
Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL:
TEST-TIME ADAPTATION FOR REAL-WORLD

DENOISING NETWORKS VIA NOISE-AWARE IMAGE
GENERATION

Anonymous authors
Paper under double-blind review

A NAN ARCHITECTURE
S

q
u

ee
ze

A
ff

in
e

In
je

ct
o
r

C
o

n
d

it
io

n
al

A
ff

in
e

C
o
u
p
li

n
g

1
x

1
 C

o
n
v

A
ct

n
o
rm

1
x

1
 C

o
n
v

A
ct

n
o
rm

Conditional Flow Step

R
R

D
B

 B
lo

ck

P
ix

el

S
h
u
ff

le

R
R

D
B

 B
lo

ck

R
R

D
B

 B
lo

ck

R
R

D
B

 B
lo

ck

R
R

D
B

 B
lo

ck

Encoder

Transition Step

Scale Level

1
x

1
 C

o
n
v

1
x

1
 C

o
n

v

A
ct

n
o
rm

NaN

1
x

1
 C

o
n

v

A
ct

n
o
rm

Pseudo Clean Image

Noisy Image Latent Variables

Figure S1: Architecture overview of NaN.

A.1 IMPLEMENTATION DETAILS

The overall architecture of our NaN framework is based on SRFlow (Lugmayr et al., 2020). SR-
Flow is one of the successful instances of a conditional normalizing flow (NF) framework designed
for low-level computer vision tasks. We have modified the SRFlow network to generate noise con-
ditioned on a noisy image and the corresponding pseudo clean image, as illustrated in Figure S1.
In particular, our NaN network is composed of three scale level blocks (L = 3). Responsible for
handling different scales of noise, each scale level block consists of one conditional flow step block
(K = 1), one transition step block, and a squeeze operation. In turn, each transition step block con-
sists of invertible 1x1 convolution (Kingma & Dhariwal, 2018) and ActNorm (Kingma & Dhariwal,
2018). Meanwhile, each conditional step block consists of Conditional Affine Injector (Lugmayr
et al., 2020), Affine Injector (Lugmayr et al., 2020), and one transition step block. Similar to Low-
Resolution Encoder in SRFlow, our conditional encoder is conditioned on a pseudo clean image to
extract features, on which Affine Injector and Conditional Affine Coupling blocks are conditioned.
The encoder consists of 5 RRDB blocks (Wang et al., 2018), along with a pixel shuffle operator (Shi
et al., 2016) placed at the beginning to minimize the effect of remaining noise or artifact generated
from the pseudo clean generator h. For more details on the pixel shuffle operator and its effect, refer
to Section A.3. Furthermore, input noisy image is mapped from discrete space to continuous space
via the addition of uniform noise from U(0, 1

255) (Dinh et al., 2015). In contrast to SRFlow (Lug-
mayr et al., 2020), a squeeze operation is not used in each conditional flow step, and thus only one
latent variable is used for simplicity.

1

Under review as a conference paper at ICLR 2023

Downsampling SIDD validation SIDD+ Nam PolyU Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×1 39.05 0.9156 36.20 0.9024 38.25 0.9579 38.14 0.9621 37.91 0.9345
×2 39.04 0.9155 36.23 0.9035 38.40 0.9581 38.19 0.9622 37.97 0.9348
×4 39.10 0.9160 36.31 0.9061 38.40 0.9560 38.20 0.9615 38.00 0.9349
×8 39.12 0.9158 36.48 0.9114 38.49 0.9579 38.21 0.9620 38.08 0.9368

Table S1: Denoising performance of our framework with different downscale factors (×1, ×2, ×4,
×8) for pixel shuffle. Every model is trained using an equivalent setting of our final version, except
for the pixel shuffle scale factor in Conditional Encoder of NaN.

A.2 TRAINING AND INFERENCE TIME

Our NaN has 8.2M parameters, which is comparable in size to other generative models, such as
CycleISP (7.5M) and DANet (9.1M). Our final model is trained for 8 hours on a single Nvidia
V100. As for inference, it takes 0.12 seconds to generate a single noisy image of size 160× 160.

A.3 IMPACT OF PIXEL SHUFFLE OPERATOR

As discussed in the main manuscript, ground-truth clean images are not available in the real scenario,
and thus we use the pseudo clean image for conditioning the NF. In this work, we instantiate a pseudo
clean generator as one of the conventional denoising networks, and the resulting image includes
unexpected artifacts. To reduce such adverse effects within the pseudo clean image, we reshape the
pseudo clean images using the pixel shuffle operator (Shi et al., 2016) which is frequently used in the
image restoration tasks to enlarge the receptive field of the networks without information loss (Jin
et al., 2018; Sajjadi et al., 2018). To better demonstrate the effect of the pixel shuffle operator,
we provide denoising results on numerous datasets by changing the parameters for the reshaping
in Table S1. We achieve the best results when we down-size the spatial resolution with ×8 scaling
factor and increase the channel dimension accordingly, and the experiments in the main manuscript
are conducted with this setting.

B LATENT SPACE VISUALIZATION

To investigate the capability of NaN to learn the distribution of noises from different camera set-
tings, we visualize the latent space of NaN (i.e., {µc}) in Figure S2. For visualization, we reduce
the dimension of µc using principal component analysis (PCA) into 2D. Notably, latent variables
corresponding to similar ISO settings are observed to be placed together (low ISO on the left and
high ISO on the right). Another tendency can be observed based on the camera (i.e., smartphone)
model. For example, latent variables corresponding to iPhone tend to be on the negative side of
PC2 axis (i.e., bottom of the figure). Reasons for such observed trend are because ISO and camera
models are among the most influential factors of noise. High ISO increases the sensitivity of camera
sensors and thus increases the noise susceptibility as well. Furthermore, different smartphone (i.e.,
camera) models have different amplifier, signal strength, and thus noise in imaging pipeline (Gow
et al., 2007). Also, noise is affected by hardware and software factors which vary for each camera
model (Abdelhamed et al., 2018).

C PSEUDO CLEAN GENERATOR

Since our framework relies on pseudo clean images to generate new noisy images, the quality of
pseudo clean images and thus pseudo clean generators of NaN can affect the final denoising perfor-
mance of our framework. To investigate the influence of pseudo clean generator on the denoising
performance of our framework, we employ different denoising networks for pseudo clean generator
and report the final denoising performance in Table S2. As one may expect, using a heavier network,
RIDNet, for pseudo clean generator results in slightly better performance than DnCNN. However,
the performance difference is relatively small, in comparison to the performance difference observed
when different baselines g are used in Table 1 in the main manuscript. This results suggests that our
framework is robust to the quality of pseudo clean images and pseudo clean generator to some ex-

2

Under review as a conference paper at ICLR 2023

4 2 0 2 4
PC1

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

PC
2

ISO
50
100
200
320
400
500
640
800
1000
1600
2000
3200
6400
10000
Smartphone Model
Google Pixel
Samsung Galaxy S6
Motorola Nexus 6
Apple iPhone 7
LG G4

Figure S2: Visualization of the latent space ({µc}) learned by our NaN in 2-D dimensional space.
PCA is used to reduce the dimension of µc. Each point indicates the mean of normal distribution
µc, while PC on each axis denotes each principle component of PCA.

tent. This is partly owed to pixel shuffle operator that reduces noise present in pseudo clean images,
as discussed in Section A.3.

h
SIDD SIDD+ Nam PolyU Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
DnCNN 39.12 0.9158 36.48 0.9114 38.49 0.9579 38.21 0.9620 38.08 0.9368
RIDNet 39.12 0.9153 36.54 0.9128 38.54 0.9582 38.23 0.9619 38.11 0.9371

Table S2: Denoising performance of our framework with different pseudo clean generators h.

D KLD IMPLEMENTATION

KLD metric is sensitive to implementation setting such as the number of histogram bins and its
calculation methods. Therefore, we describe our KLD implementation as follows:

DKL(P ||Q) =

255∑
i=0

P (i)log(
P (i)

Q(i)
),where P (i) ̸= 0, Q(i) ̸= 0. (A)

P and Q are probability density functions of real input noise and synthetic noise, respectively. Input
noise and synthetic noise are obtained by subtracting ground-truth clean image from input noisy
image and generated synthetic noisy image, respectively. Then, the probability density function of
each noise is calculated using a histogram with 256 bins.

E TRAINING DETAIL

E.1 NAN

For training NaN, we use the SIDD sRGB train dataset with 34(=C) different camera configurations,
and minimize the LPNLL loss in Equation using the Adam optimizer (Kingma & Ba, 2014) with
initial learning rate 1e-4 which is reduced by half at 50k, 75k, 90k during 100k iterations. We use
randomly cropped patches (160 x 160) and the mini-batch size of 8 for training. Note that, we use
both the ground-truth clean and pseudo-clean images for conditioning while training the NaN, but
only the pseudo clean image is used at the test-stage.

3

Under review as a conference paper at ICLR 2023

E.2 DENOISING NETWORK gϕ

In this paper, DnCNN, RIDNet, and HINet are used as our baseline denoisers. Since there are no
official release of parameters trained on the SIDD dataset for DnCNN and RIDNet, we trained these
networks on the SIDD dataset with the following training settings:

• mini-batch size: 8
• patch-size: randomly cropped 160× 160 patches
• loss function: L1 loss minimization between the ground-truth clean image and network

output
• optimizer: Adam (learning rate started from 1e-4 and gradually decreased to 1e-6 for

RIDNet, and the learning rate fixed to 1e-5 for DnCNN.)
• augmentation: flip, flop, and rotation

As for HINet, we use the available official parameters of network trained on the SIDD dataset.

E.3 MAML TRAINING WITH DENOISING NETWORK

In this work, we implement the MAML integrated algorithms using the Higher library (Grefenstette
et al., 2019) with PyTorch. During training the denoising networks with MAML algorithm, we also
use the Adam optimizer with inner-loop learning rate α and outer-loop learning rate β as follows:

• DnCNN: α = 1e-5 ,β = 1e-6
• RIDNet: α = 5e-6 ,β = 1e-6
• HINet: α = 5e-6 ,β = 1e-6

F FAST TEST-TIME PARAMETER ADAPTATION (FPA)

Algorithm 1 Fast Test-time Parameter Adaptation (FPA)
Input: noisy input y
Require: meta-trained denoiser gϕ, adaptation number M , learning rate α

for i← 1 to M do
Generate ỹ from y according to NaN algorithm
LN2N (ϕ∗) = ||gϕ∗(ỹ)− y||
ϕ = ϕ− α∇ϕ∗LN2N (ϕ)

end
return ϕ // return input specific denoising network parameter

In Algorithm 1, we provide the pseudo-code for our FPA algorithm.

G QUALITATIVE RESULTS

We provide more visualizations of clean images recovered by AP-BSN and RIDNet baseline adapted
with N2S and our algorithms (TPA and FPA) from real-world noisy images on SIDD+ dataset (Fig-
ure S3) and PolyU dataset (Figure S4). AP-BSN is shown to often produces images with too much
blur while RIDNet adapted with N2S provides images with visible noise. On the other hand, RIDNet
adapted with our algorithm produces sharper images with less noise.

4

Under review as a conference paper at ICLR 2023

(c) RIDNet + N2S (d) RIDNet + TPA (e) RIDNet + FPA (f) Ground Truth(a) Real Noisy (b) AP-BSN

Figure S3: Qualitative results in RIDNet on SIDD+ datasets.

(c) RIDNet + N2S (d) RIDNet + TPA (e) RIDNet + FPA (f) Ground Truth(a) Real Noisy (b) AP-BSN

Figure S4: Qualitative results in RIDNet on PolyU datasets.

5

Under review as a conference paper at ICLR 2023

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising dataset
for smartphone cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components es-
timation. In Proceedings of the International Conference on Learning Representations (ICLR),
2015.

Ryan D Gow, David Renshaw, Keith Findlater, Lindsay Grant, Stuart J McLeod, John Hart, and
Robert L Nicol. A comprehensive tool for modeling cmos image-sensor-noise performance. IEEE
Transactions on Electron Devices, 54(6):1321–1329, 2007.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-
learning. arXiv preprint arXiv:1910.01727, 2019.

Meiguang Jin, Michael Hirsch, and Paolo Favaro. Learning face deblurring fast and wide. 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in Neural Information Processing Systems (NeurIPS), 2018.

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srflow: Learning the super-
resolution space with normalizing flow. In Proceedings of the European Conference on Computer
Vision (ECCV), 2020.

Mehdi SM Sajjadi, Raviteja Vemulapalli, and Matthew Brown. Frame-recurrent video super-
resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European Conference on Computer Vision Workshops (ECCVW), 2018.

6

	NaN Architecture
	Implementation details
	Training and inference Time
	Impact of pixel shuffle operator

	Latent space visualization
	Pseudo Clean Generator
	KLD Implementation
	Training detail
	NaN
	Denoising network g
	MAML Training with Denoising network

	Fast Test-time Parameter Adaptation (FPA)
	Qualitative results

