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1 SUPPLEMENTARY

1.1 ADDITIONAL IMPLEMENTATION DETAILS

To make a fair comparison, the vanilla model we used in our experiments for the Agedb-DIR is
ResNet-18 and ResNet-50 for IMDB-WIKI-DIR. Also, we take ResNet-18 and 50 as our back-
bone while we revised the output dimension from 1-d (single output) to a G − d classification
head and a multi-heads (G-heads) regressor for our method. Also, we use Mean square error
(MSE) and Mean absolute error (MAE) as the loss function for AgeDB-DIR, IMDB-WIKI-DIR,
and STS-B-DIR for the fine tuning. Adam is employed as the optimizer, the momentum is set
as 0.9 and the weight decay is 1e-4. We used a grid search for the learning rate which varies from
{1e−2, 1e−3, 5e−5, 1e−4, 5e−4} for AgeDB-DIR and STS-B-DIR, {1e−4, 1e−5, 1e−6, 1e−7, 1e−8}
for IMDB-WIKI-DIR.

Furthermore, we set the temperature parameter to 2.5 by conducting a grid search from 1− 5. We
recommend ≥ 1 temperature parameter for the increasing of batch size (the batch size is set to 128
in our experiment due to the GPU limitations). The contrastive encoder was trained for 300 epochs,
which is 100 epochs less than Zha et al. (2023) as we aim to train a group-level contrastive learning
at a group-level granularity (instead of an instance level as Zha et al. (2023)), the classification &
regression head are trained in a grid search manner from {50, 60, 70, 80, 90}, and the group number
is also from {2, 5, 10, 15, 20, 25, 40, 50}. During training the encoder, the classification head and
regression head are fixed, and we use the LMSE and Lcls as the loss in the fine-tuning phase.

1.2 ABLATION STUDY AND ANALYSIS ON DIFFERENT CLASSIFICATION CRITERION

In order to validate the necessity of leveraging the semantic similarity in helping DIR, we conduct
experiments on the AgeDB-DIR with several imbalanced classification solutions in Table.1. We can
observe from Table.1, that the imbalanced classification solutions are undermined in DIR. This is
because that the data dependence in DIR Yang et al. (2021) would hinder the accurate estimation of
the groups. These imbalanced classification solutions would ignore the information from the other
classes while only focusing on the current class. As a result, other information from other classes
would not be learned and the semantic similarity across the groups are overlooked.

As we can observe from Table.1, the soft labeling strategy can outperform the imbalanced classifi-
cation solutions a lot. This shows the effectiveness of our proposed method. Specifically, the soft
labeling strategy can leverage the information from the nearby groups to redeem the group imbal-
ance and take the imbalance priors into consideration. Therefore, our proposed method is uniquely
designed and especially effective for the DIR compared to the previous imbalanced classification
solutions. We also show the test error (L1) loss on each label between the vanilla model and our
proposed method (noting that the y-axis is different between two images.) in Fig.2 and the number
of training samples each label in Fig.1 to demonstrate the effectiveness of our proposed method.
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Table 1: Comparison between different SOTA imbalance group (#) classification (%) solutions for
AgeDB-DIR.

# Soft labeling LAMenon et al. (2021) NC Yang (2022) DO Cong (2024) ReBAT Wang (2024)
5 67.71 55.71 66.01 66.72 67.04

10 39.99 29.53 38.75 38.41 39.29
25 19.53 16.68 18.43 19.07 19.14
50 10.09 8.83 9.67 9.44 9.78

Figure 1: The ground truth for the number of samples in training with respect to different shots.

(a) (b)

Figure 2: The test error (L1) in (a) vanilla regression model, (b) soft labeling strategy based regres-
sion model. Different color denotes the different shots (majority/median/few shots). (Noting that
the y-axis is different in two images)
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