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Figure 7: Qualitative comparison on THuman2.0 and THumansit. EVA-Gaussian demonstrates
superior novel view rendering quality under diverse camera settings.

A MORE IMPLEMENTATION DETAILS

Network architectures. Our Gaussian position estimation network DP
θ1

utilizes a U-Net as the
backbone. The architecture incorporates four stages of 2× down-sampling using average pooling to
extract essential feature details. Symmetrically, the network features four stages of 2× up-sampling,
achieved through transpose convolutional neural networks. The EVA module is incorporated before
the 4×, 8×, 16× down-sampling and up-sampling blocks. The channel dimension starts at 64 prior
to the first down-sampling block, doubling after each down-sampling block and halving after each
up-sampling block, which is facilitated by two residual blocks (He et al., 2016). The Gaussian
attribute estimation network DA

θ2
also employs a U-Net backbone, but it does not include the EVA

modules and performs only two stages of 2× down-sampling. The architecture of the feature refiner,
DR

θ3
, mirrors that of DA

θ2
, but operates in a recurrent manner.

More training details. The training hyper-parameters are set as follows: λ1 = 1, λ2 = 1, λ3 =
103, λopacity = 1, λopacity = 1, λrender = 0.25, and t = 0.05. The number of recurrent loops L
mentioned in Sec. 4.4 is empirically set to L = 1 to enhance temporal efficiency. Each training batch
contains 2 to 4 source view images, depending on the specific reconstruction task. For instance,
the stereo reconstruction task in Sec. 5.2 utilizes 2 source view images. For novel view image
supervision, 3 randomly selected views are chosen between each adjacent pair of source views to
compute Lrefine and Lrender. The learning rate for deep supervised pre-training and overall network
training is initialized to 0.0002 and decreases linearly with the number of training epochs.

B MORE VISUALIZATION RESULTS

In this section, we present additional visualization results in Fig. 7 to compare our method with
SOTA approaches GPS-Gaussian and ENeRF on the Thuman2.0 (Yu et al., 2021b) and Thumansit
(Zhang et al., 2023) datasets at a resolution of 1024×1024. The results demonstrate that EVA-
Gaussian achieves the highest novel view fidelity across various camera viewpoint settings. In con-
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trast, GPS-Gaussian struggles to handle the artifacts produced by errors in geometric predictions,
while ENeRF generates much more blurry and low-fidelity results compared to both GPS-Gaussian
and EVA-Gaussian. Notably, under settings of large viewpoint discrepancy, e.g., ∆ = 90◦, EVA-
Gaussian maintains robust performance, while GPS-Gaussian fails to function effectively in these
scenarios.

C PROOF OF DEPTH EQUALITY

In this section, we prove that for each pixel on the 3D Gaussian maps {Mi}ni=1, the rendered depth
equals to the predicted 3D Gaussian depth.

We begin by defining the collection for opacity parameters as o := [o1, · · · , oi, · · · , oN ] ∈ RN of
all considered 3D Gaussians and the collection of all 3D Gaussian scaling factors as:

S̃ =
[
s1, s2, s3

]T
=

s11 s12 · · · s1N
s21 s22 · · · s2N
s31 s32 · · · s3N

 , (15)

where s1 := [s11, s
1
2, · · · , s1N ] ∈ RN , s2 := [s21, s

2
2, · · · , s2N ] ∈ RN and s3 := [s31, s

3
2, · · · , s3N ] ∈

RN . For the 3D Gaussian with the i-th greatest depth, the associated scaling matrix is constructed
from the corresponding scaling factors as:

Si =

s1i 0 0
0 s2i 0
0 0 s3i

 , (16)

and its z-value is denoted by zi. The rendered depth map is expressed as:

D(x) =

N∑
i=1

zioiG
′

i(x)

i−1∏
j=1

(1− ojG
′

j(x))), (17)

where x ∈ R2 is a variable on the coordinate system of the image plane and G
′

i(x) is the 2D
Gaussian that corresponds to the 3D Gaussian with the i-th greatest depth after splatting.

In the camera’s coordinate system, we define a 3D Gaussian as on the reprojected ray of a pixel x′,
in condition that the center of this 3D Gaussian lies along the ray originating from the camera center
and pointing toward the point [x′, 1]. We use Z(x′) to denote the z-value of the first 3D Gaussian
that appears on this reprojected ray.

Based on the above definitions, we have the following theorem:

Theorem C.1. When the opacity o approaches 1 and each value in S̃ is sufficiently small, it holds
for each pixel x′ on the image plane that:

lim
o→1
Ŝ→0+

D(x′) = Z(x′). (18)

Theorem C.1 implies that the z-value of the 3D Gaussian at pixel x is equal to the corresponding
value on the depth map when the scale of Gaussian is sufficiently small and the opacity approaches
1. To prove Theorem C.1, we introduce the following lemma from the well-known Moore-Osgood
Theorem in (Papapantoleon et al., 2023):
Lemma C.1. (Moore-Osgood Theorem) Let (Γ, dΓ) be a metric space and (γk,p)k,p∈N be a se-
quence such that γ∞,p := limk→∞ γk,p exists for every p ∈ N and γk,∞ := limp→∞ γk,p exists
for every k ∈ N. If (i) limp→∞ supk∈N dΓ (γk,p, γk,∞) = 0 and (ii) limk→∞ dΓ (γk,p, γ∞,p) =
0,∀p ∈ N, then the joint limit limk,p→∞ γn,k exists. In particular, it holds that limk,p→∞ γk,p =
limp→∞ γ∞,p = limk→∞ γk,∞.

Lemma C.1 can be regarded as a special case of Theorem 7.11 from (Rudin et al., 1964). This lemma
states that for a doubly-indexed sequence, if the sequence converges uniformly with respect to one
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index while converging pointwise with respect to the other index, then the limit of the sequence
exists. Moreover, this limit is equivalent to the individual limits obtained by separately considering
each index, regardless of the order in which the limiting processes are performed. This result can be
extended to continuous multi-variable functions. Specifically, if a continuous function demonstrates
uniform convergence with respect to one variable and pointwise convergence with respect to another
variable, then the joint limit of the function with respect to both variables can be decomposed into
the separate limits with respect to each variable considered independently.

Based on this theoretical foundation, we are now ready to proceed with the proof of Theorem C.1.

Proof. When the opacity value oi ∈ R approaches 1 and the scale factor si = [s1i , s
2
i , s

3
i ] ∈ R3 is

sufficiently small for each Gaussian, the depth value is given by:

lim
o→1
Ŝ→0+

D(x′) = lim
o→1
Ŝ→0+

N∑
i=1

(zioiG
′

i(x
′)

i−1∏
j=1

(1− ojG
′

j(x
′))) (19)

= lim
o→1
Ŝ→0+

N∑
i=1

(zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj))) (20)

(a)
= lim

Ŝ→0+
lim
o→1

N∑
i=1

(zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj))), (21)

where (a) is from Lemma C.1. Specifically, the function
∑N

i=1(zioiG
′

i(x)
∏i−1

j=1(1 − ojG
′

j(x))) is
continuous with respect to the two variables o and s. Besides, it converges uniformly as Ŝ → 0+

and as o → 1. This implies that the joint limit of o and s can be decomposed into the separate limits
of o and s. Thus, we have:

lim
Ŝ→0+

lim
o→1

N∑
i=1

(zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj)))

= lim
Ŝ→0+

N∑
i=1

( lim
oi→1

zioie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

lim
(oj ,··· ,oi−1)→1

i−1∏
j=1

(1− oje
− 1

2 (x
′−µj)

T (JWRjSjS
T
j RT

j WTJT )−1(x′−µj))) (22)

= lim
Ŝ→0+

N∑
i=1

(zie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− e−
1
2 (x

′−µj)
T (JWRjSjS

T
j RT

j WTJT )−1(x′−µj))). (23)

The 3D Gaussians typically assume an ellipsoidal geometric shape. However, when the scaling
factors are sufficiently small, the ellipsoid can be approximated as a sphere, such that s1 = s2 = s3.
As a result, the scaling matrix for the 3D Gaussian with the i-th greatest depth becomes:

S
′

i :=

s1i 0 0
0 s1i 0
0 0 s1i

 . (24)
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Consequently, we have:

lim
Ŝ→0+

N∑
i=1

(zie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− e−
1
2 (x

′−µj)
T (JWRjSjS

T
j RT

j WTJT )−1(x′−µj)))

= lim
Ŝ→0+

s1=s2=s3

N∑
i=1

(zie
− 1

2 (x
′−µi)

T (JWRiSiS
T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− e−
1
2 (x

′−µj)
T (JWRjSjS

T
j RT

j WTJT )−1(x′−µj))) (25)

= lim
s1→0+

N∑
i=1

(zie
− 1

2 (x
′−µi)

T (JWRiS
′
iS

′T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

(1− e−
1
2 (x

′−µj)
T (JWRjS

′
jS

′T
j RT

j WTJT )−1(x′−µj))). (26)

From (26), we see that when x′ = µi, it gives that

e−
1
2 (x

′−µi)
T (JWRiS

′
iS

′T
i RT

i WTJT )−1(x′−µi) = 1. (27)

Otherwise, if x′ ̸= µi, we have

lim
s1i→0+

e−
1
2 (x

′−µi)
T (JWRiS

′
iS

′T
i RT

i WTJT )−1(x′−µi)

= lim
s1i→0+

e
− 1

2(s1
i
)2

(x′−µi)
T (JWRiR

T
i WTJT )−1(x′−µi)

= 0. (28)

By combining Eq. 19 – Eq. 28, we have

lim
o→1
Ŝ→0+

D(x′) =

N∑
i=1

( lim
s1i→0+

zie
− 1

2 (x
′−µi)

T (JWRiS
′
iS

′T
i RT

i WTJT )−1(x′−µi)

i−1∏
j=1

lim
s1j→0+

(1− e−
1
2 (x

′−µj)
T (JWRjS

′
jS

′T
j RT

j WTJT )−1(x′−µj))) (29)

=Z(x′), (30)

which completes the proof.
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