A Training Details

A.1 CIFAR-10 / CIFAR-100

Please refer to Section 2.1.

A.2 Retinal Glaucoma Detection

We followed the same training procedure as for CIFAR-10/100, please refer to Section 2.1. Resnet-18 is used as a backbone. Models are trained with 70% of the dataset for 150 epochs and tested on the test set (30% of the dataset).

A.3 6mA Identification

A 1-dimensional CNN architcture is used, whose hyperparameters such as kernel size and the number of layers are optimized by Li et al. [2021]. The CNN consists of 5 convolutional blocks, where each block contains a 1-dimensional convolution, ReLU activation, batch normalization, and dropout with a rate of 0.5. The convolutional layers have a filter size of 256, kernel size of 10, a stride of 1, and the first convolutional layer have a padding of 5. On top of the last convolutional block, there is a linear layer for predicting the binary labels. Binary cross-entropy is used as a loss. All models are trained for 20 epochs. The initial learning rate of 0.01 is used, as in Li et al. [2021]. Cosine-annealing is used as a learning rate scheduler.

B Additional Results

B.1 EfficientNet as Backbone & More Calibration Metrics

We run more experiments using more modern architecture: EfficientNet Tan and Le [2019] whose proportion of the number of channels vs. the number of layers can vary drastically, compared to Resnets. In this experiment we use two extra calibration metrics: (i) the Brier score Brier et al. [1950] and (ii) the Static Calibration Error (SCE) Nixon et al. [2019]. SCE can be considered an extension of ECE but more accurately account for calibration by considering all classes, instead of just the one with the highest confidence. Table 1 shows that FiLM-Ensemble can also be effectively used in conjunction with EfficientNet architecture. In addition, other calibration metrics are also in favor of FilM-Ensemble.

Method	Acc (\uparrow)	ECE (\downarrow)	SCE (\downarrow)	Brier (\downarrow)
Single	90.80	0.0496	0.0106	0.1470
MC-Dropout (2)	90.81	0.0499	0.0107	0.1478
MC-Dropout (4)	90.81	0.0497	0.0107	0.1474
Deep Ensemble (2)	92.67	0.0373	0.0080	0.1146
Deep Ensemble (4)	93.30	0.0307	0.0067	0.1008
Film-Ensemble (2)	91.62	0.0336	0.0073	0.1291
Film-Ensemble (4)	91.73	0.0163	0.0044	0.1222

Table 1: CIFAR-10/EfficientNet-B0 performance comparison. $M \in \{2, 4\}$. The best score for each metric is printed **bold**.

B.2 Calibration-Accuracy Trade-off

As in Section 3.5, we show that one can reach a significantly better calibration (lower ECE) by increasing the gain ρ , with only a minimal accuracy drop. In this case, we use Resnet-34 with 2 ensemble members on Cifar-100 dataset. See Fig. 1. Also note Fig. 2 is an extension of Fig. 3 (of the main text) with various number of ensemble members.

Figure 1: Performance of FiLM-Ensemble with varying gain ρ on Cifar-100 using Resnet-34 as backbone with M = 2, c.f. Section B.2.

Figure 2: Performance of FiLM-Ensemble with varying gain ρ on 6mA-rice-Lv dataset, using CNNbased Deep6mA as backbone with $M \in \{2, 4, 8\}$, c.f. Section 3.5.

References

- G. W. Brier et al. Verification of forecasts expressed in terms of probability. *Monthly weather review*, 78(1):1–3, 1950.
- Z. Li, H. Jiang, L. Kong, Y. Chen, K. Lang, X. Fan, L. Zhang, and C. Pian. Deep6ma: A deep learning framework for exploring similar patterns in dna n6-methyladenine sites across different species. *PLoS computational biology*, 17(2):e1008767, 2021.
- J. Nixon, M. W. Dusenberry, L. Zhang, G. Jerfel, and D. Tran. Measuring calibration in deep learning. In *CVPR Workshops*, volume 2, 2019.
- M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pages 6105–6114. PMLR, 2019.