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1 OVERVIEW
In this document, we conduct ‘Integrating domain adaptation tech-
nique’ experiments with Full Model on E→H and S→U. Moreover,
we present the computational information of our method. Finally,
we visualize the generated video frames. The source codes are also
provided.

2 ADDITIONAL EXPERIMENTS
Further evaluations of integrating domain adaptation (DA)
techniques. We further investigate the performance of combining
our Full Model with DA methods on E→H and S→U benchmarks
and the results are presented in Tab. 1. The results demonstrate that
the integration with typical DAmethods, significantly enhances the
model’s recognition capability. The performance not only achieves
new state-of-the-art results on both benchmarks but also attains
comparable performance to supervised learning on S→U bench-
mark. The improvement is attributed to the effective mitigation
of distribution discrepencies by employing classical DA methods.
Our experimental results further emphasize the high compatibility
between our approach and DA methods.

Table 1: Accuracies on E→H and S→U, averaged over 3 ran-
dom trials.

method E→H S→U

Full Model 77.4 97.3
Full Model + DAN 77.4 98.0
Full Model + MCC 78.4 99.2
Full Model + BNM 79.2 99.3

Analysis of computational costs. As shown in Table. 2, we
present the computational information of video generation and
our Full Model. Although the video generation requires more com-
putational resources, it only needs to run once, and the generated
frames can be used throughout the training process.

Table 2: Computational information

component Params(M) GFLOPs Train/Inference time(s)

Video generation 266.13 371.85 - / 0.17
Full Model 24.59 65.62 0.16 / 0.13

3 VISUALIZATIONS OF GENERATED FRAMES
In this section, we visualize generated video frames for certain
categories including ‘Hource Race’, ‘Running’, ‘Climb’ and ‘Ski-
jet’. The visualization results are shown in Fig. 1. We exhibit two
groups of generated frames for each category. The first column

represents the input still images from source domain, and the subse-
quent columns show the sampled second, sixth, tenth and sixteenth
frames, respectively.

Through visualization, we can observe that by simulating the
arbitrary movements of the camera in 3D space, we can obtain more
realistic video frames. These generated video frames are beneficial
for learning a high-performance spatial-temporal model.

4 SOURCE CODES
We provide the source codes for training the spatial-temporal model.
Details can be referred to readme.md in codes/.
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Figure 1: Visualizations of generated frames.
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