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1. Introduction 
Cluster expansion (CE) is a popular surrogate 

model for capturing structure-property relationships 
and modeling alloy formation energies [1-7]. CE 
follows a generalized Ising model [8] shown in Eq. 1, 
where it expands the formation energy E(σ) of an 
alloy configuration, σ, in terms of atomic clusters, c, 
such that the cluster correlation functions Φc (σ) 
serve as a basis set and the effective cluster 
interactions (ECIs), Vc, are the coefficients. 

𝐸(𝜎) =  ∑ 𝑉𝑐

𝑐

Φ𝑐(𝜎). (1) 

Figure 1 illustrates that the traditional CE approach 
works well for systems with low atomic size 
mismatch (ASM) such as Mo-Nb, where long range 
order contributions from higher-ordered clusters are 
negligible. In alloy systems like Mo-Zr, where 
significant ASM is present, traditional CE fails to 
capture the alloy’s structural-property behavior due 
to high lattice distortion. 

Fig. 1: Parity plots showing that CE is accurate for Mo-Nb 
(left), a representative low ASM binary system, but fails for 
Mo-Zr (right), a representative of high ASM binary system. 

 
In this work, we adopt physics-guided featurization 
to construct accurate and robust CE for 
multicomponent systems including bulk binary alloys 
(binary constituents of Mo-V-Nb-Ti-Zr) and alloyed 
perovskite systems (Pb-based ABX3). 
 
2. Method 

We propose the novel integration of a diverse set of 
descriptors from the Matminer library [9] with 
traditional CE in modeling formation energies. These 
descriptors (e.g., radial distribution function, sine 
coulomb matrix etc.) are curated based on the 
physics of diverse materials databases. While clusters 
in CE primarily capture short-range order 
interactions, Matminer descriptors extend this 
capability to better capture long-range order 
interactions. This synergy between Matminer and CE 
allows for extracting a more comprehensive set of 
structural, chemical and geometrical features, which 
serve as superior predictors of formation energies in 

high ASM systems. We further propose a high-
throughput recursive feature elimination (HTRFE) 
machine learning pipeline for robust feature selection 
over traditional CE. 

 
2.1 Related work 
     Recent works have sought to enhance the 
robustness of traditional CE by introducing grouped 
regularized regression [6, 10-13]. These methods 
improve feature selection by grouping important 
features together, handling complex correlated 
dependencies and ensuring the collective selection of 
interdependent features for configurational energy 
prediction. However, manually defining groups may 
inadvertently introduce biases or overlook important 
interactions among features. Beyond regression 
approaches, Bayesian optimization [14] and neural 
networks [15] have also been explored as 
enhancement over traditional CE. Meanwhile, 
Matminer descriptors have been extensively 
employed in surrogate models to predict properties 
such as bandgap [16, 17], elasticity [18], thermal 
conductivity [19] etc. for diverse classes of materials. 
This work is the first to integrate Matminer 
descriptors within the CE framework, expanding the 
scope of physics-guided featurization in CE. 
 
3. Results 
     Fig. 2 illustrates the performance of different 
modeling approaches, with traditional CE combined 
with lasso (blue) serving as the baseline model. Upon 
addition of Matminer features without the HTRFE 
pipeline, traditional CE’s performance declined due to 
overfitting (yellow). Applying the proposed pipeline 
allowed us to extract the important features, leading 
to significant improvement in prediction 
performance across all ten binary alloys (green). 
Further analysis of feature importance weights 
revealed that the prediction performance remained 
high using only the set of four most important feature 
sets (purple). These results highlight the necessity of 
both the HTRFE pipeline and Matminer descriptors 
for achieving accurate and robust predictions of 
formation energy. To assess the transferability of our 
proposed HTRFE pipeline with the integration of 
Matminer features and CE, we extended the approach 
to four Pb-based ABX3 perovskite systems with 
varying degrees of ionic size mismatch, where A is Cs, 
B is Pb, which is substituted by the respective 
alkaline earth metals, and X is Br. Fig. 3 shows that 
our proposed method consistently outperforms 
traditional CE in the perovskite systems. 
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Fig. 3: Compared to traditional CE (blue), our proposed 

HTRFE pipeline with the integration of Matminer features 
and CE reduced the error by 34% to 68%, averaging 49% 

across the four perovskites, with significant absolute 
improvements in the high ASM Mg and Cd systems. 

Fig. 4: Normalized feature importance for formation energy 
prediction in alloy and perovskite systems. Bars represent 
dashed line separates alloy systems (top) from perovskite 

systems (bottom), highlighting their differing dependencies 
on long-range (XRD, CN) versus short-range (Clusters, DDF) 

structural descriptors. 
 

By analyzing the feature importance in each system 
shown in Fig. 4, we found that while clusters are 
unsurprisingly important, three additional classes of 
descriptors are consistently selected across all ten 

systems: —coordination number (CN), XRD, and 
dihedral-angle distribution function (DDF). These 
findings highlight the method’s ability to capture both 
long-range and short-range order across diverse 
systems. 
 

4. Discussion 
     Our results demonstrate distinct roles of various 
descriptors in predicting formation energy in 
perovskite and binary alloy systems. DDF and cluster 
descriptors dominate in alloys due to their 
heightened sensitivity to short-range interactions 
[20]. XRD descriptors (peak positions, intensities, 
broadening) effectively capture long-range lattice 
distortions in perovskites, where its stability relies 
predominantly on maintaining long-range structural 
order arising from deviations in tolerance factors 
[21] and octahedral tilting [22]. CN descriptors 
quantify chemical bonding environments, which are 
essential to the adherence to bond valence sum [23]. 
The demonstrated feature relevance could guide the 
selection of stability predictors for novel materials, 
potentially reducing reliance on computationally 
expensive DFT calculations. 
 
5. Conclusion 
     Our study demonstrates that integrating Matminer 
descriptors with CE significantly enhances the 
prediction accuracy of formation energy models 
across both alloy and perovskite systems. By 
systematically selecting key features through the 
proposed HTRFE pipeline, we capture both short-
range (Clusters, DDF) and long-range (XRD, CN) 
effects, enabling fast, robust and accurate modeling 
for a diverse set of structures. Our results show that 
perovskite stability is predominantly governed by 
long-range periodicity, while alloys rely on short-
range interactions. The method effectively 
generalizes beyond binary alloys, reducing prediction 
errors in binary alloys by 56% and in perovskite 
systems by an average of 49%. Our findings highlight 
the importance of physics-guided feature selection in 
extending traditional CE-based models to complex, 
high ASM materials, offering a scalable and 
transferable framework for applying CE to 
increasingly complex systems. 
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Fig. 2: Compared to traditional CE (blue), the addition of Matminer descriptors (yellow) worsens the overfitting. The 
proposed HTRFE pipeline trained on CE clusters and Matminer descriptors (green) results in major error reduction of  38% 
to 77%, averaging 56% across the ten binary alloys, with absolute improvement of more than 10 meV/atom for some high 

atomic size mismatch systems like V-Zr, Mo-Zr and Ti-Zr. The refined HTRFE with only top four feature classes shows 
comparable performance across all ten binary alloy systems (purple). 
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Alloy Systems Arranged in Descending Atomic Size Mismatch 
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