w/

end-to-end decoupled

training training

RobustTAD

Synthetic Sines 0.74 ±0.005 0.74 ±0.002 0.75 ±0.004

KPI 0.55 ±0.011 0.63 ±0.009 0.67 ±0.003

RealTweets 0.54 ±0.021 0.56 ±0.011 0.57 ±0.010

RealTraffic 0.67 ±0.026 0.70 ±0.021 0.73 ±0.015

RealAWSCloudWatch 0.34 ±0.262 0.33 ±0.281 0.34 ±0.192

ArtificialWithAnomaly 0.36 ±0.275 0.39 ±0.151 0.41 ±0.107

SR-CNN

Synthetic Sines 0.73 ±0.009 0.73 ±0.001 0.74 ±0.003

KPI 0.54 ±0.008 0.57 ±0.004 0.58 ±0.007

RealTweets 0.46 ±0.027 0.52 ±0.018 0.53 ±0.009

RealTraffic 0.64 ±0.021 0.65 ±0.009 0.66 ±0.020

RealAWSCloudWatch 0.25 ±0.319 0.25 ±0.220 0.27 ±0.199

ArtificialWithAnomaly 0.28 ±0.019 0.33 ±0.015 0.34 ±0.011

NCAD

Synthetic Sines 0.77 ±0.008 0.77 ±0.007 0.79 ±0.001

KPI 0.64 ±0.006 0.67 ±0.011 0.69 ±0.001

RealTweets 0.57 ±0.019 0.60 ±0.021 0.61 ±0.009

RealTraffic 0.69 ±0.029 0.71 ±0.012 0.71 ±0.019

RealAWSCloudWatch 0.35 ±0.219 0.35 ±0.117 0.35 ±0.111

ArtificialWithAnomaly 0.39 ±0.101 0.44 ±0.082 0.45 ±0.091

Table 11: Comparison of change in detection performance under different architecture choices.

AD Algorithm

Dataset w/o Aug. C-GATS w/ C-GATS w/

conditioning conditioning

at first layer at last layer

RobustTAD

Synthetic Sines 0.74 ±0.005 0.74 ±0.003 0.75 ±0.004

KPI 0.55 ±0.011 0.60 ±0.007 0.67 ±0.003

RealTweets 0.54 ±0.021 0.55 ±0.017 0.57 ±0.010

RealTraffic 0.67 ±0.026 0.67 ±0.019 0.73 ±0.015

RealAWSCloudWatch 0.34 ±0.262 0.32 ±0.198 0.34 ±0.192

ArtificialWithAnomaly 0.36 ±0.275 0.36 ±0.119 0.41 ±0.107

SR-CNN

Synthetic Sines 0.73 ±0.009 0.74 ±0.002 0.74 ±0.003

KPI 0.54 ±0.008 0.56 ±0.005 0.58 ±0.007

RealTweets 0.46 ±0.027 0.48 ±0.011 0.53 ±0.009

RealTraffic 0.64 ±0.021 0.65 ±0.019 0.66 ±0.020

RealAWSCloudWatch 0.25 ±0.319 0.25 ±0.222 0.27 ±0.199

ArtificialWithAnomaly 0.28 ±0.019 0.29 ±0.018 0.34 ±0.011

NCAD

Synthetic Sines 0.77 ±0.008 0.77 ±0.003 0.79 ±0.001

KPI 0.64 ±0.006 0.66 ±0.010 0.69 ±0.001

RealTweets 0.57 ±0.019 0.58 ±0.015 0.61 ±0.009

RealTraffic 0.69 ±0.029 0.69 ±0.021 0.71 ±0.019

RealAWSCloudWatch 0.35 ±0.219 0.35 ±0.109 0.35 ±0.111

ArtificialWithAnomaly 0.39 ±0.101 0.41 ±0.159 0.45 ±0.091

18

	Introduction
	Problem Definition
	Proposed Algorithm
	Experiments
	Qualitative Analysis
	Quantitative Analysis

	Conclusion & Future Work
	Supplementary Material
	Related Work
	Generating synthetic data using known invariances
	Generating synthetic data by learning invariances

	Dataset Description
	Evaluation Mechanisms
	Evaluation Metrics
	DA Baselines
	AD Baselines
	Ablation Study
	Dual-step training strategy
	Positioning of Conditionals
	Diversity in generation of anomalies across a fixed input

	Future Work

