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It Takes Two: Accurate Gait Recognition in the Wild via
Cross-granularity Alignment

Anonymous Author(s)

ABSTRACT
Existing studies for gait recognition primarily utilized sequences of
either binary silhouette or human parsing to encode the shapes and
dynamics of persons during walking. Silhouettes exhibit accurate
segmentation quality and robustness to environmental variations,
but their low information entropy may result in sub-optimal per-
formance. In contrast, human parsing provides fine-grained part
segmentation with higher information entropy, but the segmenta-
tion quality may deteriorate due to the complex environments. To
discover the advantages of silhouette and parsing and overcome
their limitations, this paper proposes a novel cross-granularity
alignment gait recognition method, named XGait, to unleash the
power of gait representations of different granularity. To achieve
this goal, the XGait first contains two branches of backbone en-
coders to map the silhouette sequences and the parsing sequences
into two latent spaces, respectively. Moreover, to explore the com-
plementary knowledge across the features of two representations,
we design the Global Cross-granularity Module (GCM) and the Part
Cross-granularity Module (PCM) after the two encoders. In partic-
ular, the GCM aims to enhance the quality of parsing features by
leveraging global features from silhouettes, while the PCM aligns
the dynamics of human parts between silhouette and parsing fea-
tures using the high information entropy in parsing sequences. In
addition, to effectively guide the alignment of two representations
with different granularity at the part level, an elaborate-designed
learnable division mechanism is proposed for the parsing features.
Finally, comprehensive experiments on two large-scale gait datasets
not only show the superior performance of XGait with the Rank-1
accuracy of 81.0% on Gait3D and 88.3% CCPG but also reflect the ro-
bustness of the learned features even under challenging conditions
like occlusions and cloth changes.

KEYWORDS
Gait Recognition, In the Wild, Gait Representation, Silhouette, Hu-
man Parsing

1 INTRODUCTION
Gait, as a distinctive biometric feature, can be used to identify indi-
viduals based on their walking patterns. Unlike face and fingerprint,
gait has lots of advantages, such as difficulty to disguise, remote
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Figure 1: Comparisons of different gait recognition methods,
i.e., GaitSet [4], MTSGait [50], GaitBase [7], DyGait [39], and
ParsingGait [52] on the Gait3D dataset in terms of Rank-1
accuracy. (Best viewed in color.)

accessibility, and non-contact nature. Consequently, gait recogni-
tion holds significant utility in intelligent monitoring and social
security [24, 34].

In recent years, the studies for gait recognition have begun
to transfer from laboratory environments to real-world scenar-
ios [51, 53]. Due to the complex background, occlusion, and cloth-
changing in real-world scenarios, the traditional gait recognition
methods often perform poorly [16, 51]. According to the recent
research progress, we find that the appearance representations,
i.e., silhouette and parsing sequences, gradually show certain ad-
vantages in this challenging task. For example, HSTL [37] utilizes
the hierarchical clustering analysis to obtain multi-scale spatial-
temporal gait features from silhouette sequences, which achieves
Rank-1 accuracy over 60% on the Gait3D dataset. DyGait [39] pro-
poses a dynamic augmentation module to extract dynamic features
of gait from silhouette sequences. ParsingGait [52] for the first time
uses parsing sequences as the gait representation and extracts dy-
namic gait features from human body parts, which obtains a 17.5%
Rank-1 increase compared with the State-Of-The-Art (SOTA) gait
recognition methods. However, although researchers have made
great efforts in these two promising appearance representations, i.e.,
silhouette and parsing, their performance is still far from practical
application.

Silhouette sequences have been dominating the gait recognition
community for a long time. Because they are easy to extract from
the video frames, and compared to the sparse skeleton sequences,
they also contain more useful gait information like appearance
and belongings. However, the information entropy of the binary
silhouette is still very low, resulting in unsatisfactory performance.
Most recently, an emerging gait representation, i.e., gait parsing
sequence, is proposed [52]. It can encode the shapes and dynamics
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of fine-grained human parts during walking, which can provide
higher information entropy. Therefore, more and more researchers
gradually pay attention to using parsing sequences for gait recogni-
tion. However, extracting parsing requires a more powerful human
parsing model. In fact, the complex background, occlusion, and
cloth-changing in real-world scenarios make it extremely difficult
to train such a robust human parsing model. Consequently, the
quality of the parsing is generally lower than that of the silhouette,
which hinders it from achieving optimal performance.

To this end, we propose a novel cross-granularity alignment gait
recognition framework called XGait. It is the first framework to
integrate the two most promising appearance representations, i.e.,
silhouette and parsing sequences, to achieve accurate gait recog-
nition in the wild. The XGait framework comprises three primary
stages. First, the silhouette sequence and gait parsing sequence are
derived from the original RGB frames through segmentation and
human parsing models. Next, we input these two appearance repre-
sentations into separate CNN-based backbones to extract distinctive
gait features. At last, we develop the Global Cross-granularity Mod-
ule (GCM) and Part Cross-granularity Module (PCM) to achieve
the granular alignment across global and part levels. The GCM is
designed to enhance the quality of parsing features through the
global appearance features extracted by silhouette sequences. The
PCM is devised to align the dynamics of human body parts between
silhouette and parsing features based on the high information en-
tropy in parsing sequences. Moreover, to effectively handle the
occlusion situation that is easy to appears in real-world scenarios,
we propose a learnable division mechanism to guide the alignment
of two granularity features at the part level. Finally, our XGait can
leverage the superior segmentation quality of silhouette along with
the high information entropy provided by parsing. Comprehensive
experimental results on Gait3D and CCPG datasets demonstrate
the effectiveness of our proposed method.

In summary, the contributions of this paper are as follows:

• To our knowledge, this study is the first work to investigate
the integration of two most effective appearance represen-
tations, i.e., silhouette sequences and parsing sequences.
Following the insightful analysis, we notice and explore
their distinct advantages to achieve complementarity.

• We propose a novel cross-granularity alignment gait recog-
nition framework called XGait to unleash the power of sil-
houette and parsing. In XGait, the Global Cross-granularity
Module (GCM) and Part Cross-granularity Module (PCM)
are designed to achieve efficient granular alignment at the
global and part levels, respectively.

• We achieve the state-of-the-art performance on two large-
scale gait datasets, i.e., Gait3D andCCPG. Our XGait achieves
the Rank-1 accuracy of 81.0% on Gait3D and 88.3% on CCPG,
respectively. The experiments reflect that our method is
robust under challenging conditions like occlusions and
cloth changes.

2 RELATEDWORK
In this section, the gait representations are first surveyed. Next, we
introduce the current gait recognition methods.

2.1 Gait Representations
Early gait representations primarily consisted of hand-designed
models, such as 3D cylinders [2] and Chrono-Gait Image [35].
However, these hand-designed representations lack critical gait
information. Subsequently, researchers began employing the frame
subtraction method to extract pedestrian silhouettes and utilized
them as the gait representations [45]. Building on this foundation,
Han et al. [11] introduced the Gait Energy Image (GEI), a com-
pressed representation derived from the silhouette sequence for
gait feature extraction. However, the frame subtraction method
severely constrains the scope of gait representations that can be
extracted. Fortunately, due to the advancements in semantic seg-
mentation and pose estimation algorithms [3, 21, 36], an increasing
number of gait datasets utilizing silhouette and skeleton data have
emerged. Representative datasets can be categorized into the CASIA
series [26, 28, 38, 45] and the OU-ISIR series [1, 12, 15, 23, 31, 32, 41].
Generally, due to its sparsity, skeletal information is not as compre-
hensive as that provided by silhouettes. The silhouette sequence has
long been the predominant choice in the field of gait recognition.

However, the aforementioned datasets are all gathered from
controlled laboratory environments, posing challenges to the appli-
cability of gait recognition technology. Recently, researchers have
started constructing gait datasets from real-world environments,
such as GREW [53] and Gait3D [51]. Challenges such as occlu-
sion, 3D viewpoint changes, irregular walking routes, and various
walking speeds in real-world environments cause difficulties for
silhouette sequences to satisfy the requirements of the gait recog-
nition task. Consequently, existing gait recognition methods often
demonstrate poor performance on in-the-wild datasets [51, 53],
despite their success on in-the-lab datasets [15, 27, 28].

Most recently, Zheng et al. [52] proposed a novel gait representa-
tion called Gait Parsing Sequence (GPS), which exhibits significantly
higher information entropy compared to the silhouette sequence.
Substituting the silhouette sequence with GPS results in notable
performance enhancements in contemporary appearance-based
gait recognition methods. However, achieving more refined parsing
results necessitates more strict requirements for human parsing
models. This will result in a reduction in segmentation quality. Con-
versely, despite the low information entropy of silhouettes, their
quality is ensured due to their straightforward characteristics. In
general, silhouette and parsing, as promising appearance represen-
tations, each has its own strengths and limitations. We believe that
integrating them will effectively improve gait recognition perfor-
mance, which has not been deeply explored in the gait recognition
community.

2.2 Gait Recognition Methods
In this section, we divide the existing gait recognition methods
into single-representation and multi-representation approaches.
Single-representation methods occupy the majority of the com-
munity and can also be divided into two main categories: model-
based methods and appearance-based approaches [34]. In earlier
years, model-based approaches dominated the field of gait recogni-
tion, including the 2D/3D skeletons [17], a structural human body
model [2, 42], etc. For example, Urtasun et al. [33] introduced a
gait analysis technique that leverages articulated skeletons and
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three-dimensional temporal motion models. Zhao et al. [49] em-
ployed a local optimization algorithm to pursue motion tracking
for gait recognition. Yamauchi et al. [43] proposed an interest-
ing approach for human walking recognition by utilizing 3D pose
estimation derived from RGB frames. Nevertheless, model-based
techniques are less potent than appearance-based methods in gait
recognition due to their inability to capture relevant gait features
such as shape and appearance. Appearance-based approaches, also
known as model-free methods, often utilize the gait silhouette se-
quence, gait parsing sequence and Gait Energy Image (GEI) as
input [4, 9, 11, 13, 14, 18, 19, 25, 40, 47, 48, 52]. For example, Han et
al. suggested the consolidation of a series of silhouettes into a con-
cise Gait Energy Image (GEI) [11] and extracted gait knowledge
from it. Chao et al. [4] treated the gait sequence as an unordered set
and employed Convolutional Neural Networks (CNNs) to extract
gait features from the frame-level and sequence-level. Fan et al. [9]
proposed the GaitPart framework to horizontally split silhouettes
and extract fine-grained features from each part. However, despite
their impressive performance in controlled laboratory environ-
ments, these methods often falter when applied to real-world sce-
narios [51, 53]. In fact, silhouettes exhibit low information entropy,
which renders them incapable of fully capturing the complexity of
gait information in real-world scenarios.

Most recently, the Gait Parsing Sequence (GPS) has been intro-
duced as a novel gait representation that not only captures the body
shape and appearance but also encompasses the dynamics of fine-
grained human body parts [52]. By replacing the input from the sil-
houette sequence with the GPS, existing appearance-based methods
achieve a significant performance improvement, i.e., 12.5% ∼ 19.2%
improvements in Rank-1 accuracy. Furthermore, Zheng et al. [52]
proposed the ParsingGait network to extract the discriminative gait
features from the global appearance information and the relations
among human body parts. However, compared to silhouette, parsing
necessitates a higher requirement for semantic segmentation mod-
els, i.e., human parsing models. Especially, through experiments on
another challenging cloth-changing dataset, i.e., CCPG, we observe
that the performance of parsing is inferior to the silhouette due to
its low quality. Morte details can be found in Section 5.

In recent years, multi-representation methods have been stud-
ied in the gait recognition community. For instance, Cui et al. [5]
introduced the MMGaitFormer framework to realize the effective
spatial-temporal feature fusion from silhouette and skeleton se-
quences. Fan et al. [8] proposed the SkeletonGait++ model to inte-
grate the skeleton map and silhouette features. However, the fusion
between silhouette and parsing sequences, the two most promising
appearance representations, has not been studied by gait recogni-
tion researchers. This paper aims to explore their complementarity
to achieve accurate gait recognition in the wild.

3 METHOD
This section provides a detailed introduction to the proposed XGait
framework. First, we provide an overview of our method in Sec-
tion 3.1. Next, we discuss the silhouette and parsing encoding mod-
ules in Section 3.2. In Section 3.3, we explain how our Global Cross-
granularity Module (GCM) utilizes the global appearance features

extracted from silhouette sequences to improve the quality of pars-
ing features. In Section 3.4, we introduce our Part Cross-granularity
Module (PCM) and the designed learnable division mechanism, and
explain how it establishes the fine-grained alignment between the
silhouette and parsing features. Finally, we present the details of
training and inference.

3.1 Overview
The architecture of the proposed gait recognition framework, i.e.,
XGait, is illustrated in Figure 2. The framework consists of three
main stages: the preprocessing stage, the encoding stage, and the
cross-granularity alignment stage.

In the preprocessing stage, two appearance representations will
be extracted offline from the original RGB sequence. One is the
silhouette sequence 𝑆 ∈ R𝑇×𝐶×𝐻×𝑊 obtained using a semantic
segmentation model. Here,𝑇 represents the sequence length, while
𝐶 , 𝐻 , and𝑊 denote the channel, height, and width of the frame,
respectively. The other representation is the gait parsing sequence
𝑃 ∈ R𝑇×𝐶×𝐻×𝑊 , extracted using a human parsing model.

In the encoding stage, we utilize two separate CNN-based back-
bone networks to extract the distinctive characteristics of each
appearance representation. Specifically, we obtain the feature maps
F𝑠 and F𝑝 from the silhouette sequence 𝑆 and gait parsing sequence
𝑃 , respectively. Here, F𝑠 and F𝑝 belong to R𝑇×𝑐×ℎ×𝑤 , with 𝑐 , ℎ, and
𝑤 representing the channel, height, and width of the feature maps.

In the cross-granularity stage, the above two feature maps are fed
into two branches: (1) the Global Cross-granularity Module (GCM)
integrates these two granularity features at the global level, aiming
to optimize the parsing features with relatively low segmentation
quality through the global silhouette features. This global-level inte-
gration results in the feature map 𝐹𝑔𝑎 . (2) the Part Cross-granularity
Module (PCM) aligns the dynamics of human parts between silhou-
ette and parsing features using the high information entropy in
parsing, yielding the feature map 𝐹𝑝𝑎 .

Then, by merging F𝑠 and F𝑝 , we employ four separate Feature
Mapping Heads (FMHs) to further extract more discriminative fea-
tures, resulting in features F̂𝑠 , F̂𝑝 , F̂𝑔𝑎 , and F̂𝑝𝑎 . Subsequently, con-
catenating these features along the channel dimension yields F̂𝑜𝑢𝑡 ,
as the final output feature.

Finally, the cross-entropy loss 𝐿𝑐𝑒 and the triplet loss 𝐿𝑡𝑟𝑖 are
employed to train the model.

3.2 Silhouette and Parsing Encoding Module
While both the silhouette sequence and parsing sequence are ap-
pearance representations, they possess distinct characteristics: 1)
Semantic information: Parsing provides richer semantic details com-
pared to the binary silhouette, including delineation of the head,
left/right hand, etc. 2) Segmentation quality: The silhouette exhibits
more accurate segmentation quality due to its simplicity and more
robustness to environmental variations.

Based on the above insights, we utilize two separate encoders
to extract distinctive features from these two appearance repre-
sentations. In particular, the silhouette encoding module 𝐹𝑆 (·) and
the parsing encoding module 𝐹𝑃 (·) are established with ResNet-
like structures [7]. The silhouette feature maps F𝑠 and the parsing
feature maps fF𝑝 are then obtained from silhouette sequences and

3
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Figure 2: The architecture of our XGait. In the preprocessing stage, the silhouette sequence 𝑆 ∈ R𝑇×𝐶×𝐻×𝑊 and the parsing
sequence 𝑃 ∈ R𝑇×𝐶×𝐻×𝑊 are extracted from theRGB sequences by segmentationmethod and human parsingmodel, respectively.
In the Encoding stage, we employ two separate ResNet-like structure backbones 𝐹𝑆 (·) and 𝐹𝑃 (·) to extract the mid-level features
from the silhouette sequence and the parsing sequence, respectively. In the Cross-granularity stage, the Global Cross-granularity
Module (GCM) and the Part Cross-granularity Module (PCM) are proposed to explore the complementary knowledge from
these two granularity features across global and part levels. GAP denotes the Global Average Pooling. FC means the Fully
Connected layer. CA refers to the Cross-granularity Alignment module. FMH represents the Feature Mapping Head.

parsing sequences, respectively. it is worth noting that the back-
bone within the Silhouette and Parsing Encoding Modules can be
substituted with any other gait recognition network. Although a
stronger backbone may yield performance enhancements, this is
not the focus of our method.

3.3 Global Cross-granularity Module
The Global Cross-granularity Module (GCM) aims to utilize the
global appearance features of the silhouette to improve the quality
of parsing features. As illustrated in Figure 2 (c), a light-weighted
module, i.e., Cross-granularity Alignment (CA) module, is designed
to align F𝑠 and F𝑝 at the global level. To preserve the distinct se-
mantic information, we concatenate F𝑠 and F𝑝 along the channel
dimension. Before that, we employ Global Average Pooling (GAP)
to compress the spatial dimension for computational consideration.
The process is formulated as follows:

F𝑠𝑝 = [𝐺𝐴𝑃 (F𝑠 ),𝐺𝐴𝑃 (F𝑝 )], (1)

where [·, ·] represents the concatenation operation.
Subsequently, we apply two Fully Connected (FC) layers, each

with 𝑐/𝑟 and 2𝑐 neurons, respectively, where 𝑟 denotes the reduction
ratio. Following the first FC layer, we employ the ReLU activation
function. Then, a sigmoid layer is utilized after the final FC layer
to derive element-wise weights for the silhouette feature 𝐹𝑠 and
the parsing feature 𝐹𝑝 . Finally, the output feature F𝑔𝑎 is obtained
through element-wise weighted summation. These operations facil-
itate interaction between silhouette and parsing features at a global
level. The described operations can be expressed as:

F𝑔𝑎 = 𝑓 1𝑐𝑎 (F𝑠𝑝 ) · F𝑠 + 𝑓 2𝑐𝑎 (F𝑠𝑝 ) · F𝑝 , (2)

where 𝑓 1𝑐𝑎 (·) and 𝑓 2𝑐𝑎 (·) represent the outputs of 𝑓𝑐𝑎 (·) splitting
along the channel dimension, with 𝑓 1𝑐𝑎 (·) containing the first half
and 𝑓 2𝑐𝑎 (·) containing the second half. In addition, the detailed
operation of the CA module can be expressed as follows:

𝑓𝑐𝑎 (F𝑠𝑝 ) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W2𝜎 (W1F𝑠𝑝 ))
= [𝑓 1𝑐𝑎 (F𝑠𝑝 ), 𝑓 2𝑐𝑎 (F𝑠𝑝 )],

(3)

where W1 and W2 are the weights of the two FC layers, 𝜎 denotes
the ReLU activation function.

3.4 Part Cross-granularity Module
The Part Cross-granularity Module (PCM) is designed to take ad-
vantage of the high information entropy in parsing to align human
body parts between silhouette and parsing features, as is shown in
Figure 2 (d). In general, the human body can generally be divided
into three main parts: 1) the upper body, which includes the head
and shoulders; 2) the middle body, comprising the torso, arms, and
hands; 3) the lower body, encompassing the legs and feet. Mean-
while, previous studies [5, 9] have shown that different parts of the
human body display distinct movement patterns during walking.

Therefore, we constrain the silhouette and parsing features to
capture mutual information associated with the relevant body parts.
As illustrated in Figure 4, we establish a part-level relationship
between the silhouette and parsing features. The silhouette feature
F𝑠 is horizontally divided into three segments: the top quarter (0− 1

4 ),
the middle half ( 14 − 3

4 ), and the bottom quarter ( 34 − 1). Similarly,
following the categories of human body parts in [52], we segment
the parsing feature F𝑝 into three regions: the upper body (head),
the middle body (torso, left arm, right arm, left hand, right hand,
dress), and the lower body (left leg, right leg, left foot, right foot,

4
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Figure 3: The illustration of the learnable division. 𝛾 is the
learnable parameter used to modulate the weight of the i-th
body part. (Best viewed in color.)

dress). Acknowledging that certain human body parts, such as the
head, hands, and feet, are prone to occlusion due to their small
size, we propose a learnable division mechanism to segment the
parsing regional features, as depicted in Figure 3. The mathematical
expression for the learnable division is as follows:

F𝑖𝑝 = 𝛾𝑖 ∗ F𝑝 ⊙ 𝑀𝑖 + (1 − 𝛾𝑖 ) ∗ F𝑝 ⊙ (1 −𝑀𝑖 ), (4)

where 𝑖 = 1, 2, 3 is the index of the upper body, the middle body, and
the lower body, respectively.𝑀𝑖 denotes the mask corresponding
to the i-th human body part. 𝛾𝑖 represents a learnable parameter
used to modulate the weight of the feature associated with the i-th
body part, and ⊙ denotes the element-wise multiplication.

As is shown in Figure 4, after obtaining distinct part-level sil-
houette and parsing features, we apply average pooling and max
pooling to reduce the spatial dimension. Next, three independent
CA modules, namely CA-Upper, CA-Middle, and CA-Down, are
employed to extract the Cross-granularity features F𝑖𝑝𝑎 . Lastly, we
concatenate the F𝑖𝑝𝑎 horizontally to obtain the output feature F𝑝𝑎 of
PCM. In this way, our XGait can fully leverage the complementary
advantages of these two appearance representations, resulting in
more robust and discriminative features for gait recognition.

3.5 Feature Mapping Head
Four Feature Mapping Heads (FMHs) are implemented to enhance
the efficiency of training and inference. These heads, applied to the
discriminative gait features F𝑠 , F𝑝 , F𝑔𝑎 , and F𝑝𝑎 , utilize Set Pool-
ing (SP) and Horizontal Pyramid Mapping (HPM) techniques [4].
The SP compresses temporal knowledge using max pooling, signifi-
cantly reducing computational complexity. The HPM consists of
Horizontal Pyramid Pooling (HPP) and Separate Mapping (SM). The
HPP performs fine-grained sampling and horizontally reduces the
dimension using max pooling and mean pooling. The SM utilizes
separate fully connected layers for each pooled feature to aggre-
gate more discriminative information. Taking F𝑠 as an example, the
above operations can be expressed as:

F̂𝑠 = 𝐻 (𝑃 (F𝑠 )), (5)

Where 𝑃 (·) represents the SP operation, 𝐻 (·) denotes the HPM
process.
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Figure 4: The pipeline of the Part Cross-granularity Module
(PCM). CA-Upper, CA-Middle, and CA-Down are three inde-
pendent Cross-granularity Alignment modules for extract-
ing fine-grained mutual information from various human
body parts. (Best viewed in color.)

At last, we concatenate F̂𝑠 , F̂𝑝 , F̂𝑔𝑎 , and F̂𝑝𝑎 to obtain the fi-
nal feature vector F̂𝑜𝑢𝑡 , which is used for sequence-to-sequence
matching during both training and inference. For a comprehensive
understanding of the SP and HPM, please refer to [4].

3.6 Training and inference
Our XGait framework is trained in an end-to-end manner. We
optimize the network through a loss function comprising two com-
ponents:

𝐿 = 𝛼𝐿𝑡𝑟𝑖 + 𝛽𝐿𝑐𝑒 , (6)

where 𝐿𝑡𝑟𝑖 is the triplet loss, 𝐿𝑐𝑒 is the cross entropy loss. 𝛼 and 𝛽

are the weighting parameters.
In the inference phase, the similarity between a query-gallery

pair is assessed by computing the Euclidean distance.

4 EXPERIMENTS
We first introduce the datasets used in this work in Section 4.1.
Furthermore, implementation details are outlined in Section 4.2.
Section 4.3 presents a comprehensive comparison of our proposed
XGait with existing gait recognition methods. Then, ablation stud-
ies on our framework are conducted in Section 4.4. At last, the
visualization of heatmaps is provided in Section 4.5.

4.1 Datasets
Gait3D. The Gait3D dataset, proposed in [51], is a challenging gait
recognition dataset derived from real-world scenarios. It comprises
4,000 subjects, 25,309 sequences, and 3,279,239 frame images cap-
tured by 39 cameras in an unconstrained indoor environment, i.e.,
a large supermarket. To comply with the official train/test strat-
egy outlined in [51], 3,000 subjects are chosen for training, while
another 1,000 subjects are reserved for testing. Moreover, each sub-
ject in the testing set has one sequence designated as the query,
while the remaining sequences are used as the gallery. The Rank-1,
Rank-5, mean Average Precision (mAP), and mean Inverse Negative
Penalty (mINP) [44] are employed to evaluate the performance of
the Gait3D dataset.
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CCPG. The CCPG dataset [16] is a recently introduced dataset
designed for cloth-changing gait recognition. It consists of 200
subjects and 16,566 sequences captured using two outdoor cameras
and eight indoor cameras. It provides a diverse array of outfits,
encompassing 13 tops, 8 bottoms, and 5 distinct bags. Moreover,
it includes a variety of walking routes, such as turning, occlusion,
and background change routes. The above factors also make it
an extremely challenging gait dataset. There are 100 subjects for
training and another 100 for testing. In the testing phase, three
types of cloth-changing scenarios are provided: cloth-changing
(CL-FULL), ups-changing (CL-UP), and pants-changing (CL-DN).
Rank-1 accuracy and mean Average Precision (mAP) are adopted as
evaluation metrics to assess the performance of the CCPG dataset.

4.2 Implementation Details
Input. We utilize the officially provided silhouette and parsing
data directly as inputs to our XGait model for the Gait3D dataset.
For the CCPG dataset, where parsing is unavailable, we utilize
CDGNet [20] to extract the parsing information. To ensure basic
quality standards, we randomly sample and label 1,400 RGB images
from the CCPG dataset. Labeling follows the guidelines outlined
in [52]. The CDGNet model is then fine-tuned using the parameters
published in [52]. Finally, we utilize the optimized CDGNet model
to extract the parsing data from the CCPG dataset.

Setting. Following the same preprocessing in [4], silhouette and
parsing images are normalized to 64×44 for both Gait3D and CCPG
datasets. The silhouette and parsing encoding module employ the
GaitBase [7] as the backbone. For the Gait3D dataset, the batch size
is 32× 2× 30, representing 32 subjects, 2 sequences per subject, and
30 frames per sequence. The reduction ratio 𝑟 in the GCM is 1. The
batch size for the CCPG dataset is 8 × 8 × 30. The reduction ratio 𝑟
is set to 16. Training the model for both Gait3D and CCPG datasets
involves 1,200K iterations. The Learning Rate (LR) starts at 0.1 and
is subsequently multiplied by 0.1 at the 400K, 800K, and 1,000K
iterations. The SGD optimizer is adopted with a weight decay of 5e-
4. The unordered sampling strategy is implemented in both datasets.
The margin in the triplet loss is 0.2. In Equation 6, the weighting
parameters 𝛼 and 𝛽 are set to 1.0. During the inference phase, all
frames of each gait sequence are utilized, with a maximum of 720
frames per sequence for memory consideration.

4.3 Comparison with State-Of-The-Art Methods
In this section, we compare the proposed XGait with several popular
state-of-the-art (SOTA) gait recognition methods.

Evaluation on Gait3D. The experimental results on the Gait3D
dataset are listed in Table 1. It is evident that model-based ap-
proaches, such as PoseGait and GaitGraph, typically underperform
in comparison to appearance-based methods. This is because the
utilization of sparse keypoints of the human body, leads to a de-
ficiency in comprehensive gait information, further exacerbated
by the complexity of real-world scenarios. In contrast, appearance-
based methods tend to exhibit significantly superior performance.
However, GEINet’s performance is also poor due to significant infor-
mation loss during the compression of the gait silhouette sequence
into a gait energy image. Moreover, the approach utilizing parsing

Table 1: Comparison of the SOTA gait recognition methods
on the Gait3D dataset. R-1 and R-5 denote the Rank-1 and
Rank-5 accuracy, respectively.

Methods Publication R-1 R-5 mAP mINP

PoseGait [17] PR 2020 0.2 1.1 0.5 0.3
GaitGraph [30] ICIP 2021 6.3 16.2 5.2 2.4
GPGait [10] ICCV 2023 22.5 - - -

GEINet [25] ICB 2016 5.4 14.2 5.1 3.1
GaitSet [4] AAAI 2019 36.7 58.3 30.0 17.3
GaitPart [9] CVPR 2020 28.2 47.6 21.6 12.4
GLN [13] ECCV 2020 31.4 52.9 24.7 13.6

GaitGL [19] ICCV 2021 29.7 48.5 22.3 13.3
CSTL [14] ICCV 2021 11.7 19.2 5.6 2.6

SMPLGait [51] CVPR 2022 46.3 64.5 37.2 22.2
MTSGait [50] ACM MM 2022 48.7 67.1 37.6 21.9
DANet [22] CVPR 2023 48.0 69.7 - -
GaitGCI [6] CVPR 2023 50.3 68.5 39.5 34.3
GaitBase [7] CVPR 2023 64.6 - - -
HSTL [37] ICCV 2023 61.3 76.3 55.5 34.8
DyGait [39] ICCV 2023 66.3 80.8 56.4 37.3

ParsingGait [52] ACM MM 2023 76.2 89.1 68.2 41.3

XGait Ours 81.0 91.9 73.3 55.4

Table 2: Comparison of the SOTAgait recognitionmethods on
the CCPG dataset. CL-FULL, CL-UP, and CL-DN denote cloth-
changing, ups-changing, and pants-changing, respectively.

Method Publication CL-FULL CL-UP CL-DN
R-1 mAP R-1 mAP R-1 mAP

GaitGraph2 [29] CVPRW 2022 5.0 2.4 5.7 4.0 7.3 4.2
GaitTR [46] ES 2023 24.3 9.7 28.7 16.1 31.1 16.4

SkeletonGait [8] AAAI 2024 52.4 20.8 65.4 35.8 72.8 40.3

GaitSet [4] AAAI 2019 77.7 46.4 83.5 59.6 83.2 61.4
GaitPart [9] CVPR 2020 77.8 45.5 84.5 63.1 83.3 60.1
GaitGL [19] ICCV 2021 69.1 27.0 75.0 37.1 77.6 37.6
OGBase [7] CVPR 2023 78.4 44.5 82.3 58.3 86.0 59.3

AUG-OGBase [16] CVPR 2023 84.7 52.9 88.4 67.5 89.4 67.9

XGait Ours 88.3 59.5 91.8 74.3 92.9 75.7

as input, namely ParsingGait, outperforms methods employing sil-
houettes such as GaitSet, GaitBase, and DyGait. This demonstrates
the value of the high information entropy contained in the gait
parsing sequence, offering more useful gait knowledge. Finally,
our XGait achieves optimal performance, reaching a Rank-1 accu-
racy of 81%, showcasing the effectiveness of combining silhouette
and parsing sequences harmoniously. Meanwhile, this illustrates
the significant potential of our method for practical application in
real-world scenarios.

Evaluation onCCPG. Table 2 presents the experimental results
obtained from the CCPG dataset, also known as the cloth-changing
gait dataset. We can first observe that model-based approaches,
such as GaitGraph2 [29], GaitTR [46], and SkeletonGait [8], exhibit
comparatively low performance. This once more demonstrates that
sparse skeletons make it difficult for the model to acquire enough
gait knowledge due to information loss. In contrast, appearance-
based methods achieve better results, while our XGait method ex-
hibits superior performance, confirming its effectiveness in tackling
challenging scenarios like cloth-changing.
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Table 3: Analysis of Silhouette (Sil.) and Parsing (Par.) on the
Gait3D dataset.

Methods Rank-1 Rank-5 mAP mINP

Only Sil. 58.7 76.2 49.5 27.9
Only Par. 71.2 87.3 64.1 38.1
Ours 81.0 91.9 73.3 55.4

Table 4: Analysis of different fusion modes on the Gait3D
dataset.

Methods Rank-1 Rank-5 mAP mINP

Distance Fusion 75.6 89.3 68.2 50.2
Feature Fusion 77.0 89.8 69.7 51.2

Ours 81.0 91.9 73.3 55.4

4.4 Ablation Study
This section presents ablation studies on key components. First, we
analyze the impact of silhouette and parsing on gait recognition.
Next, we examine the influence of different fusion modes. Subse-
quently, we demonstrate the significant performance enhancement
achieved by the proposed GCM and PCM modules. Then, we inves-
tigate the shareability of the backbone and the mapping head. At
last, different part division strategies are evaluated.

Analysis of Silhouette and Parsing. As shown in Table 3,
using only silhouette as input results in a Rank-1 accuracy of 58.7%.
However, replacing silhouette with parsing leads to a notable per-
formance improvement, with Rank-1 accuracy increasing by 12.5%.
This improvement can be attributed to parsing sequences having
higher information entropy, offering more useful knowledge for
gait recognition. In addition, our approach effectively integrates
these two appearance representations, resulting in a significant
performance enhancement. Specifically, compared to only using
silhouette and parsing, the Rank-1 accuracy improved by 22.3%
and 9.8%, respectively. For a detailed discussion on silhouette and
parsing, please refer to Section 5.

Fusion mode. We also assess the impact of various fusion
modes, as listed in Table 4. We first implement the distance fusion
experiment, where the distance matrices of silhouette and parsing
are directly combined and subsequently utilized for metric evalu-
ation. This fusion technique is commonly employed in challenge
competitions. When combined with Table 3, it becomes evident that
the distance fusionmethod also leads to performance improvements.
In addition, we perform a feature fusion experiment by directly con-
catenating the two types of gait features after the backbone in the
channel dimension. In other words, this is equivalent to removing
the GCM and PCM modules from our XGait method. Surprisingly,
we observe a significant performance improvement even with such
a simple concatenation operation, resulting in Rank-1 and mAP
increasing to 77.0% and 69.7%, respectively. This suggests a strong
complementarity between silhouette and parsing representations.
Furthermore, the fusion mode presented in our method enhances
the exploration of mutual information between them, resulting in
further improvements in Rank-1 and mAP accuracy, reaching 81.0%
and 73.3%, respectively.

Table 5: Analysis of the GCM and PCM on the Gait3D dataset.

Baseline GCM PCM Rank-1 Rank-5 mAP mINP

✓ 77.0 89.8 69.7 51.2
✓ ✓ 79.0 90.8 71.9 53.6
✓ ✓ 80.4 90.5 71.8 53.6
✓ ✓ ✓ 81.0 91.9 73.3 55.4

Table 6: Analysis of the shareability of the backbone and the
mapping head on Gait3D. FMH denotes the feature mapping
head. Sha. means that the parameters are shared, and Ind.
represents that the parameters are independent.

Backbone FMH Rank-1 Rank-5 mAP mINP

Sha. Sha. 40.3 59.4 31.0 18.4
Sha. Ind. 39.4 58.1 29.3 17.0
Ind. Sha. 78.9 90.7 72.0 53.7
Ind. Ind. 81.0 91.9 73.3 55.4

Impact of GCM and PCM. Subsequently, we analyze the im-
pact of the GCM and PCM modules in our XGait framework. The
results are presented in Table 5. Both GCM and PCM effectively
enhance various evaluation metrics. Additionally, incorporating
both modules results in further performance improvement. This
highlights the validity of our proposed feature interaction approach
from both global and part levels.

Analysis of the shareability of backbone and mapping
head. We also investigate the shareability of the backbone and
the Feature Mapping Head (FMH). As is shown in Table 6, we ob-
serve that performance is worst when backbone parameters are
shared while FMH parameters are independent. This is because the
differing semantics of silhouette and parsing. Sharing backbone
parameters can interfere with model learning. Furthermore, inde-
pendent FMH parameters exacerbate subsequent feature learning.
When backbone parameters are independent, even if subsequent
FMH parameters are shared, the model’s performance is almost
doubled. Finally, when both the backbone and FMH parameters
are independent, the model achieves its best performance, with a
Rank-1 accuracy of 81.0%.

Analysis of the division strategy. Additionally, we perform
experiments to validate the effectiveness of the proposed learnable
division mechanism described in Section 3.4. Keeping other settings
constant, we explore three distinct part division strategies: simple
division, fixed division, and learnable division.We utilize Equation 4
and Figure 3 to depict the distinctions among the three division
strategies. Simple division and fixed division correspond to setting
the learnable parameters 𝛾 to 1 and 0.75, respectively. The best
results, as shown in Table 7, are obtained when employing learnable
division in the PCM. We also examine the specific values of the
three learnable parameters in Equation 4 once the model converges.
The final values of 𝛾1, 𝛾2, and 𝛾3 are 1.1, 2.0, and 1.4, respectively.
This indicates that the model automatically intensifies the search
in the target area. Comparatively, the upper body receives the least
attention, while the middle body and lower body receive more
attention.
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Figure 5: The heatmaps of F𝑠 , F𝑝 , F𝑔𝑎 , and F𝑝𝑎 in our XGait
framework. 𝑆𝑖𝑙 . denotes Silhouette. (Best viewed in color.)

Table 7: Analysis of different division strategies on Gait3D.

Methods Rank-1 Rank-5 mAP mINP

Simple division 79.5 90.9 72.6 54.9
Fixed division 79.3 91.7 71.9 54.2

Learnable division 81.0 91.9 73.3 55.4

4.5 Visualization
In this sectoin, we visualize the heatmaps of F𝑠 , F𝑝 , F𝑔𝑎 , and F𝑝𝑎 in
the cloth-changing and occlusion scenarios. As shown in Figure 5,
the feature map F𝑔𝑎 focuses on the global region, indicating the
GCM module’s capability to enhance granularity features at the
global level. The F𝑝𝑎 concentrates on the lower body, which indi-
cates that the movement of the legs and feet can effectively reflect
useful gait information.

5 DISCUSSION
In this section, we aim to thoroughly analyze the influence of sil-
houette and parsing on gait recognition. As indicated in Table 8, we
are surprised to find that parsing shows a lower Rank-1 accuracy
compared to silhouette on the CCPG dataset, with 81.4% accuracy
compared to 83.9% accuracy with silhouette. Our analysts attribute
this to the lower segmentation quality of parsing compared to the
silhouette on the CCPG dataset. To verify this hypothesis, we con-
duct an operation where we intersect the silhouette and parsing,
as depicted in Figure 6. This operation ensures that the silhou-
ette and parsing edges are identical, which effectively controls the
segmentation quality variable.

Subsequently, we conduct experiments utilizing the intersecting
silhouette (𝑆𝑖𝑙 .∗) and the intersecting parsing (𝑃𝑎𝑟 .∗), finding that
parsing yields superior results compared to the silhouette. Specif-
ically, after the contour edges are aligned, the Rank-1 with the
parsing is 4.1% higher than with the silhouette. This demonstrates
that parsing’s high information entropy significantly benefits gait
recognition, even in cloth-changing scenarios.

Intersection𝑆𝑖𝑙.

𝑃𝑎𝑟.

𝑆𝑖𝑙.∗

𝑃𝑎𝑟.∗

RGB

Figure 6: The illustration of the silhouette and parsing in-
tersection operations. 𝑆𝑖𝑙 . denotes Silhouette, 𝑃𝑎𝑟 . represents
Parsing, 𝑆𝑖𝑙 .∗ signifies the silhouette result after the intersec-
tion of 𝑆𝑖𝑙 . and 𝑃𝑎𝑟 ., 𝑃𝑎𝑟 .∗ denotes the parsing result after the
intersection of 𝑆𝑖𝑙 . and 𝑃𝑎𝑟 .. (Best viewed in color.)

Table 8: Detailed analysis of silhouette and parsing results on
the CCPG dataset. CL-FULL, CL-UP, and CL-DN denote cloth-
changing, ups-changing, and pants-changing, respectively.

Method CL-FULL CL-UP CL-DN
R-1 mAP R-1 mAP R-1 mAP

GaitBase (𝑆𝑖𝑙 .) 83.9 53.4 89.6 69.4 90.1 70.9
GaitBase (𝑃𝑎𝑟 .) 81.4 52.3 87.3 67.7 90.8 71.3

GaitBase (𝑆𝑖𝑙 .∗) 78.3 49.6 86.2 65.8 88.2 68.5
GaitBase (𝑃𝑎𝑟 .∗) 82.4 53.2 87.7 68.2 90.8 72.0

XGait (𝑆𝑖𝑙 .∗, 𝑃𝑎𝑟 .∗) 82.5 53.3 87.6 69.0 90.1 71.4
XGait (𝑆𝑖𝑙 ., 𝑃𝑎𝑟 .) 88.3 59.5 91.8 74.3 92.9 75.7

Finally, we replace the (𝑆𝑖𝑙 ., 𝑃𝑎𝑟 .) with (𝑆𝑖𝑙 .∗, 𝑃𝑎𝑟 .∗) as inputs to
our XGait framework. The experimental results indicate a notable
performance reduction. In particular, the Rank-1 accuracy decreased
from 88.3% to 82.5%. This is because forcing segmentation edge
alignment results in the loss of the advantage of segmentation qual-
ity in silhouette sequences. In contrast, the XGait with original
silhouette and parsing sequences effectively leverages the com-
plementary information of these two appearance representations,
realizing the best gait recognition performance.

6 CONCLUSION
In this paper, we propose a novel cross-granularity gait recognition
framework, named XGait, to unleash the power of different appear-
ance representations, i.e., silhouette and parsing sequences. The
Global Cross-granularity Module (GCM) and Part Cross-granularity
Module (PCM) are developed to explore the complementary knowl-
edge across the features of these two distinctive representations.
Extensive experiments on two large-scale datasets, Gait3D and
CCPG, validate the effectiveness of our method under challenging
conditions like occlusions and cloth changes. In the future, further
exploration of information interaction across more gait representa-
tions, such as silhouettes, parsing maps, 3D meshes, skeletons, etc.,
is expected to promote the development of gait recognition.
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