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1 NETWORKS

We leverage the same network introduced in OccNet [1] to
learn 3D occupancy fields. The network is a fully-connected
neural network with 5 ResNet blocks, the output of OccNet
is a value with a range of [0,1] which is produced by a sigmoid
function. We train our network with Adam optimizer with
an initial learning rate of 0.01. We randomly sample 200 rays
from a view, and use 1000 rays in a batch to evaluate a loss.

2 MORE RESULTS

Here, we visualize more shapes reconstructed by the occu-
pancy network trained by our loss for implicit reasoning
under three challenging classes including airplanes, chairs,
and tables. The shapes are reconstructed under a resolution
of R =128.

Besides the reconstructed shapes in our manuscript, we
randomly select 200 more shapes that are reconstructed in
the test set in each one of the three classes. Specifically, we
visualize 200 shapes in a single figure, such that Fig. 1 for
airplanes, Fig. 2 for chairs, Fig. 3 for tables, respectively. We

can see that all the reconstructed shapes are with reasonable
structures, plausible geometries and arbitrary topologies.

3 SOURCE CODE

We release our demonstration code as a part of supplementary
material.

4 OPTIMIZATION VISUALIZATION

We visualize the shape optimization in our video. Specifically,
we reconstruct a mesh from the learned occupancy field every
50 iterations, and then render the reconstructed mesh from

4 different views. We stack all rendered images into a video.

We can see that our method progressively reveals accurate
structures. Please watch our video for more details.
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Figure 1: The visualization of 200 airplanes recontructed by our method.

Figure 2: The visualization of 200 chairs reconstructed by our method.
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Figure 3: The visualization of 200 tables reconstructed by our method.
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