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1 INTRODUCTION
In this supplementary material, we first visualize the distribution
of features. Next, we provide some detailed exemplar results. At
last, several potential future works are represented.

2 DISTRIBUTION VISUALIZATION
To verify the effectiveness of our proposed XGait method frommore
perspectives, we visualize the feature distribution on the Gait3D
dataset [3]. For convenience, we randomly sample seven IDs from
the test set in Gait3D and utilize the tSNE [2] to draw the feature
distribution of all sequences corresponding to these sampled IDs.

Figure 1 (a) illustrates that the feature distribution based solely
on the silhouette is highly scattered. In contrast, by replacing silhou-
ette with parsing, the feature distribution becomes more compact,
as shown in Figure 1 (b). This demonstrates that parsing has higher
information entropy, which enables the model to learn more dis-
criminative gait features.

Figures 1 (c) to (d) demonstrate that combining silhouette and
parsing, along with the incremental integration of our proposed
Global Cross-granularity Module (GCM) and Part Cross-granularity
Module (PCM), can enhance the distinctiveness. Furthermore, our
XGait shows superior discriminative ability, demonstrating the
effectiveness of our method.

3 EXEMPLAR RESULTS
In this section, we provide some exemplar results of XGait (Only
Silhouette), XGait (Only Parsing), and XGait (Ours). We conduct
exemplar visualization experiments on the Gait3D dataset [3]. For
convenience, we sample 24 consecutive frames from each sequence.
The top row depicts the query sequence with blue bounding boxes.
The subsequent three rows exhibit the top-3 gallery results ranked
by their similarity to the query sequence. The correct results are
marked in green bounding boxes, while incorrect results are marked
in red bounding boxes.

From Figure 2 and Figure 3, we can observe that our XGait helps
the model achieve more correct matches by integrating silhouette
and parsing. This demonstrates that these two appearance represen-
tations, i.e., silhouette and parsing, have mutual information, and
our XGait effectively explores their complementarity to enhance
performance.

Furthermore, Figure 3 reveals that different individuals with
similar body shapes, viewpoints, and walking postures can cause
serious interference. This is an important challenge for appearance-
based methods.

4 FUTUREWORK
Although our XGait method proposed in this paper achieves State-
Of-The-Art (SOTA) performance on two challenging gait datasets,
i.e., the real-world dataset Gait3D [3] and the cloth-changing dataset
CCPG [1], there are several directions worthy of further study:

(a) XGait (Only Silhouette) (b) XGait (Only Parsing)

(c) XGait (w/o GCM&PCM) (d) XGait (w/o GCM)

(e) XGait (w/o PCM) (f) XGait (Ours)

Figure 1: The visualization of feature distributions. (a) XGait
(Only Silhouette), (b) XGait (Only Parsing), (c) XGait (w/o
GCM&PCM), (d) XGait (w/o GCM), (e) XGait (w/o PCM), and
(f) XGait (Ours). Samples of the same color belong to the
same person. (Best viewed in color.)

• One direction is to explore more efficient integration of vari-
ous gait representations, including silhouette, parsing, 2D
skeleton, 3D skeleton, 3D SMPL&Mesh, point cloud, etc., to
further improve the performance of gait recognition tech-
nology in real-world scenarios.

• Additionally, how to mitigate the interference from different
pedestrians with similar appearances when utilizing infor-
mative appearance representations, as discussed in Section 3.

• Lastly, investigating more efficient methods for temporal
modeling to address challenges posed by irregular walking
speeds and routes in real-world scenarios is also a promising
direction for further research.
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Figure 2: Exemplar results of (a) XGait (Only Silhouette), (b) XGait (Only Parsing), and (c) XGait (Ours). This case shows that
utilizing both silhouette and parsing helps the model match more correct results. (Best viewed in color.)
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Figure 3: Exemplar results of (a) XGait (Only Silhouette), (b) XGait (Only Parsing), and (c) XGait (Ours). This case shows that
similar body shapes and poses are important challenges in gait recognition. (Best viewed in color.)
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