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A RELATED WORK EXTENDED

Time Series Anomaly Detection A key class of anomaly detection methods is prediction-based
Giannoni et al. (2018), where anomalies are identified by deviations between predicted and observed
values. These approaches assume that a well-trained forecaster captures normal temporal patterns,
and significant prediction errors indicate potential anomalies|Boniol et al.|(2024). Such methods can
in principle capture both point anomalies, where individual values deviate sharply, and contextual
anomalies, where deviations only emerge relative to surrounding context|Boniol et al. (2024). Given
our focus on unsupervised settings with limited historical data, we build on pretrained forecasting
models. Recent Time Series Foundation Models (TSFMs), trained at scale for forecasting, are par-
ticularly well suited for online detection in data-scarce scenarios |[Rasul et al.| (2023} [2024); |Ansar1
et al.[(2024); Liang et al./(2024). In this work, we leverage three representative TSFMs: Tiny Time
Mixers (TTM) (Ekambaram et al.| [2024)), based on the TSMixer architecture; Chronos-Bolt-Small
(Chronos) (Ansari et al., |2024), a transformer-based model; and TiRex (Auer et al., [2025), which
leverages an XLSTM architecture.

Recent benchmarks have evaluated the effectiveness of time series anomaly detection methods. The
study by |Liu & Paparrizos (2024) found that in unsupervised settings, classical distance-based and
density-based approaches|Li et al. (2007));|Ramaswamy et al.|(2000); Aggarwal & Aggarwal|(2017);
Paparrizos & Gravano (2015 2017); |Boniol et al.| (2021) often outperform more complex models.
However, these methods typically require access to the entire dataset (i.e., anomaly detections are
non-causal and occur after the fact) and are not inherently designed for streaming applications |Bo-
niol et al.| (2024). They may also struggle to capture richer temporal structures in the data, which
limits their effectiveness in dynamic environments. Another critical challenge concerns the inter-
pretability of anomaly scores and the choice of thresholds. Many evaluation studies emphasize
threshold-independent metrics Schmidl et al. (2022); |[Paparrizos et al. (2022b)); Goswami et al.
(2022), yet the scores themselves often lack clear probabilistic meaning. Common thresholding
strategies, such as standard deviation-based rules, depend on statistics computed over the entire
dataset, making them impractical for streaming scenarios |Ahmad et al. (2017).

In real-world deployments, an anomaly detection system must not only detect anomalies but also
provide interpretable confidence scores while minimizing false alarms |Cook et al.|(2019). A high
false alarm rate can overwhelm monitoring systems, reducing their practical utility. Our work ad-
dresses these challenges by developing an approach that enables adaptive thresholding in streaming
environments while ensuring reliable anomaly detection, regardless of whether the anomalies are
point-based or contextual.

Conformal Prediction Conformal prediction methods Vovk et al. (2005) have gained significant
attention for their ability to provide distribution-free uncertainty quantification with finite-sample
generalization guarantees Shafer & Vovk (2008); [Angelopoulos & Bates (2021). Among these,
split conformal prediction (SCP) |[Papadopoulos et al.| (2002) is a particularly appealing post-hoc,
model-agnostic technique that requires only the model’s predictions and a calibration dataset. SCP
estimates an empirical quantile of a nonconformity score measuring how well the model’s predic-
tions align with the data to construct prediction sets that achieve the desired coverage. However,
these guarantees rely on the exchangeability assumptionﬁbetween calibration and test observations,
which often does not hold in time series settings.

For non-exchangeable data, particularly time series, several adaptive conformal prediction methods
have been proposed [Gibbs & Candes (2021); |Zaffran et al.| (2022)); |Gibbs & Candes|(2024). These
approaches dynamically adjust the estimated quantile to correct for distribution shifts and achieve
the target coverage level. However, they are typically designed for a single error rate objective, often
optimizing the pinball loss or a surrogate function. In contrast, our work focuses on an adaptive
method that remains effective across all error rates and desired alarm rate.

Weighted conformal quantile estimation |Gibbs et al.| (2023), where the calibration or past non-
conformity scores are weighted differently has been used to achieve local coverage when the dis-
tribution of the error differs across the input space. Essentially, for any given observation, scores
of samples that are similar to that observation get up-weighted, usually based on some metric (e.g.,
proximity in the covariate space) (Let & Wasserman, 2014} (Guan, [2019} [Tibshirani et al., [2019;
Sesia & Romano, 2021;(Han et al.,2022;|Guan} 2023 |Ghosh et al., [2023}; Mao et al., [2024)), weights

Sinformally, a sequence of observations is exchangeable if any permutation of the observations has the same
joint probability
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can also be optimized to capture the variance of the non-conformity score across the input space
(Han et al.| 2022; |Amoukou & Brunell 2023). In the context of non-exchangeable data, Barber
et al.|(2023)) derived a coverage bound linking the weights associated with a calibration sample and
the total variation distance between the observed sequence and one where the calibration sample is
swapped with the test sample. This bound suggests one should up-weight samples that are ‘nearly
exchangeable’ with the new observation on a pairwise basis. This is the main inspiration for our
proposed approach.

Conformal prediction has been explored for anomaly detection by setting thresholds on arbitrary
anomaly scores from non-anomalous data while assuming exchangeability |JAngelopoulos & Bates
(2021); |Guan| (2019); Bates et al.| (2023). However, to the best of our knowledge, there is no ex-
isting method that simultaneously (i) seamlessly applies these techniques to generate interpretable,
distribution-agnostic anomaly scores, (ii) directly translates scores into a desired alarm rate, and
(iii) is inherently adapted to operate under non-exchangeability assumptions. Our work aims to
bridge this gap by developing a conformal anomaly detection framework that is both interpretable
and robust to real-world time series shifts.

B PROOFS
Proof Proposition We show the equivalence of the detector Cg, and the conformal outlier
detector in equation[2[over the non-conformity scores S by proving the following

Cﬁw(XtJrhY;erl) = 1[6W(St+1) >1- O‘] (16)
= 1[Se41 > Qi_a(s,w)]

which involves proving that the events Sy (St+1) < o and Si11 > Q14 (s, W) are equivalent.

If Bw(St+1) = Pry1 < athen Sip1 > Q1_4(s, w) since by definition of Sy (-) in equation@then
Biy1 is the maximum value in [0,1] that satisfies the quantile upper bound.

If By (St41) = Bey1 > aand since Spy1 < Q1_p,., (s, W) < Qi_n(s,w),Va' < Byy1 we have
that S;1 < Q1_n(s, W).

C ADDITIONAL EXPERIMENTS

C.1 SIMULATED EXAMPLES

We consider a similar simulated setting as |Gibbs et al. (2023) to empirically evaluate the perfor-
mance of the proposed method across time. We analyze a simple scenario where we observe a
sequence of random variables {Y;}7_,, where Y; ~ N (i, 1). We assume that our predictive model
h outputs a constant Yt = 0,Vt. Then the error is ¢, = Y; — ?} ~ N(pt,1) and its distribu-
tion changes across time based on p;. The nonconformity score is s; = |e;|, Vt. We consider two
different settings for the sequence of means {; }7_;:

* Random shift setting: 1 drifts continuously across time. Specifically, we set o = 0 and

1 1
pt1 = pt + §(ut — 1) + 6t {e:}~N(0,0.05), Vt. (17)

e Jump shift setting: 1, undergoes abrupt discontinuities every 500 time steps where L
increases by one step 15 times, and then starts decreasing by 1,

e = [£/500]1[[£/500] < 15] 4 [15 — [¢/500]]1[[¢/500] > 15]. (18)

Given an observed non-conformity score s; = |e;| we can compute its corresponding p-value oy
such that P, ar(u,,00) (|€¢] > 5t) = ap = 1 — (54 — j1¢) + ®(—5¢ — j1¢) and compare it with the
one estimated by the proposed normalized anomaly score By (S¢).

Figures f]a and []b illustrate a sample of the generated signals under the Random Shift and Jump
Shift settings. Each sequence consists of 7' = 6000 time steps, and our results are averaged over
15 independent realizations. We assess the performance of our proposed approach, Algorithm
referred to as Wi-ACAS, with parameters n = 2000, o, = 0.01, and n, = n, = [a% —17.
We compare it against two baseline methods: (i) an adaptive conformal approach that assigns equal
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weights of 1 to the most recent 2000 samples (ACAS with a fixed window) and (ii) a naive split
conformal approach that computes scores using only the initial 100 samples (Split Conformal with
fixed calibration).

In Figures @ c and [@d, we compare the empirical CDFs of each method against the empirical CDF
of the ground truth p-values (denoted as Ground Truth), which naturally aligns with the identity line
(reference). Notably, W;-ACAS demonstrates superior calibration, consistently aligning closely
with the ground truth CDF and outperforming the other approaches.

Figures[de and[d]f present the average error of the scores of each method with respect to the ground
truth p-values, across different bucket ranges of size 0.1 within [0,1]. Specifically, we evaluate
E[|Bw(st4+1) — @et1| | @r € [au, ay]], where a1 represents the ground truth p-value for obser-
vation ¢ 4+ 1. The results indicate that WW;-ACAS consistently outperforms the baseline methods,
highlighting the advantages of an adaptive approach that dynamically learns how to weight past
observations in a principled manner, rather than relying on a fixed number of past samples.
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Figure 4: Figures (a) and (d) show an example of a generated signal under the random shift and
jump shift settings with a sequence length of 7' = 6000. u; is the expected value of the observed
signal, Y; is the observed signal Y; ~ N (s, 1), and Y; = 0 the predicted value of a naive constant
forecaster. Figures (b) and (e) show the empirical cumulative distribution functions (CDFs) of the
various calibration approaches compared to the ground truth p-values (Ground Truth), which aligns
with the idealized uniform CDF (reference). Results are averaged over 15 realizations. W;-ACAS
demonstrates superior calibration, closely matching the ground truth distribution and improving
upon the reference split conformal method (computed over calibration samples) and a fixed window
ACAS method. Figures (c) and (f) show the average absolute error of the scores of the different
methods with respect to the ground truth p-values, evaluated across bucket ranges of size 0.1 in
[0,1]. W1-ACAS consistently achieves lower estimation errors, highlighting the effectiveness of its
adaptive weighting strategy with minimum parameters.
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C.2 ANOMALY DETECTION REAL DATASETS
C.2.1 BASELINE METHODS

We compare W;-ACAS against two TSFM-based baselines. The first fits a Gaussian distribution
to the mean absolute forecast error across d steps using the calibration portion and assigns anomaly
scores via the resulting p-values. The second applies a Conformal offline approach that learns a p-
value mapping from the calibration split for each d and aggregates the scores by the median. These
baselines provide simple references built directly on TSFM errors.

We additionally consider several classic anomaly detection methods reported as top-performing in
Liu & Paparrizos| (2024):

* KShape (Paparrizos & Gravano, 2015} [2017; [Boniol et al., [2021), which clusters subse-
quences via the k-Shape algorithm and scores anomalies by their distance to cluster cen-
troids;

* POLY (Li et al.,[2007)), which fits a polynomial to the series and applies a GARCH model
to residuals to estimate volatility;

* Sub-PCA (Aggarwal & Aggarwal, [2017)), which projects subsequences onto a lower-
dimensional hyperplane and scores deviations;

* Sub-KNN (Ramaswamy et al.,|2000), which scores each instance by its distance to the k-th
nearest neighbor;

* SAND (Boniol et al.; [2021), an online method that adaptively down-weights older subse-
quences.

For these approaches we adopt the implementations from Liu & Paparrizos (2024) with reported
hyperparameters and their default [0, 1] min—max normalization fitted on the full dataset. For con-
sistency with our p-value scoring (where lower values indicate greater anomaly), we take one minus
the reported score. Unlike our method, these baselines require access to the full test set, whereas
ours supports adaptive, causal anomaly detection without full-dataset access.

C.2.2 METRICS

Threshold-dependent metrics. We follow the evaluation pipeline provided in [Liu & Paparri-
z0s (2024). Given anomaly scores {3; € [0,1]}!_; (interpreted as p-values, where smaller val-
ues indicate stronger outliers) and ground-truth labels {¢; € {0,1}}{_,, we evaluate metrics
M ({¢;},{¢;}) € [0,1] where larger is better. Examples include Affiliation-F and PA-F1. For a
family of thresholds {c; € [0,1]}}_,, we select the best score

j* = argmax M ({63, (1[5 < o)), M= M({6:}, (1[5 < o]},

and report the corresponding false positive rate FPR(a;+) = P[f; < a;= | £; = 0], as well as the
calibration error Cal Err (o) = |FPR(a;+) — o« |. Thresholds are evaluated on a uniform grid

(linspace) with finer resolution at small p-values: 21 values in [0.001, 0.01], 21 values in [0.02,0.1],
and 21 values in [0.2, 1].

Threshold-independent metrics. We also report AUC and VUS-PR. In both cases, integration is
performed using 250 quantiles of each method’s calibration score distribution.

C.2.3 ADDITIONAL RESULTS

Figure 5| provides further detection examples, while Figure [§]illustrates the trade-offs between FPR
and F1 scores (PA-F1 and Affiliation-F) at the operating points that maximize the respective F1
metric, as defined in Appendix [C.2.2] For PA-F1, W;-ACAS consistently dominates competing
approaches. For Affiliation-F, W;-ACAS yields operating points that are rarely dominated and is
the top-performing method in several datasets.

Figure [/| examines the effect of aggregating different numbers of forecast horizons. Performance
generally stabilizes once more than 10 horizons are included, with limited gains beyond this point.
Finally, Tables [2]3]report per-dataset metrics, which align with and reinforce the trends discussed in
the main Experimental section.
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Dataset Forecaster ~ AD Model PA-F1 1 Affiliation-F T  FPR | CalErr | AUC-PR 1 VUC-PR 1

YAHOO - KShapeAD 0.523£0.430  0.860 +0.151 0.359+0.437 0.119+0.183  0.036+0.110  0.220 +0.225
YAHOO - POLY 0.102+0.217  0.831 £0.126 0.387+0.367 0.244+0.240  0.037+0.127  0.139+0.125
YAHOO - Sub-KNN 0.161 +£0.273  0.895 +£0.109 0.158+0.222  0.157+0.161  0.016 +£0.043  0.260 +0.197
YAHOO - Sub-PCA 0.112 £ 0.261 0.750 £ 0.115 0.677+0.410  0.099 +£0.163  0.056£0.134  0.125+0.199
YAHOO - SAND 0.398 +0.416  0.837 £0.147 0.409+0.434  0.097£0.114  0.024+0.071  0.198 £0.180
YAHOO  Chronos Wi1-ACAS  0.798 £0.323  0.947 £0.091 0.074+£0.253  0.007+0.017  0.330£0.259  0.679 +0.332
YAHOO  Chronos conformal 0.652+0.361  0.936 +£0.091 0.088 +0.258  0.015+£0.028  0.147+0.224  0.485 +0.347
YAHOO  Chronos gaussian 0.317+£0.284  0.846 +0.098 0.123£0.265  0.044 £0.066  0.028 £0.100  0.511 £0.345
YAHOO  Tirex Wi1-ACAS  0.869 £0.244  0.968 + 0.068 0.069 £0.253  0.003£0.007 0.267 +0.280  0.699 + 0.331
YAHOO  Tirex conformal 0.730 £0.310  0.928 +0.091 0.074+£0.252  0.009+0.015  0.176 £0.259  0.559 +0.317
YAHOO  Tirex gaussian 0.302+0.269  0.825+0.101 0.105+0.252  0.041£0.062  0.030+0.114  0.546 £ 0.310
YAHOO TTM Wi1-ACAS  0.651+£0.395  0.912£0.121 0.141+£0.343  0.034+0.057 0.277+£0.261  0.676 +0.324
YAHOO TTM conformal 0.607 +0.413 0916 £0.108 0.113+£0.273  0.052+0.082  0.172+0.230  0.611 £0.350
YAHOO TTM gaussian 0.417+0.334  0.870+0.113 0.124+£0.276  0.050+0.104  0.028 £0.099  0.560 + 0.331
NEK - KShapeAD 0.602+0.292  0.708 +£0.043 0.807+£0.284  0.077+0.118  0.216£0.179  0.152+0.138
NEK - POLY 0.848 £0.149  0.936 + 0.066 0.073+£0.058 0478 +0.135  0.063+0.073  0.616 +0.162
NEK - Sub-KNN 0.738£0.307  0.779 +0.098 0.561 £ 0.451 0.054+0.086 0.172+0.068  0.321 £0.131
NEK - Sub-PCA 0.933+£0.107  0.980 + 0.022 0.041£0.068  0.393+0.190  0.007£0.013  0.705 +0.230
NEK - SAND 0.718 £0.340  0.829 £0.105 0.312+£0.338  0.201 £0.135  0.325+0.196  0.214 +0.203
NEK Chronos Wi-ACAS  0.995+0.006 0.924 +0.066 0.003 £0.005  0.004 +0.003 0.408 £0.073  0.447 +0.079
NEK Chronos conformal 0.979+£0.012  0.934 +0.067 0.007 £0.006  0.007 £0.004  0.418£0.104  0.490 + 0.092
NEK Chronos gaussian 0.890 +0.021  0.860 + 0.069 0.047 £0.028  0.045+£0.025  0.347+0.054  0.519 +0.093
NEK Tirex Wi1-ACAS  0.995+0.006  0.927 £ 0.067 0.006 £0.015  0.005+0.003  0.421 £0.063  0.453 +0.077
NEK Tirex conformal 0.971+£0.011  0.934 +0.066 0.011+£0.007  0.009 £0.004  0.421+0.097  0.496 +0.097
NEK Tirex gaussian 0.890 £0.027  0.865 + 0.064 0.044 £ 0.021 0.043 +0.021 0.354+0.056  0.513 £0.099
NEK TT™ Wi1-ACAS 0993 £0.007  0.921 +0.065 0.004 £0.007  0.005+0.003  0.384+0.043  0.426 +0.043
NEK TT™M conformal 0.977+£0.016  0.931 +£0.067 0.008 £0.007  0.008 £0.005  0.417£0.047  0.471 £0.057
NEK T™™ gaussian 0.895+0.012  0.871 +£0.068 0.059+£0.045 0.040+0.019  0.337+0.060 0.501 +0.064
NAB - KShapeAD 0.835+£0.222  0.833+0.141 0.341+£0424  0.195+0.250 0.123+£0.162  0.272 +0.220
NAB - POLY 0.863 £0.203  0.900 +0.109 0.136 £0.251  0.232+0.248  0.087+£0.073  0.322 +0.189
NAB - Sub-KNN 0.810+£0.257  0.819+0.124 0272+0383 0.273+0.318  0.153+£0.150  0.304 +0.283
NAB - Sub-PCA 0.905+0.185  0.923 + 0.100 0.082+0.223  0.341+0.320 0.199+0.245  0.427 +0.286
NAB - SAND 0.785+0.245  0.809 £0.130 03400422  0.151+0.140  0.130+£0.131  0.296 + 0.207
NAB Chronos Wi1-ACAS 0983 +0.044  0.855+0.092 0.054+0.208 0.012+0.028  0.205+0.089  0.224 +0.101
NAB Chronos conformal 0.978 £0.057  0.880 + 0.089 0.048 £0.208 0.013+0.011  0.205+0.094  0.232+0.108
NAB Chronos gaussian 0.941 £ 0.051 0.800 + 0.103 0.149+£0.328  0.077+£0.097  0.201 £0.094  0.223 +0.098
NAB Tirex Wi1-ACAS  0985+0.030  0.851 +0.095 0.049+0.208  0.011+0.027  0.201£0.087  0.217 +0.088
NAB Tirex conformal 0.977 £0.057  0.876 = 0.090 0.052+0.207  0.012+0.017  0.201£0.097  0.228 +0.096
NAB Tirex gaussian 0.935+0.059  0.792 +0.095 0.154+0.331  0.085+0.105  0.195+0.097 0.218 +0.086
NAB TT™ Wi1-ACAS  0.980+0.057  0.858 £0.093 0.050£0.207  0.010£0.019  0.220£0.110  0.225+0.118
NAB TT™ conformal 0.976 £0.058  0.881 +0.087 0.050 £0.207  0.008 £0.011  0.217+0.115  0.231 +0.125
NAB TT™ gaussian 0.945+£0.064  0.815+0.103 0.140£0.310  0.078 £0.109  0.203£0.104  0.235+0.124
MSL - KShapeAD 0.854+0.207 0.915+0.113 0.116 £0.154  0.188+0.131  0.108 £0.119  0.260 + 0.163
MSL - POLY 0.619+0.330 0.881+0.114 0.248+£0.339  0.076+0.108  0.077£0.106  0.353 +0.187
MSL - Sub-KNN 0.685+0.379  0.835+0.124 0.293 +0411  0.137+£0.099  0.132+0.164  0.179 £0.153
MSL - Sub-PCA 0.683+£0.354 0.882+0.110 0.175+£0.248  0.145+0.185  0.056+0.071  0.371 £0.329
MSL - SAND 0.655+0.328  0.877 £0.122 0.242+0.251 0.176 £0.153  0.064 £0.068  0.303 +0.179
MSL Chronos Wi1-ACAS 0928 £0.104 0.876+0.115 0.033+£0.062  0.022+0.027 0.282+0.127  0.400 + 0.050
MSL Chronos conformal 0.829+£0.318  0.813+0.122 03100472  0.159+0.370  0.308 £0.159  0.306 +0.175
MSL Chronos gaussian 0.854+0.126  0.842+0.101 0.180£0.363  0.074+0.151  0.262+0.124  0.368 + 0.157
MSL Tirex Wi-ACAS  0905+0.113  0.888 + 0.113 0.152+£0.374  0.017 £0.020  0.225+0.158  0.380 + 0.062
MSL Tirex conformal 0.826 £0.315  0.816 £0.121 0.312+0471  0.158+£0.371 0226 +0.160  0.299 +0.171
MSL Tirex gaussian 0.856£0.124  0.841 £0.100 0.187+0.362  0.131+0.182  0.267+0.118  0.378 £0.170
MSL TT™M Wi1-ACAS  0901£0.114  0.879+0.113 0.023+£0.039  0.017 £0.026  0.227 £0.157  0.396 + 0.056
MSL TT™M conformal 0.803 +£0.308  0.812+0.120 0.319+0.467  0.165+0.368  0.243+0.196  0.396 +0.181
MSL TT™ gaussian 0.855+0.118  0.849+0.104 0.180 £0.364  0.074+0.133  0.286+0.174  0.416 + 0.122

Table 2: Performance Summary per datasets. Entries indicate the mean + standard deviation
computed by averaging within each dataset group. Higher numbers are better for PA-F1, Affiliation-
F, AUC-PR, VUS-PR; lower numbers are better for FPR, and calibration error (CalErr).
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Dataset ~ Forecaster AD Model PA-F1 1 Affiliation-F 1 FPR | CalErr | AUC-PR 1 VUC-PR 1

WSD - KShapeAD 0.117+£0.210  0.722 £0.084 0.469 +0.361 0.162+0.133  0.011+£0.023  0.061 £0.116
WSD - POLY 0.475+0.337  0.862 +0.138 0.199+0.333  0.281+0.240  0.006 +£0.010  0.226 +0.223
WSD - Sub-KNN 0.195+0.237  0.755 £0.088 0.312+0422  0.054 £0.071 0.026 £0.066  0.103 £0.135
WSD - Sub-PCA 0.208 £0.296  0.747 £0.093 0479+0.393  0.205+0.212 0.040+0.110  0.102+0.135
WSD Chronos Wi1-ACAS  0.868 £0.175  0.890 + 0.096 0.096+0.292  0.007£0.016  0.224+0.192  0.230 +£0.226
WSD Chronos conformal 0.810+0.193  0.882 +£0.086 0.098 £0.292  0.006 £0.009  0.105+0.120  0.227 £0.172
WSD Chronos gaussian 0.387 £0.207  0.788 £0.072 0.111£0.283  0.025+0.025 0.079+0.085  0.226 £0.173
WSD Tirex Wi1-ACAS  0.882+0.159  0.891 +0.090 0.048 +0.210  0.007 £0.022  0.222+0.190  0.239 +0.228
WSD Tirex conformal 0.841 £0.173  0.886 +0.087 0.052+0.222  0.006£0.006  0.119+0.115  0.238 £0.208
WSD Tirex gaussian 0.393+0.210  0.783 £0.074 0.110+£0.283  0.023+0.023  0.067 +0.074  0.231 £0.202
WSD TT™M Wi1-ACAS  0.868 £0.172  0.882 +0.089 0.064 £0.228  0.005+0.012  0.225+0.198  0.236 +£0.229
WSD TT™ conformal 0.812+0.174  0.879 +£0.084 0.067 £0.229  0.007 £0.006  0.191 +0.146  0.237 £0.194
WSD TT™M gaussian 0.389+0.212  0.782+0.076 0.112+£0.292  0.026 £0.032  0.063 +£0.066  0.230 +£0.196
Stock - KShapeAD 0.135+0.072  0.680 £0.010 0.951+0.095 0.081+£0.060  0.060+0.036  0.603 +0.342
Stock - POLY 0.201 £0.089  0.720 +0.082 0.805+0.360  0.245+0.248  0.000 £ 0.000  0.615 +0.350
Stock - Sub-KNN 0.150 £ 0.087  0.678 +0.008 0.979+0.027 0.175+£0.136  0.083 +£0.067  0.627 +0.369
Stock - Sub-PCA 0.199 £ 0.086  0.726 +0.090 0.792+0.335 0.128£0.199  0.117+0.068  0.844 +0.087
Stock - SAND 0.174 £0.100  0.687 +0.001 0.933+0.086  0.137+£0.192  0.071 £0.027  0.549 +0.549
Stock Chronos Wi1-ACAS  0.959 +0.031 0.985 + 0.008 0.009 £0.012  0.074£0.040 0973 +0.020  0.998 + 0.001
Stock Chronos conformal 0.959+0.039  0.990 + 0.009 0.009 £0.010  0.072+£0.043  0.841 £ 0.151 0.968 + 0.034
Stock Chronos gaussian 0.958 £0.037  0.990 + 0.008 0.006 £ 0.007  0.175 £ 0.081 0.799+0.197 0974 +£0.027
Stock Tirex Wi1-ACAS  0955+0.027  0.983 +0.008 0.010+£0.009  0.072+£0.043  0.984 +0.010  0.985 +0.024
Stock Tirex conformal 0.947 £0.039  0.985 £ 0.006 0.010+£0.007  0.079£0.047  0.880+0.104  0.987 +£0.017
Stock Tirex gaussian 0.964 £0.034  0.989 +0.007 0.006 £0.005  0.179£0.084  0.855+0.133  0.986 +£0.018
Stock TT™M Wi1-ACAS 0967 £0.028  0.989 +0.008 0.009 £ 0.011 0.074 £ 0.041 0.963 +£0.053  0.991 £0.015
Stock TT™M conformal 0.963 £0.030  0.989 +0.007 0.008 £0.009  0.071£0.046  0.825+0.184  0.975+0.031
Stock TT™ gaussian 0.965+0.018  0.988 + 0.005 0.004 +0.004 0.182+0.087 0.818+0.164  0.974 +£0.028
10PS - KShapeAD 0.365+0.358  0.703 £ 0.064 0.699 £0.337  0.171£0.149  0.025+0.028  0.049 +0.044
I0PS - POLY 0.493+£0.410 0.854+0.113 0.214+£0.318  0.442+0.308 0.042+0.067 0.230+0.121
10PS - Sub-KNN 0.334+£0.342  0.695 +0.038 0.693+0.378  0.137+0.187  0.021 £0.029  0.073 +0.095
10PS - Sub-PCA 0497 +£0.432  0.780£0.112 0.360 + 0.341 0.352+0.236  0.059£0.070  0.206 +0.158
10PS - SAND 0.052+0.038  0.703 +£0.039 0.808 £0.196  0.091 £0.056  0.008 +0.004  0.082 + 0.055
I0PS Chronos Wi1-ACAS  0.886+£0.147  0.882 +0.062 0.004 £0.008  0.005+0.014 0.158+0.143  0.291 £0.151
10PS Chronos conformal 0.850+0.175  0.894 +0.067 0.008 £0.013  0.006 £0.013  0.151+£0.160  0.298 +0.208
10PS Chronos gaussian 0.543+0.217  0.811 £0.035 0.024 £0.019  0.021£0.020  0.109 +£0.087  0.308 +0.208
I0PS Tirex Wi1-ACAS 0921 +£0.073  0.889 = 0.061 0.003 +0.007 0.007+£0.014  0.184+0.144  0.296 +0.167
I0PS Tirex conformal 0.875+0.126  0.888 £0.061 0.007 £0.013  0.006£0.012  0.151+£0.140  0.301 £0.207
10PS Tirex gaussian 0.528 £0.232  0.800 + 0.035 0.026+0.020  0.023+0.019  0.113+0.089  0.304 +0.207
I0PS TT™M Wi1-ACAS  0.871£0.203  0.870 +0.075 0.009 £0.029  0.005+0.012  0.167+0.136  0.304 £0.153
10PS TT™ conformal 0.826+0.212  0.875+0.084 0.019+£0.050 0.007+0.013  0.123+0.102 0313 £0.224
10PS TT™M gaussian 0.558 £0.228  0.809 £ 0.045 0.032+£0.048  0.021£0.024  0.109+0.092  0.309 +0.215

Table 3: Performance Summary per datasets. Entries indicate the mean + standard deviation
computed by averaging within each dataset group. Higher numbers are better for PA-F1, Affiliation-
F, AUC-PR, VUS-PR; lower numbers are better for FPR, and calibration error (CalErr).
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Figure 5: Example signals (blue) with ground-truth anomaly labels (red areas), detected outliers (red
dots) occur when adaptive p-values (orange) fall below a threshold under our proposed W;-ACAS

method.
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D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to assist with improving the readability and clarity of the
manuscript. LLMs were used to improve and summarize the language in certain paragraphs, and to

refine code for generating plots.
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Figure 6: Trade-offs between false positive rate and detection performance across datasets.
Left column: PA-F1 vs FPR (log scale). Right column: Affiliation-F vs FPR (log scale). Each point
uses color for AD method and marker for forecast model. The operating points of W;-ACAS (blue),
in most cases, achieve both the highest F1 score and lowest FPR, especially for PA-F1. Within the
same TSFM model, W, -ACAS is better than the alternatives, and in general dominate most of the
alternatives.
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Figure 7: Performance of W;-ACAS when aggregating different forecast steps. Rows correspond to
datasets (NAB, NEK, MSL, YAHOO, Stock, WSD) and columns to metrics (PA-F1, Affiliation-F,
AUC-PR, VUS-PR).
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