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ABSTRACT

Through alignment with human preferences, Large Language Models (LLMs)
have advanced significantly in generating honest, harmless, and helpful responses.
However, collecting high-quality preference data is a resource-intensive and
creativity-demanding process, especially for the continual improvement of LLMs.
We introduce SynPO, a self-boosting paradigm that leverages synthetic prefer-
ence data for model alignment. SynPO employs an iterative mechanism wherein
a self-prompt generator creates diverse prompts, and a response improver refines
model responses progressively. This approach trains LLMs to autonomously learn
the generative rewards for their own outputs and eliminates the need for large-
scale annotation of prompts and human preferences. After four SynPO itera-
tions, Llama3-8B and Mistral-7B show significant enhancements in instruction-
following abilities, achieving over 22.1% win rate improvements on AlpacaEval
2.0 and ArenaHard. Simultaneously, SynPO improves the general performance
of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the
well-recognized Open LLM leaderboard.

1 INTRODUCTION

Large Language Models (LLMs) have made remarkable progress in following user instructions
and generating honest, harmless, and helpful responses (Achiam et al., 2023; Dubey et al., 2024).
This advancement is primarily achieved in the model alignment stage, which involves training
reward models or LLMs directly on datasets curated from human preferences (Ouyang et al.,
2022b; Bai et al., 2022a) , typically employing Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022b) or Direct Preference Optimization (DPO) (Rafailov et al., 2024).

Recent research has made significant strides in model alignment by collecting high-quality prefer-
ence data (Hu et al., 2024) , sampling and ranking on-policy responses (Meng et al., 2024; Wu et al.,
2024b), or introducing LLM-as-a-Judge as substitutes for human preferences (Yuan et al., 2024;
Cui et al., 2023). However, most work still relies on static, pre-collected preference datasets from
human or stronger LLM annotation. As LLMs improve rapidly, collecting large, high-quality prefer-
ence data for effective learning becomes increasingly challenging and costly, whether from humans
or stronger models (Shi et al., 2023). According to Yin et al. (2024), directly sampling preference
pairs, which closely resembles an on-policy setting, can result in performance declines due to in-
herent volatility and inefficiency. Therefore, constructing effective preference data to continuously
improve LLMs remains a critical research problem.

In this work, we present a self-boosting paradigm for LLM alignment, SynPO. This paradigm lever-
ages a small set of supervised fine-tuning (SFT) data to steer the generation of synthetic preference
data, thereby enabling LLMs to iteratively extend their capabilities through optimizing on synthetic
data. To support iterative preference learning across diverse scenarios, SynPO first trains a self-
prompt generator to create large-scale synthetic prompts. Unlike previous approaches that require
more powerful LLMs and instruction examples (Wang et al., 2022), our generator utilizes only the
LLM itself and three random keywords as input. To generate preference pairs for the synthetic
prompts, SynPO utilizes the initial model generated responses as rejected candidates and employs a
response improver to refine these responses into chosen ones. The response improver comes from
two straightforward intuitions: (1) LLMs excel at identifying distribution gaps between texts (Zhong

1



Published as a conference paper at ICLR 2025

SFT Iter 1 Iter 2 Iter 3 Iter 4
5

10

15

20

25

30

35

Le
ng

th
-c

on
tro

lle
d

W
in

 R
at

e 
(%

)

6.6

13.3

25.7

31.7
34.0

5.4

10.6

23.4

28.6

32.1

Llama3-8B (Ours)
Mistral-7B (Ours)
GPT-4-0314

Llama3-70B-Instruct
Mistral-Large-123B

GPT-4-0613
Gemini-Pro

Figure 1: Length-controlled win rate on Al-
pacaEval 2.0 improves with SynPO iterations,
approaching GPT-4 level for the base versions
of Llama3-8B and Mistral-7B.

Model Size LC (%) WR (%)

gpt4_1106_preview - 50.0 50.0
GPT-4 (03/14) - 35.3 22.1
Meta-Llama-3-70B-Instruct 70B 34.4 33.2
Mistral-Base-SynPO Iter4 7B 34.0 36.4
Mistral Large (24/02) 123B 32.7 21.4
Mistral-Base-SynPO Iter3 7B 31.7 33.8
GPT-4 (06/13) - 30.2 15.8
Claude 2 - 28.2 17.2
Claude 2.1 - 27.3 17.0
Mistral-Base-SynPO Iter2 7B 25.7 28.1
gemini-pro - 24.4 18.2
Mixtral-8x7B-Instruct-v0.1 8x7B 23.7 18.3
Mistral-7B-Instruct-v0.2 7B 17.1 14.7
Mistral-Base-SynPO Iter1 7B 13.3 15.3
Mistral-Base-SFT 7B 6.6 3.6

Table 1: Results on AlpacaEval 2.0 leaderboard.
LC and WR represent length-controlled and raw
win rate, respectively.

et al., 2022; Singh et al., 2022), and (2) refining a response is generally easier than generating a high-
quality response from scratch (Madaan et al., 2023; Lu et al., 2023; Nguyen et al., 2024). In each
iteration, we train the same initial model to be a response improver, focusing on identifying distri-
bution gaps between current model outputs and gold standard responses in seed data. We then use
the response improver to refine the initial model outputs, thereby providing generative rewards to
the responses. Through iterative training the initial model on synthetic preference data, SynPO al-
lows the LLM to make subtle improvements and gradually push its boundaries. By leveraging small
high-quality data and the current model state to guide the generation of synthetic data, we introduce
stronger supervision in an iterative manner.

Experimental results demonstrate that SynPO not only benefits LLM alignment with human pref-
erences, but also improves generalist capabilities across various tasks. Trained solely on synthetic
data, SynPO significantly improves the instruction-following abilities of Llama3-8B and Mistral-7B
(as shown in Figure 1 and Table 1), achieving over a 26% length-controlled win rate improvement
on AlpacaEval 2.0 (Dubois et al., 2024) and a 22% to 30% improvement on Arena-hard (Li et al.,
2024c) (as shown in Table 2). Furthermore, self-boosted models achieve 3.2% to 5.0% higher aver-
age performance than SFT models on the Open LLM leaderboard (Beeching et al., 2023), indicating
SynPO also enhances general LLM performance.

To summarize, our contribution includes:

• We introduce SynPO, a self-boosting mechanism that iteratively induces LLMs to synthesize high-
quality data for training. Without requiring human-annotated preference data, SynPO significantly
enhances the diversity and quality of synthetic prompts and responses.

• SynPO dynamically guides LLMs to improve their own outputs, using pre- and post-refinement
generations as synthetic preference pairs for training. This approach effectively integrates gener-
ative rewards for preference learning, enabling LLMs to gradually push their boundaries.

• SynPO significantly enhances both the instruction-following capabilities and the general perfor-
mance of LLMs, showing substantial improvements over three to four iterations.

2 SELF-BOOSTING LLM WITH SYNTHETIC PREFERENCE DATA

SynPO is a self-boosting scheme designed to iteratively generate high-quality preference data. An
overview of SynPO is presented in Figure 2. It begins with a small set of SFT data as seed data,
denoted as {(x∗

i ,y
∗
i )}

n
i=0, and the initial policy model πθ0 . By incorporating both the self-prompt

generator and the response improver, SynPO provides sufficient prompts for iterative training and
leverages the generative rewards in the synthetic preference data. This approach allows the policy
model to make subtle improvements and gradually expand its boundaries.
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Figure 2: Overview of SynPO in the tth iteration. Starting with the previous iteration model
Mt−1, SynPO first learns a response improver Rt to identify discrepancies between model responses
(y∗t−1) and gold standard responses (y∗) on seed data, and learns to refine model responses. Subse-
quently, on the self-generated prompts x (elaborated in Section 2.1), SynPO employs Rt to refine
the Mt−1 responses (yt−1) into improved responses (ywt−1). The valid synthetic prompts x, refined
responses (ywt−1), and initial model M0 responses (y0) to form synthetic preference data. These data
are incorporated into the synthetic preference dataset for preference optimization, resulting in an
updated Mt for the next iteration. The iterative process continually enhances LLM capabilities in
instruction-following and task performance.

Question Generation Prompt
## Background
Design ONE question/instruction (and its solution) with given keywords.
### Requirements
The question/instruction should try to contain the keywords in ‘## Given Keywords’. The solu-
tion MUST BE CORRECT, including detailed reasoning steps and dense knowledge.
## Given Keywords
{keywords}
## Output Format
== GENERATED QUESTION & CORRECT SOLUTION ==
<question> question content ... </question>
</solution> correct solution ... </solution>
## Output
== GENERATED QUESTION & CORRECT SOLUTION ==

Figure 3: Prompt used in SynPO for LLMs to act as self-prompt generators.

2.1 SYNTHETIC PROMPT CREATION

Diverse and ample prompts are crucial for effective preference learning (Shi et al., 2023; Yuan et al.,
2024; Song et al., 2024). Diversity facilitates generalization and a sufficient number of prompts
allows data selection from a large candidate pool. In SynPO, we propose a novel strategy for syn-
thetic prompt generation. We design a keywords-to-text task to guide the training of a self-prompt
generator and create pseudo-label data from the seed SFT data.

Self-Prompt Generator Training We train the LLM itself to serve as a high-quality prompt gen-
erator. For each prompt x∗

i in seed data, we randomly extract two keywords from x∗
i and one noise

keyword from x∗
j , where j ∈ {1, 2, . . . , n} \ {i}. The inclusion of the noise keyword enhances the

robustness of the prompt generator. It learns to filter out irrelevant keywords during training and
ensure that the generated prompts are fluent. This process yields a keyword list, ki for x∗

i . Next, we
insert ki into a prompt template (see Figure 3) to create a prompt and use (x∗

i ,y
∗
i ) as the correspond-

ing completion. This process constructs training data for the prompt generator. We then optimize
θ0 through SFT to transform the model into a prompt generator G. G possesses the capability to
generate unlimited, diverse, and high-quality user instructions, controlled by the given keywords.
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Figure 4: The top 25 most common topics
(outer circle) and the top 12 most common
intentions (inner circle) in SynPO generated
prompts. We aggregate the other topics and in-
tentions to the ‘Others’ group.
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Figure 5: Inter-prompt similarity distribu-
tions for 1,000 randomly sampled prompts
from SynPO, UltraFeedback (Cui et al., 2023),
Self-Instruct (Wang et al., 2022), and Ultra-
Chat (Ding et al., 2023). We used Sentence-
Transformer (Reimers & Gurevych, 2019) to
compute sentence embeddings and calculated
the cosine similarity between each prompt and
all others, then averaged these values for each
prompt. The results suggest that our method,
SynPO, generates more diverse prompts with
lower inter-prompt similarity.

Keywords Sampling and Prompt Generating To enhance the overall diversity of prompts, we
sample keywords from pretrain corpus paragraphs. We select three keywords from a same para-
graph to maintain the inherent distribution between keywords, and sample from different paragraphs
to ensure overall diversity. Specifically, we randomly sample keyword lists from the RefinedWeb
paragraphs (Penedo et al., 2023) and generate m synthetic prompts, denoted {xi}mi=1, xi ∼ G(·|ki).

Benefiting from the self-prompt generator, our approach requires only a small SFT data to enable
the model to generate diverse prompts independently, no in-context learning examples or predefined
topic lists are required. Due to the high combinatorial possibilities of keyword sampling, the self-
prompt generator can produce a huge variety of synthetic prompts for preference learning.

For further analysis, we randomly sampled 1k self-generated prompts from the Llama3-8B-Base
prompt generator and used GPT-4 Turbo to classify the intentions and topics behind these prompts1.
The results, shown in Figure 4, demonstrate significant diversity across various topics and user
intentions. Even compared to prompts from GPT3.5-Turbo (Ding et al., 2023) or a collection of
prompts from different sources (Cui et al., 2023), as shown in Figure 5, SynPO generated prompts
exhibit lower inter-prompt similarity and greater diversity.

2.2 SYNTHETIC PREFERENCE GENERATION

A primary challenge in leveraging synthetic prompts is the lack of high-quality responses to pro-
vide sufficient supervision (Li et al., 2024b). To address this, we introduce a response improver to
enhance the quality of model responses to synthetic prompts. Pre- and post-improvement responses
naturally become the rejected and chosen candidates, respectively, with the chosen ones providing
clear guidance on what approximates a gold standard response.

Response Improver Training In each iteration, we train the LLM as a response improver to
further reduce the gap between policy model outputs and gold standard responses. Formally, let
πθt−1

denote the policy model at the beginning of the t-th iteration. We generate outputs from
πθt−1

for the seed data prompts: y∗
(t−1),i ∼ πθt−1

(·|x∗
i ), i ∈ {1, . . . ,m}. These outputs, along

with the seed data responses, form the training set for the response improver, following the template
provided in Appendix B. Each training example consists of the prompt and the policy model output
(x∗

i ,y
∗
(t−1),i) as the input, and the gold standard response y∗

i as the output. We fine-tune πθ0
on the

1Experimental details in Appendix F.
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training set to obtain the response improver Rt. This response improver refines the policy model
outputs, aligning them more closely with the gold standard responses.

Response Improving Subsequently, we use Rt to refine model responses to synthetic prompts,
obtaining pre- and post-improvement responses as synthetic preference pairs. For each synthetic
prompt xi, we first obtain the current model output y(t−1),i ∼ πθt−1(·|xi), for i ∈ {1, . . . ,m}. The
response improver then refines this completion to produce y(t−1),i ∼ Rt(·|xi,y(t−1),i), considered
the chosen response. As we fine-tune the initial model in each iteration, the initial policy model
output y(0),i serves as the on-policy rejected response for xi. Here, y(0),i ∼ πθ0

(·|xi). This method
generates numerous synthetic preference candidates, including both chosen and rejected responses.

Data Filtering Unlike data from humans or strong teacher LLMs, which come with clear standard
responses, self-generated data require proper filtering to ensure quality (Gulcehre et al., 2023). As
our policy model improves, many responses no longer need refining; we only need to retain data
with a preference gap between the chosen and rejected responses. Instead of using GPT4-Turbo-
as-a-Judge for data filtering (Rosset et al., 2024), SynPO employs only a small model (e.g., a 0.4B
PairRM (Jiang et al., 2023)) or the model itself for scoring. Similar to SimPO (Meng et al., 2024)
and SPPO (Wu et al., 2024b), this ensures the process does not rely on a more powerful teacher
model. We retain y(t−1),i and y(0),i with significant preference differences (i.e., a large score gap).
y(t−1),i is regarded as the chosen response, yw

i , while y(0),i is regarded as the rejected response, yl
i.

Along with the corresponding prompt xi, they form a valid instance (xi,y
w
i ,y

l
i). All valid data is

then integrated into the synthetic preference data for subsequent iterations.

2.3 SYNTHETIC PREFERENCE OPTIMIZATION

The large-scale synthetic preference data naturally facilitate the multi-iteration process of self-
boosting. In each iteration, we follow SimPO (Meng et al., 2024) for training; actually, our method
is also compatible with other preference optimization training methods, such as DPO (Rafailov et al.,
2024) and KTO (Ethayarajh et al., 2024). Denoting D as the synthetic preference data, we have:

θt ← argmin
θ

E(xi,yw
i ,yl

i)∼D

[
log σ

(
β

|yw
i |

log πθt−1
(yw

i | xi)−
β

|yl
i|
log πθt−1

(yl
i | xi)− γ

)]
β and γ are hyperparameters. Different from the vanilla SimPO, SynPO is a iterative process and all
the preference data are synthetic ones. The response improver continuously refines the generation
distribution to align with the ideal data distribution across multiple iterations.

Overall, the response improver automatically learns to generate implicit generative rewards for the
outputs of the LLM. Unlike using a discriminative reward model straightforwardly, this approach
helps the model learning to improve its outputs. We present the Synthetic Preference Optimization
algorithm in Appendix A. The entire optimization process is performed on synthetic preference
data, requiring only a small amount of high-quality data for validation. This strategy maintains two
key advantages: (1) Compared to the limited and hard-to-collect preference data, SynPO generates
an unlimited amount of new self-synthetic data to meet the needs of iterative model improvement.
(2) Using small, high-quality validation data prevents the model from deviating during training and
consistently guides the generation of more relevant synthetic data.

3 EXPERIMENTS

We carry out comprehensive experiments to demonstrate the effectiveness of SynPO in enhancing
model alignment and improving general model performance.

3.1 EXPERIMENTAL SETUP

Models and Training We perform synthetic preference optimization on both Mistral-Base 7B and
Llama3-8B Base. Following Meng et al. (2024), we employ supervised fine-tuned models as the
initial models. Specifically, the Mistral-Base 7B model (mistralai/Mistral-7B-v0.1) and the Llama3-
8B Base model (meta-llama/Meta-Llama-3-8B-Base) were fine-tuned on the UltraChat-200k dataset
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Data Construction
Mistral-Base (7B) Llama3-Base (8B)

AlpacaEval 2.0 Arena-Hard AlpacaEval 2.0 Arena-Hard
LC (%) WR (%) WR (%) LC (%) WR (%) WR (%)

SFT 6.6 3.6 2.0 5.4 3.1 2.7

Manual Collection 21.5 20.8 16.8 22.0 19.8 23.2

Sampling-Ranking Iter1 6.5 4.4 4.1 7.2 4.3 4.4
Sampling-Ranking Iter2 9.3 6.4 4.3 7.7 4.7 6.2
Sampling-Ranking Iter3 10.6 7.5 7.9 13.8 8.2 8.4
Sampling-Ranking Iter4 11.6 8.0 9.6 14.2 8.4 10.4

Self-Rewarding Iter1 19.5 19.8 11.9 20.1 20.3 20.8
Self-Rewarding Iter2 22.4 23.5 19.2 21.7 22.4 20.5
Self-Rewarding Iter3 24.6 26.3 20.8 22.4 24.1 23.8
Self-Rewarding Iter4 26.1 28.0 21.1 24.8 25.6 25.0

SYNPO Iter1 13.3 15.3 9.8 10.6 10.7 11.6
SYNPO Iter2 25.7 28.1 20.8 23.4 24.1 24.6
SYNPO Iter3 31.7 33.8 24.1 28.6 31.5 32.5
SYNPO Iter4 34.0 36.4 22.8 32.1 33.6 31.4

Table 2: Results on AlpacaEval 2.0 and Arena-Hard. LC and WR denote length-controlled and raw
win rates, respectively. After four SYNPO iterations, Mistral-Base and Llama3-Base increase LC
by 27.4% and 26.7%, respectively, on AlpacaEval 2.0. In Arena-Hard, SYNPO achieves the highest
WR by the third iteration, improving both models by over 22.1%.

as part of the Zephyr (Tunstall et al., 2023) training pipeline.2 Subsequently, we utilize 18k seed
data to SFT the self-prompt generator and then generate 50k synthetic prompts per iteration. For
data filtering, we employ the 0.4B PairRM (Jiang et al., 2023) as a small pairwise scoring model for
the Mistral-Base 7B. For Llama3-Base 8B, we use Llama3 itself (ArmoRM-Llama3-8B-v0.13) as a
scoring model for data filtering, given its superior alignment with human scoring (Meng et al., 2024).
In each iteration t = 1, . . . , T , we use model πθt−1

from the previous iteration to generate synthetic
preference data and then preference optimize the initial models again. More details on training
parameters, filtering thresholds, and implementation environments are provided in Appendix C.

Seed Data Construction We randomly sample UltraFeedback (Cui et al., 2023) prompts and their
GPT-4 Turbo completions as our seed data. The seed data is multipurposely transformed for the
training of self-prompt generator, response improver, and the validation of synthetic preference op-
timization. The complete UltraFeedback dataset contains 61k instructions from sources including
TruthfulQA (Lin et al., 2021), FalseQA (Hu et al., 2023), Evol-Instruct (Xu et al., 2023a), Ultra-
Chat (Ding et al., 2023), and ShareGPT (Chiang et al., 2023). To construct seed SFT data with
high-quality responses, we randomly sampled 18k prompts and obtained the corresponding comple-
tions generated by GPT-4 Turbo.

Baselines As baselines, we use the initial supervised fine-tuned models and those optimized with
data from various preference construction methods, including manual collection and iterative ap-
proaches. We recognize the UltraFeedback preference data (Cui et al., 2023) as a product of
manual collection. It is gathered from six high-quality datasets and various models, with prefer-
ences annotated by GPT-4 (Achiam et al., 2023). For iterative construction approaches, we com-
pare against Sampling-Ranking and Self-Rewarding. For Sampling-Ranking, similar to Meng et al.
(2024) and Wu et al. (2024b), we use LLMs in sampling five responses per prompt in each iteration.
The same scoring models, i.e., PairRM and ArmoRM-Llama3-8B-v0.1, are then used to select the
highest and lowest scoring responses as the chosen and rejected responses, respectively. For the Self-
Rewarding method (Yuan et al., 2024), we generate preference data based on model’s own rewards
via LLM-as-a-Judge prompting. We employ our 18k seed data as the initial instruction-following
data. Given that Self-Rewarding requires additional LLM-as-a-Judge training data, we generate 16k

2https://huggingface.co/alignment-handbook/zephyr-7b-sft-full and https:
//huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT

3https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
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Data Construction Mistral-Base Llama3-Base
Turn 1 Turn 2 Turn 1 Turn 2

SFT 6.04 5.65 6.55 5.36

Manual Collection 6.73 6.82 7.29 7.00
Sampling-Ranking Iters* 6.83 6.18 7.06 6.99
Self-Rewarding Iters* 6.71 6.63 7.30 7.28
SYNPO Iter1 6.53 6.41 6.99 6.65
SYNPO Iter2 6.66 6.65 7.34 7.30
SYNPO Iter3 6.86 6.82 7.34 7.34
SYNPO Iter4 6.73 6.69 7.43 7.04

Table 3: Multi-turn evaluation on MT-Bench. An
asterisk (*) denotes the best score across multi-
ple iterations. For Sampling-Ranking, Llama’s
best is from iteration 4 and Mistral’s from itera-
tion 3. For Self-Rewarding, both are from itera-
tion 3. SYNPO progressively enhances the multi-
turn instruction-following capabilities of LLMs.
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Figure 6: Radar chart for Llama3-8B-Base-
SYNPO on MT-Bench. SYNPO achieves
notable improvements across various prompt
categories, particularly in RolePlay, STEM,
Reasoning, and Coding tasks.

seed data with GPT-4 Turbo. For all settings, we adopt SimPO (Meng et al., 2024) for preference
optimization. More detailed are elaborated in Appendix C.5.

3.2 PREFERENCE ALIGNMENT

We evaluate the model alignment performance on three benchmarks: AlpacaEval 2.0 (Dubois et al.,
2024), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al., 2024). AlpacaEval 2.0 includes
805 user prompts and utilizes pair-wise comparison with LLM-as-a-Judge. Specifically, the win rate
against the baseline GPT-4 Turbo model is determined based on GPT-4 Turbo evaluation. Arena-
Hard includes 500 more challenging user queries, employing GPT-4-Turbo to judge the model re-
sponses against GPT-4. MT-Bench features 80 multi-turn questions spanning various domains, with
GPT-4 scoring the model responses out of 10.4

Single-Turn Dialogues We compare the instruction-following and human preference alignment
capabilities on AlpacaEval 2.0 (Dubois et al., 2024) and Arena-Hard (Li et al., 2024c) in Table 2.
Compared to the initial model post-SFT, SynPO shows sustained improvement over four iterations
in win rate against GPT-4 Turbo or GPT-4. On AlpacaEval 2.0, Mistral-Base achieves a 27.4%
increase in length-controlled win rate and a 32.8% increase in raw win rate after four iterations.
Similarly, Llama3 exhibits a 26.7% rise in length-controlled win rate and a 30.5% improvement
in raw win rate after the same number of iterations. In the more challenging Arena-Hard setting,
SynPO reaches the highest win rate after the third iteration. Compared to the baseline methods,
SynPO’s iterative preference learning on synthetic data yielded more significant improvements.

Multi-Turn Dialogues For the multi-turn benchmark MT-Bench, we report both the first-turn and
second-turn scores (in Table 3) as well as a radar chart depicting performance across different ques-
tion types (refer to Figure 6).5 The results indicate that SynPO enhances not only first-turn perfor-
mance, with an increase of over 0.7 points, but also subsequent turns, with an increase of over 1.2
points. Compared to the initial model, SynPO shows improved performance across various question
types, particularly in humanities, writing, STEM, and roleplaying.

3.3 DOWNSTREAM TASK PERFORMANCE

In terms of the general model performance on various tasks, we report the average scores on the
well-recognized Open LLM Leaderboard (Beeching et al., 2023) and 6 additional benchmarks
from Language Model Evaluation Harness library (LLM Harness) (Gao et al., 2024). Open LLM
Leaderboard (Beeching et al., 2023) is recognized as a standard assessment for the general per-

4More details on API usage for LLM judgement are listed in Appendix E and G.
5Similar results for Mistral-7B are shown in Figure 10 in Appendix G.
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Model Arc HellaSwag TQA MMLU Winogrande GSM8k Average
Mistral-Base-SFT 58.02 80.89 40.37 58.78 76.40 34.72 58.20

Manual Collection 62.71 83.39 50.69 58.47 77.35 32.83 60.91
Sampling-Ranking Iters* 60.32 81.80 44.43 59.09 76.95 36.85 59.91
Self-Rewarding Iters* 60.15 81.84 43.25 58.98 76.48 34.72 59.24
Mistral-Base-SYNPO Iter1 60.49 82.25 50.36 59.00 76.48 36.39 60.83
Mistral-Base-SYNPO Iter2 63.65 83.24 58.04 58.74 76.48 27.35 61.25
Mistral-Base-SYNPO Iter3 63.54 83.14 58.11 58.37 75.77 25.26 60.70
Mistral-Base-SYNPO Iter4 63.57 83.04 56.12 58.75 75.77 31.08 61.39
LLama3-Base-SFT 60.92 81.28 45.37 63.80 76.72 51.93 63.34

Manual Collection 66.72 82.89 59.47 63.10 77.82 45.72 65.95
Sampling-Ranking Iters* 66.38 82.71 59.84 63.37 77.27 54.40 67.33
Self-Rewarding Iters* 64.76 82.48 55.54 63.42 77.03 54.59 66.30
LLama3-Base-SYNPO Iter1 63.99 82.66 54.20 64.02 77.51 56.10 66.41
LLama3-Base-SYNPO Iter2 65.70 83.22 61.73 64.03 76.56 56.25 67.92
LLama3-Base-SYNPO Iter3 66.55 83.57 63.53 63.91 76.80 55.27 68.27
LLama3-Base-SYNPO Iter4 66.47 83.44 63.69 63.79 76.90 55.72 68.34

Table 4: Open LLM Leaderboard results. TQA stands for TruthfulQA. The asterisk (*) represents
the best performance across multiple iterations. Compared to the SFT versions, SYNPO achieves an
overall improvement of 3.19% for Mistral and 5.00% for Llama3 on the average score.

formance of LLMs. It includes six different datasets, evaluating LLMs on commonsense rea-
soning (Arc (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al.,
2021)), wide knowledge (MMLU (Hendrycks et al., 2020), TruthfulQA (Lin et al., 2021)), and math
(GSM8k (Cobbe et al., 2021)). The six addtional LLM Harness tasks include Openbook Question
Answering (OBQA) (Mihaylov et al., 2018) and Haerae (Son et al., 2023) for model knowledge,
MathQA (Amini et al., 2019), XNLI (Conneau et al., 2018), and PROST (Aroca-Ouellette et al.,
2021) for reasoning, as well as Toxigen (Hartvigsen et al., 2022) for toxicity evaluation.6

Open LLM Leaderboard On the Open LLM leaderboard, we observe an overall improvement
of 3.19% of Mistral-Base-SFT and 5.00% of Llama3-Base-SFT on the average score. Specifically,
SynPO achieves over 6% improvement on the ARC challenge and over 16% on TruthfulQA com-
pared to the SFT model, after four rounds of self-boosting. Notably, the performance of Mistral-Base
on GSM8K has experienced a decline, whereas Llama3-Base has demonstrated an improvement of
nearly 4 points on the same benchmark. This disparity likely stems from the superior data filtering
capability of ArmoRM-Llama3-8B-v0.1 compared to the 0.4B PairRM. ArmoRM-Llama3-8B-v0.1
effectively mitigates erroneous responses and enhances mathematical problem-solving performance.

LLM Harness Tasks The advantages above are also reflected in the results for more diverse
tasks in LLM Harness, as evidenced by Table 5. Previous works (Wu et al., 2024b; Meng et al.,
2024) demonstrate that preference optimization can induce the “alignment tax” - aligning models
with human preferences can improve performance for only 1∼2 iterations or even degrade over-
all performance on downstream tasks (Askell et al., 2021). Our method exhibits similar behavior
on MathQA; however, overall, SynPO shows improvements across more iterations on other tasks.
This is because synthesizing better chosen candidates introduces additional supervision, partially
mitigating the alignment tax issue and enabling LLMs to continuously enhance their capabilities on
downstream tasks at the same time of alignment.

4 ABLATION STUDIES

4.1 SYNTHETIC PROMPTS AND RESPONSES

We have demonstrated the diversity of prompts generated by SynPO in Section 2.1. To fur-
ther validate the self-prompt generator, we compare the generated prompts with manual collected

6We follow the standard few-shot setting on Open LLM Leaderboard, as elaborated in Appendix G. For the
six additional tasks, we employ a fixed 5-shot setting for evaluation.
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Model OBQA Haerae MathQA XNLI Toxigen PROST Average
Mistral-Base-SFT 46.40 39.96 36.25 43.76 60.11 52.04 46.42

Manual Collection 50.20 40.35 36.72 44.65 62.83 54.66 48.24
Sampling-Ranking Iters* 47.60 40.15 36.21 44.71 62.45 53.74 47.48
Self-Rewarding Iters* 48.60 40.15 36.25 44.17 61.28 53.29 47.29
Mistral-Base-SynPO Iter1 48.00 39.78 36.05 44.23 60.74 52.39 46.87
Mistral-Base-SynPO Iter2 50.40 40.05 36.85 43.97 60.96 53.04 47.55
Mistral-Base-SynPO Iter3 51.20 40.51 35.88 44.37 60.74 53.45 47.69
Mistral-Base-SynPO Iter4 51.40 40.88 36.48 44.47 63.40 55.05 48.61
Llama3-Base-SFT 46.20 61.78 42.04 45.47 68.83 52.40 52.79

Manual Collection 51.60 61.59 42.51 44.77 74.38 55.96 55.14
Sampling-Ranking Iters* 50.80 62.05 42.81 46.67 74.68 55.41 55.40
Self-Rewarding Iters* 48.60 62.42 42.78 46.31 74.15 54.23 54.75
Llama3-Base-SynPO Iter1 48.20 61.96 42.71 46.15 71.17 53.77 53.99
Llama3-Base-SynPO Iter2 50.80 62.60 42.75 46.34 74.04 54.85 55.23
Llama3-Base-SynPO Iter3 51.00 62.51 42.78 46.37 75.11 55.29 55.51
Llama3-Base-SynPO Iter4 52.00 62.51 42.65 46.27 75.18 56.14 55.79

Table 5: Downstream performance in each SynPO iteration on six tasks in LM Evaluation Harness.
An asterisk (*) represents the best performance across multiple iterations.

prompts (Cui et al., 2023) and Self-Instruct prompts (Wang et al., 2022). For each prompt construc-
tion approach, we randomly sample 20k prompts and construct response pairs through both SynPO
and Sampling-Ranking. We compare the single iteration results of Llama3-8B. As shown in Table 6,
whether through self-refinement or Sampling-Ranking, synthetic prompts generated by SynPO lead
to better-aligned models, validating the quality of these prompts. It is worth mentioning that SynPO
prompts are even more effective than the superset of its seed training data, UltraFeedback prompts.
This increased effectiveness may be attributed to the greater diversity of SynPO prompts, achieved
through the keyword sampling process in prompt synthesis. Results of mixing SynPO and manual
collected prompts further indicate the potential of SynPO in augmenting existing prompts.

4.2 IMPACT OF SEED DATA

SynPO involves training LLMs solely on synthetic preference data while using seed SFT data for
validation. To investigate the maximum impact of the seed SFT data, we compare SynPO with the
following settings: 1) Seed SFT: Directly fine-tuning the LLM using seed data. 2) Seed PO: For each
prompt in the seed SFT data, using the gold standard response in the seed data as the chosen response
and the initial policy model response as the rejected response for preference optimization. 3) Seed
SFT + PO: To avoid distribution shifts in directly using seed SFT data, we first obtain a model fine-
tuned on seed data as in 1), then construct preference data using the model output and gold standard
responses. 4) Seed SFT + POme: Training on data from 3) for multiple epochs.7 The results on
AlpacaEval 2.0 are presented in Table 7. Among the evaluated methods except for SynPO, setting
3) is most analogous to SynPO, and proves to be the most effective. However, due to the limited
quantity of seed data, the improvement is less than that achieved by iterative SynPO on synthetic
data. Training under such conditions for multiple epochs does not yield further improvements and
even degrades performance. These findings validate that SynPO is a promising approach to construct
preference data and maximize the utilization of minimal high-quality data.

5 RELATED WORK

Preference Data Construction Preference data are triplets consisting of user prompts, user-
preferred responses, and non-preferred responses. Acquiring preference data from humans can be
resource intensive, often constrained by the data collection platform (Ouyang et al., 2022a) or the
cost of human annotation (Bai et al., 2022a; Ethayarajh et al., 2022; Nakano et al., 2021). To allevi-
ate this problem, researchers have started using teacher LLMs, such as GPT-4 (Achiam et al., 2023),

7We compare the results of 2 epochs and 3 epochs and select the better-performing 2 epochs. More experi-
mental details in Appendix D
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Prompts SynPO Sampling-Ranking
LC (%) WR (%) LC (%) WR (%)

Manual Collection 23.8 25.6 7.8 6.2
Self-Instruct 21.7 21.4 9.1 4.6
SynPO 24.3 24.5 9.2 5.3
SynPO Mix. 23.4 29.4 14.2 6.9

Table 6: Comparison of various prompt generation
methods on AlpacaEval 2.0. SynPO Mix. combines
SynPO prompts with manually collected prompts.

Method LC (%) WR (%)
Seed SFT 20.1 19.7
Seed PO 11.6 10.7
Seed SFT + PO 24.6 20.9
Seed SFT + POme 22.4 15.0
SynPO Iter4 32.1 33.6

Table 7: Impact analysis of seed data on
AlpacaEval 2.0. POme refers to preference
optimization over multiple epochs.

to simulate human preferences (Cui et al., 2023; Ding et al., 2023; Huang et al., 2024). Given user
prompts and candidate responses, this line of work employs a stronger model to annotate prefer-
ences, thereby overcoming the scarcity and constraints of existing preference data (Cui et al., 2023).
However, the prompts still need to be collected (Cui et al., 2023), which limits the domain, diversity,
and quantity of the data. Both human annotation and the utilization of large teacher model APIs
incur substantial costs (Shi et al., 2023). Moreover, relying solely on reward scores or win-lose
annotation fails to fully capture the subtleties and complexities of human preferences.

LLM Self-Boosting Previous work has advanced the self-boosting of LLMs by searching for
high-reward behaviors (Tian et al., 2024; Zhang et al., 2024), using LLMs as judges to select re-
sponses (Yuan et al., 2024; Wang et al., 2024a; Wu et al., 2024a; Kim et al., 2024), and leveraging
self-play strategies (Chen et al., 2024; Cheng et al., 2024; Luo et al., 2024; Wu et al., 2024b). These
works typically use a fixed set of existing prompts, limiting the LLM ability to learn across wide
scenarios. Furthermore, the deterministic reward signals in these methods do not help the model
recognize subtle discrepancies between its responses and ideal responses. Prior to our work, Con-
stitutional AI (Bai et al., 2022b) and SELF (Lu et al., 2023) used AI to generate non-deterministic
feedback for training. Constitutional AI used refinement data for reward models, while SELF em-
ployed GPT-4 for data generation and taught models self-refinement. However, these methods did
not utilize comparative information between pre- and post-revision texts for training.

Synthetic Data for LLMs Acquiring human-generated data is costly and time-consuming, leading
to the use of synthetic data for LLM training (Wang et al., 2022; Xu et al., 2023a; Li et al., 2024b).
Unnatural Instructions (Honovich et al., 2022) and Self-Instruct (Wang et al., 2022) use seed in-
structions to generate new prompts, while WizardLM (Xu et al., 2023a) and WizardMath (Luo et al.,
2023) rewrite these instructions into more complex forms using ChatGPT. Seed topics also produce
textbook-like data (Li et al., 2023; 2024b) or self-chat dialogues (Xu et al., 2023b; Ding et al., 2023)
for instruction tuning. These methods often require strong LLMs or examples, benefiting from
model distillation (Xu et al., 2023a; Li et al., 2024b;a). Our approach uses the model itself to gener-
ate prompts and responses without needing carefully designed topics, extending beyond the model’s
inherent sampling space. This brings generative rewards to the LLM self-boosting process, partic-
ularly benefiting initially weaker models. It resembles direct preference knowledge distillation (Li
et al., 2024d) but does not rely on large-scale teacher model responses for supervision. Additionally,
our work shares a similar spirit with CommonGen (Lin et al., 2020) in generating sentences from
keywords and CHEF (Seo et al., 2023) in creating synthetic data for contrastive learning.

6 CONCLUSION

We introduce self-boosting LLM with synthetic preference data, SynPO, a method for LLM align-
ment through iterative training on synthetic data. In SynPO, we innovatively base the entire training
process on synthetic data and only employ limited SFT data for validation. SynPO diversifies the
prompts and dynamically guides LLMs to improve their own output, using pre- and post-refinement
generations as synthetic preference pairs for training in the next iteration. Experimental results show
that SynPO leads to significant improvements on both instruction-following capabilities and task
performance. This strategy sheds light on high-quality synthetic data generation and self-alignment
with minimal supervision, both of which are critical for the continuous development of LLMs.
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Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noem’i Mercado, Nova Das-
sarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El
Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan,
Tristan Hume, Sam Bowman, Zac Hatfield-Dodds, Benjamin Mann, Dario Amodei, Nicholas
Joseph, Sam McCandlish, Tom B. Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback. ArXiv, abs/2212.08073, 2022b. URL https://api.semanticscholar.
org/CorpusID:254823489.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert,
Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm
leaderboard. https://huggingface.co/spaces/open-llm-leaderboard-old/
open_llm_leaderboard, 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang, Yong Dai, Lei Han, and Nan Du. Self-
playing adversarial language game enhances llm reasoning. ArXiv, abs/2404.10642, 2024. URL
https://api.semanticscholar.org/CorpusID:269157364.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An

11

https://aclanthology.org/2021.findings-acl.404
https://api.semanticscholar.org/CorpusID:244799619
https://api.semanticscholar.org/CorpusID:244799619
https://api.semanticscholar.org/CorpusID:254823489
https://api.semanticscholar.org/CorpusID:254823489
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://api.semanticscholar.org/CorpusID:269157364


Published as a conference paper at ICLR 2025

open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2018.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 5988–6008. PMLR,
2022.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. ArXiv, abs/2402.01306, 2024. URL https://
api.semanticscholar.org/CorpusID:267406810.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Ab-
hishek Sharma, Aditya Siddhant, Alexa Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey,
A. Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language
modeling. ArXiv, abs/2308.08998, 2023. URL https://api.semanticscholar.org/
CorpusID:261031028.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for implicit and adversarial hate speech detec-
tion. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics,
2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

12

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://api.semanticscholar.org/CorpusID:267406810
https://api.semanticscholar.org/CorpusID:267406810
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://api.semanticscholar.org/CorpusID:261031028
https://api.semanticscholar.org/CorpusID:261031028


Published as a conference paper at ICLR 2025

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. ArXiv, abs/2212.09689, 2022. URL https:
//api.semanticscholar.org/CorpusID:254853659.

Shengding Hu, Yi-Xiao Luo, Huadong Wang, Xingyi Cheng, Zhiyuan Liu, and Maosong Sun. Won’t
get fooled again: Answering questions with false premises. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:259341789.

Yulan Hu, Qingyang Li, Ouyang Sheng, Ge Chen, Kaihui Chen, Lijun Mei, Xucheng Ye, Fuzheng
Zhang, and Yong Liu. Towards comprehensive preference data collection for reward mod-
eling. ArXiv, abs/2406.16486, 2024. URL https://api.semanticscholar.org/
CorpusID:270703662.

Shengyi Costa Huang, Agustín Piqueres, Kashif Rasul, Philipp Schmid, Daniel Vila, and Lewis
Tunstall. Open hermes preferences. https://huggingface.co/datasets/argilla/
OpenHermesPreferences, 2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Annual Meeting of the Association for Com-
putational Linguistics, 2023. URL https://api.semanticscholar.org/CorpusID:
259075564.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
for biomedical research question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2567–2577, 2019.

Dongyoung Kim, Kimin Lee, Jinwoo Shin, and Jaehyung Kim. Aligning large language mod-
els with self-generated preference data. ArXiv, abs/2406.04412, 2024. URL https://api.
semanticscholar.org/CorpusID:270357971.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Transactions of the
Association of Computational Linguistics, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel
(eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language Process-
ing, pp. 785–794, Copenhagen, Denmark, September 2017. Association for Computational Lin-
guistics. doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082.

Ang Li, Qiugen Xiao, Peng Cao, Jian Tang, Yi Yuan, Zijie Zhao, Xiaoyuan Chen, Liang Zhang,
Xiangyang Li, Kaitong Yang, Weidong Guo, Yukang Gan, Jeffrey Xu Yu, Dan Tong Wang,
and Ying Shan. Hrlaif: Improvements in helpfulness and harmlessness in open-domain rein-
forcement learning from ai feedback. ArXiv, abs/2403.08309, 2024a. URL https://api.
semanticscholar.org/CorpusID:268379328.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, Yuxian Gu, Xin Cheng,
Xun Wang, Si-Qing Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou Wang, Wai Lam, and
Furu Wei. Synthetic data (almost) from scratch: Generalized instruction tuning for language
models. ArXiv, abs/2402.13064, 2024b. URL https://api.semanticscholar.org/
CorpusID:267759981.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gonza-
lez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and bench-
builder pipeline. ArXiv, abs/2406.11939, 2024c. URL https://api.semanticscholar.
org/CorpusID:270562889.

13

https://api.semanticscholar.org/CorpusID:254853659
https://api.semanticscholar.org/CorpusID:254853659
https://api.semanticscholar.org/CorpusID:259341789
https://api.semanticscholar.org/CorpusID:259341789
https://api.semanticscholar.org/CorpusID:270703662
https://api.semanticscholar.org/CorpusID:270703662
https://huggingface.co/datasets/argilla/OpenHermesPreferences
https://huggingface.co/datasets/argilla/OpenHermesPreferences
https://api.semanticscholar.org/CorpusID:259075564
https://api.semanticscholar.org/CorpusID:259075564
https://api.semanticscholar.org/CorpusID:270357971
https://api.semanticscholar.org/CorpusID:270357971
https://aclanthology.org/D17-1082
https://api.semanticscholar.org/CorpusID:268379328
https://api.semanticscholar.org/CorpusID:268379328
https://api.semanticscholar.org/CorpusID:267759981
https://api.semanticscholar.org/CorpusID:267759981
https://api.semanticscholar.org/CorpusID:270562889
https://api.semanticscholar.org/CorpusID:270562889


Published as a conference paper at ICLR 2025

Yixing Li, Yuxian Gu, Li Dong, Dequan Wang, Yu Cheng, and Furu Wei. Direct preference knowl-
edge distillation for large language models. ArXiv, abs/2406.19774, 2024d. URL https:
//api.semanticscholar.org/CorpusID:270845775.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana
Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert Yük-
sekgönül, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Hen-
derson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan
Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. Trans. Mach.
Learn. Res., 2023, 2023. URL https://openreview.net/forum?id=iO4LZibEqW.

Bill Yuchen Lin, Ming Shen, Wangchunshu Zhou, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. Commongen: A constrained text generation challenge for generative commonsense
reasoning. In Dipanjan Das, Hannaneh Hajishirzi, Andrew McCallum, and Sameer Singh (eds.),
Conference on Automated Knowledge Base Construction, AKBC 2020, Virtual, June 22-24, 2020,
2020. URL https://www.akbc.ws/2020/papers/yuD2q50HWv.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning, 2020.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei Wang, Fei Mi, Baojun Wang, Weichao Wang,
Lifeng Shang, and Qun Liu. Self: Self-evolution with language feedback. 2023. URL https:
//api.semanticscholar.org/CorpusID:263334155.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Qingwei Lin, Jianguang Lou, Shifeng Chen,
Yansong Tang, and Weizhu Chen. Arena learning: Build data flywheel for llms post-
training via simulated chatbot arena. ArXiv, abs/2407.10627, 2024. URL https://api.
semanticscholar.org/CorpusID:271213086.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad
Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Itera-
tive refinement with self-feedback. ArXiv, abs/2303.17651, 2023. URL https://api.
semanticscholar.org/CorpusID:257900871.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. arXiv preprint arXiv:2405.14734, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-
derwende, Pushmeet Kohli, and James Allen. A corpus and evaluation framework for deeper
understanding of commonsense stories, 2016.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. In arXiv, 2021.

14

https://api.semanticscholar.org/CorpusID:270845775
https://api.semanticscholar.org/CorpusID:270845775
https://openreview.net/forum?id=iO4LZibEqW
https://www.akbc.ws/2020/papers/yuD2q50HWv
https://api.semanticscholar.org/CorpusID:263334155
https://api.semanticscholar.org/CorpusID:263334155
https://api.semanticscholar.org/CorpusID:271213086
https://api.semanticscholar.org/CorpusID:271213086
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871


Published as a conference paper at ICLR 2025

Thao Nguyen, Jeffrey Li, Sewoong Oh, Ludwig Schmidt, Jason Weston, Luke Zettlemoyer, and
Xian Li. Better alignment with instruction back-and-forth translation. 2024. URL https:
//api.semanticscholar.org/CorpusID:271768943.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022a.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano,
Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human
feedback. ArXiv, abs/2203.02155, 2022b. URL https://api.semanticscholar.org/
CorpusID:246426909.

Samuel J. Paech. Eq-bench: An emotional intelligence benchmark for large language models, 2023.

Anselmo Peñas, Eduard H. Hovy, Pamela Forner, Álvaro Rodrigo, Richard F. E. Sutcliffe, and Roser
Morante. Qa4mre 2011-2013: Overview of question answering for machine reading evaluation.
In CLEF, 2013.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. ArXiv, abs/2404.03715, 2024. URL https://api.semanticscholar.org/
CorpusID:268987488.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Jaehyung Seo, Hyeonseok Moon, Jaewook Lee, Sugyeong Eo, Chanjun Park, and Heuiseok Lim.
CHEF in the language kitchen: A generative data augmentation leveraging korean morpheme
ingredients. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 6014–6029. Association for Computational Linguistics, 2023. doi:
10.18653/V1/2023.EMNLP-MAIN.367. URL https://doi.org/10.18653/v1/2023.
emnlp-main.367.

Taiwei Shi, Kai Chen, and Jieyu Zhao. Safer-instruct: Aligning language models with automated
preference data. ArXiv, abs/2311.08685, 2023. URL https://api.semanticscholar.
org/CorpusID:265212888.

Chandan Singh, John Xavier Morris, Jyoti Aneja, Alexander M Rush, and Jianfeng Gao. Explaining
patterns in data with language models via interpretable autoprompting. 2022.

15

https://api.semanticscholar.org/CorpusID:271768943
https://api.semanticscholar.org/CorpusID:271768943
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:268987488
https://api.semanticscholar.org/CorpusID:268987488
https://doi.org/10.18653/v1/2023.emnlp-main.367
https://doi.org/10.18653/v1/2023.emnlp-main.367
https://api.semanticscholar.org/CorpusID:265212888
https://api.semanticscholar.org/CorpusID:265212888


Published as a conference paper at ICLR 2025

Guijin Son, Hanwool Lee, Suwan Kim, Huiseo Kim, Jaecheol Lee, Je Won Yeom, Jihyu Jung,
Jung Woo Kim, and Songseong Kim. Hae-rae bench: Evaluation of korean knowledge in language
models, 2023.

Feifan Song, Bowen Yu, Hao Lang, Haiyang Yu, Fei Huang, Houfeng Wang, and Yongbin
Li. Scaling data diversity for fine-tuning language models in human alignment. In Inter-
national Conference on Language Resources and Evaluation, 2024. URL https://api.
semanticscholar.org/CorpusID:268512826.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing. ArXiv, abs/2404.12253, 2024.
URL https://api.semanticscholar.org/CorpusID:269214525.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
uators. 2024a. URL https://api.semanticscholar.org/CorpusID:271709606.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In Annual Meeting of the Association for Computational Linguistics, 2022. URL https://
api.semanticscholar.org/CorpusID:254877310.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024b.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
llm-as-a-meta-judge. 2024a. URL https://api.semanticscholar.org/CorpusID:
271533411.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. 2024b.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023a.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023b.

Yueqin Yin, Zhendong Wang, Yujia Xie, Weizhu Chen, and Mingyuan Zhou. Self-augmented prefer-
ence optimization: Off-policy paradigms for language model alignment. ArXiv, abs/2405.20830,
2024. URL https://api.semanticscholar.org/CorpusID:270199610.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. ArXiv, abs/2401.10020, 2024. URL https://api.
semanticscholar.org/CorpusID:267035293.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

16

https://api.semanticscholar.org/CorpusID:268512826
https://api.semanticscholar.org/CorpusID:268512826
https://api.semanticscholar.org/CorpusID:269214525
https://api.semanticscholar.org/CorpusID:271709606
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:254877310
https://api.semanticscholar.org/CorpusID:271533411
https://api.semanticscholar.org/CorpusID:271533411
https://api.semanticscholar.org/CorpusID:270199610
https://api.semanticscholar.org/CorpusID:267035293
https://api.semanticscholar.org/CorpusID:267035293


Published as a conference paper at ICLR 2025

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-
training via process reward guided tree search. ArXiv, abs/2406.03816, 2024. URL https:
//api.semanticscholar.org/CorpusID:270285630.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jacob Steinhardt. Describing differences between
text distributions with natural language. In International Conference on Machine Learning, pp.
27099–27116. PMLR, 2022.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023.

17

https://api.semanticscholar.org/CorpusID:270285630
https://api.semanticscholar.org/CorpusID:270285630


Published as a conference paper at ICLR 2025

LIMITATIONS

Our approach begins with a small SFT dataset and does not necessitate specifically labeled data for
training a response improver. We assume that model-generated outputs closely resemble the gold
standard responses in the SFT, enabling them to serve as training data for the response improver.
This necessitates filtering out pairs where the gold standard is inferior to the model-generated output.
Such data can cause the response improver to rewrite text through paraphrasing or substantial alter-
ation, as the training data comprises pseudo pairs rather than minimally edited original responses.
While prompting a more powerful LLM to generate rewriting-specific data, as suggested by Lu et al.
(2023), can alleviate this, it sacrifices the benefit of learning the distribution gap.

SynPO leverages a small, high-quality dataset repeatedly to guide synthetic data generation, making
the seed data quality vital. This approach requires only a small amount of high-quality data for
validation, significantly reducing annotation costs. Additionally, recent work on direct on-policy
sampling methods (Wu et al., 2024b), which do not need additional SFT data, shows considerable
promise. After our final round of improvements, the model-generated responses are already of
high quality. Future enhancements can incorporate on-policy preference optimization techniques to
further refine the model.

APPENDIX

A ALGORITHM

We provide the overall pipeline of SynPO in Algorithm 1.

Algorithm 1 Synthetic Preference Optimization(SynPO)
1: Input: Initial policy πθ0 , validation set {(x∗

i ,y
∗
i )}

n
i=0, keyword list set K, prompt generator G,

data filter F , synthetic preference data D = ∅
2: for t = 1, 2, . . . do
3: Generate m synthetic prompts {xi}mi=1 with xi ∼ G(·|ki), where ki represents a list of

keywords randomly sampled from K.
4: Train the response improver Rt from θ0, Rt ← argminθ

∑n
i=0 L(πθ(x

∗
i ,y

∗
(t−1),i),y

∗
i ),

where y∗
(t−1),i ∼ πθt−1

(·|x∗
i ) for i ∈ {1, . . . , n}.

5: Generate πθt−1
completions and self-refined completions on the synthetic prompts:

y(t−1),i ∼ πθt−1
(·|xi), y(t−1),i ∼ Rt(·|xi,y(t−1),i) for i ∈ {1, . . . ,m}.

6: Filter out invalid refinements and integrate valid data into the synthetic preference dataset:

D ← D ∪
{
(xi,y(t−1),i,y(0),i) | F(xi,y(t−1),i,y(0),i) = valid, i ∈ {1, . . . ,m}

}
,y(0),i ∼ πθ0

(·|xi)

7: Optimize πθ0 using the SimPO (Meng et al., 2024) objective, where σ and γ are hyperparam-
eters:

θt ← argmin
θ

E(xi,y(t−1),i,y(0),i)∼D

[
log σ

(
β

|y(t−1),i|
log πθ(y(t−1),i | xi)−

β

|y(0),i|
log πθ(y(0),i | xi)− γ

)]
8: end for

B PROMPT FOR RESPONSE-REFINER

The prompt template used for training and inference in the response improver is shown in Figure 7.

Self-Improver Prompt
You are a smart AI assistant. For a given question-answer pair, improve the answer by correcting errors,
bolstering informativeness, aligning with the question, and providing comprehensive detail.
Given Question: {self-generated_question}
Original Answer: {original_model_completion}
Rewritten Answer:

Figure 7: Prompt in SynPO for the LLM to act as a response-refiner.
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C EXPERIMENTAL DETAILS

Here we list additional experimental details for our implementation and experiments.

C.1 SELF-PROMPT GENERATOR TRAINING

The hyperparameters for self-prompt generator training are detailed below. During SFT for the self-
prompt generator, we employ a learning rate of 1.0× 10−6 for Mistral-Base and Llama3-Base, with
a batch size of 32, a warm-up ratio of 0.1, and an AdamW optimizer. We set the maximum sequence
length to 8,000 and train the model for 3 epochs.

To generate diverse synthetic prompts, we randomly sampled 1 million paragraphs from Refined-
Web (Penedo et al., 2023) and randomly selected 3 keywords from each paragraph. This process
yields a large keyword list pool containing 1 million keyword lists. These keyword lists serve as the
input for the self-prompt generator in each iteration. For each iteration, we generate between 36,000
and 72,000 keyword lists (depending on the filtering ratio at each iteration) and exclude lists con-
taining personal names or stopwords. We use vllm for inference and set the sampling temperature
to 0.7.

C.2 RESPONSE IMPROVER TRAINING

As the model iterates and self-improves, it may produce responses superior to those of the seed
data. Our objective is for the response improver to learn from its deficiencies. Therefore, we iden-
tify instances where the model output is inferior to the original response using the same scoring
model as the filtering stage. This ensures that the response improver only learns positive optimiza-
tions or semantic paraphrasing, rather than negative optimizations. Specifically, for a given §i, if
the score difference between the gold standard completion and the model completion exceeds the
threshold, we include this data for response improver training. In the Mistral-Base setting, we set
the PairRM scoring threshold to 0.20. In the Llama3-Base setting, the ArmoRM-Llama3-8B-v0.1
scoring threshold is set to 0.02.

Since the response improver data are automatically derived from SFT data conversion, the model
also learns paraphrasing. Using a more powerful model, such as GPT-4, to create data that introduce
only minor improvements for rewriter training is a promising research direction. However, to explore
the potential for self-boosting, we did not introduce additional data or stronger models for data
construction, resulting in inevitable paraphrasing by the response improver.

During SFT for the response improver, most training parameters are same to the parameters in self-
prompt generator training. Some miner differences lie in: we set the max sequence length to 6,000.

C.3 RESPONSE IMPROVING AND FILTERING SETTING

To produce synthetic preference (chosen and rejected) completions for the t-th iteration, we utilize
the current policy model to generate a completion and employ the response improver to refine it. We
use vllm for inference, with the decoding temperature set at T = 0.7.

During synthetic data filtering, we set a threshold 0.20 for PairRM scores and a threshold 0.02
for ArmoRM-Llama3-8B-v0.1 scores. In addition, we filter out all the data that contain over 50%
repetition patterns to avoid model collapse on synthetic data. In our experiments, we randomly
incorporated 10,000 preference pairs from each iteration to the whole synthetic preference data.

C.4 OPTIMIZATION

As the parameter β is crucial for achieving optimal performance in SimPO (Meng et al., 2024), we
individually search the β in the range of [2, 4, 6, 8, 10, 12] for each optimization process. We use a
fixed γ = 1.6 for the Mistral-Base model and Llama3-Base.
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C.5 BASELINES

In experiments involving iterative baselines, we control various conditions to ensure fairness. We
maintain the same training data size for both iterative baselines and SynPO. We adopt the SimPO
loss (Meng et al., 2024) for preference optimization, as it is more effective than DPO (Rafailov
et al., 2024). We all use self-generated prompts, which have been shown to be superior to prompts
generated by other methods, as validated in Section 2.1 and Section 4.1. All preference construction
processes are iterated until performance no longer improves.

Regarding the baseline models trained on UltraFeedback 61k, we straightforwardly adopt
the well-trained versions available from the SimPO repository at https://github.com/
princeton-nlp/SimPO.

C.6 DECODING HYPERPARAMETERS

For the AlpacaEval 2 (Dubois et al., 2024) evaluation, we use a sampling-based decoding approach
to generate responses. Specifically, we employ vllm for inference, setting the temperature to 0.7 and
the maximum tokens to 2048 for both the Mistral-Base and Llama3-Base configurations. All other
parameters adhere to the default settings in vllm. As for MT-Bench (Zheng et al., 2024), we adhere
to the official decoding setup, which specifies varying sampling temperatures tailored to distinct
categories.

D ADDITIONAL DETAILS ON SEED DATA ABLATION

In setting 2), 3), and 4), to prevent cases where rejected responses are better than the chosen ones,
we filter the preference data using the same method as SynPO, specifically employing ArmoRM-
Llama3-8B-v0.1 to select valid preference data. We fix the threshold at 0.02, as our search among
{0, 0.1, 0.2} reveal that 0.02 consistently performs the best.

E API USAGE

For GPT-4 Turbo, we all use the latest turbo-2024-04-09 API on Azure OpenAI Ser-
vice https://learn.microsoft.com/en-us/azure/ai-services/openai/
concepts/models#gpt-4-turbo.

F PROMPT ANALYSIS

Here we provide the prompt used for prompt topic and intention analysis in Figure 8, along with a
more detailed distribution bar plot for different intentions and topics in Figure 9. The topic word list
is derived from UltraChat (Ding et al., 2023), while the intention word list was designed by us.

G EVALUATION DETAILS

For instruction-following ability evaluation, Table 8 presents the detailed information for three align-
ment benchmarks we use, including AlpacaEval 2.0, Arena-Hard and MT-Bench. Additionally, we
display the radar chart for MT-Bench scores on different prompt types (see Figure 10).

As for general LLM capability evaluation, we provide the few-shot example numbers on Open LLM
Leaderboard in Table 9 and a comprehensive comparison of SynPO.

# Instances Baseline Model Judge Model Scoring Type
AlpacaEval 2.0 805 GPT-4 Turbo GPT-4 Turbo Pairwise comparison
Arena-Hard 500 GPT-4-0314 GPT-4 Turbo Pairwise comparison
MT-Bench 80 - GPT-4 Turbo Single-answer grading

Table 8: Details for three alignment benchmarks.
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Topic and Intention Classification Prompt
You are a smart AI assistant. Below the ‘### Given text‘ section, a user’s instruction/query will be
provided. Please determine which topic this question belongs to and output ONE most suitable topic from
the ‘topics‘ list. Also, output ONE most suitable intention of the user from the ‘intentions‘ list. (Note:
try your best to use the words or phrases in the given lists, but if none of them fits, you can output a new
one.)
### Given Text
{given_text}
### Topic List topics = [“Technology”, “Health and wellness”, “Travel and adventure”, “Food
and drink”, “Art and culture”, “Science and innovation”, “Fashion and style”, “Relationships and dating”,
“Sports and fitness”, “Nature and the environment”, “Music and entertainment”, “Politics and current
events”, “Education and learning”, “Money and finance”, “Work and career”, “Philosophy and ethics”,
“History and nostalgia”, “Social media and communication”, “Creativity and inspiration”, “Personal
growth and development”, “Spirituality and faith”, “Pop culture and trends”, “Beauty and self-care”,
“Family and parenting”, “Entrepreneurship and business”, “Literature and writing”, “Gaming and
technology”, “Mindfulness and meditation”, “Diversity and inclusion”, “Travel and culture exchange”]
### Intention List intentions = [“Seek advice”, “Design help”, “Plan something”, “Discuss top-
ics”, “Analyze something”, “Evaluate something”, “Search help”, “Learn something”, “Writing/polishing
help”, “Quality chat”, “Create something”, “Fix something”, “Compare something”, “Transfer something”,
“Calculate something”, “Navigate”, “Explore something new”, “Play a game”, “Install/uninstall help”,
“Book/cancel help”, “Buy/sell suggestions”, “Register/enroll help”, “Translation help”, “Proofread-
ing/editing help”, “Mental health advice”, “Recommendations”, “Troubleshoot help”, “Project feedback”,
“Creative brainstorming”, “Time management help”, “Organization help”, “Public speaking help”,
“Job application help”, “Networking help”, “Language learning help”, “Technology setup help”, “Event
coordination help”, “Social media management help”, “Conflict resolution help”, “Sustainable living
advice”]
### Output Format Format your chosen topic and intention only as a python dictionary with no
extraneous output e.g. ”topic”: ”...”, “intention”: ”...”. Each value only contain ONE topic or intention.

Figure 8: Prompt for using GPT-4 Turbo as a intention and topic classifier.
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Figure 9: Topic and intention distribution bar plot for the synthetic prompts in SynPO and Ultra-
Feedback.

H ANALYSIS ON KEYWORDS FOR PROMPT GENERATION

In this section, we systematically investigate the impact of various factors on the quality and diversity
of prompts through preliminary experiments on Llama3. We explore the effects of excluding noise
keywords (Table 10), the types of keywords used (Table 11), the order of keywords (Table 12), and
the number of keywords (Table 13). Our experiments involve training and evaluating the prompt
generator with different configurations, measuring average similarity using Sentence-Transformer
and assessing prompt quality with GPT-4 Turbo as an LLM-as-a-Judge on a scale from 1 to 10.

Results indicate that the inclusion of noise keywords improves prompt quality as LLMs learn to ig-
nore unrelated words, while using noun phrases enhances diversity and quality. Keyword order has a
minimal impact, with randomization slightly enhancing diversity. Additionally, using 3-5 keywords
provides the best balance between diversity and quality, with too many keywords degrading prompt
quality. These findings collectively guide the implementation of the self-prompt generator.

I DATA LEAKAGE ANALYSIS

To ensure the robustness of our evaluation, we conduct a thorough analysis to detect any potential
data leakage between our training datasets and the test sets. Specifically, we compare the n-grams
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Task Arc HellaSwag TruthfulQA MMLU Winogrande GSM8k
# Few-shot Examples 25 10 0 5 5 5
Metrics acc_norm acc_norm mc2 acc acc acc

Table 9: Number of few-shot examples in Open LLM Leaderboard evaluation.

Figure 10: MT-Bench scores on different prompt types. The left radar chart represents results from
SynPO on Llama3 and the right comes from Mistral.

of our training datasets (seed SFT data, synthetic preference data, and UltraFeedback for reference)
with the n-grams of the test set data to identify any overlaps. If any n-gram from a test data entry
appears in our dataset n-grams, that entry is marked as leaked, and we calculate the proportion of
leaked data for each test dataset. For datasets with candidate answers, we concatenate the question
with candidate answers for analysis; for those without candidate answers, we use only the question.
Following Liang et al. (2023), we set the n-gram size to 13.

As shown in Table 14 and Table 15, the overlap between training datasets (UltraFeedback, seed data,
and synthetic preference data) and the test sets is very low, indicating that there is no data leakage
problem. Interestingly, synthetic preference data generally shows even less overlap with the test sets
than other data. These findings enhance the robustness of our research and confirm the integrity of
our evaluation process.

J EXTENDED EVALUATION ON DIVERSE TASKS

For a comprehensive evaluation across a broader range of tasks, we include ten more tasks from LM
Evaluation Harness (see Table 16), including biomedical domain and complex reasoning. We also
report the domain-specific results on the AGIEval benchmark (Zhong et al., 2023) (in Table 17),
which is a comprehensive benchmark specifically designed to assess foundation models in the con-
text of human-centric standardized exams across diverse domains.

The results indicate that while SynPO is not specifically designed for complex reasoning, it performs
competitively across a variety of tasks, particularly in specialized domains. For instance, SynPO 4
iters shows significant improvements over the SFT model in tasks such as EQ-Bench (Paech, 2023).
In the AGIEval benchmark, SynPO 4 iters also outperforms the SFT model in each specific domains.

K PERFORMANCE GAINS ON TRUTHFULQA

Similar to SimPO Meng et al. (2024), SynPO shows significant enhancement on TruthfulQA Lin
et al. (2021). There are two primary reasons for the observed performance gains on the TruthfulQA
benchmark. First, there is a strong correlation between preference alignment and TruthfulQA. Truth-
fulQA evaluates the truthfulness of responses from language models, a goal that closely aligns with
preference alignment. Our synthetic preference dataset, which includes instances emphasizing truth-
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Noise Condition Avg. Similarity Quality
No noise 0.0572 7.92
With noise 0.0574 8.99

Table 10: Effect of noise keywords.

Extraction Form Avg. Similarity Quality
Noun Phrases 0.0574 8.99
Verb Phrases 0.0865 8.74
Noun + Verb Phrases 0.0610 8.67
All Phrases 0.0569 8.67
Noun Words 0.0604 8.98
Verb Words 0.0894 8.76
Noun + Verb Words 0.0725 8.52
All Words 0.0598 8.61

Table 11: Effect of keyword types.

fulness, enhances the model’s ability to accurately interpret context and generate truthful responses.
This aligns with findings from Meng et al. (2024). Similarly, we hypothesize that the preference
dataset contains instances that emphasize truthfulness, which helps the model better understand the
context and generate more truthful responses." Second, we utilize SimPO loss for preference opti-
mization, which has significantly boosted TruthfulQA performance compared to other methods, as
detailed in Table 9 of the SimPO paper (Meng et al., 2024).
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Order Avg. Similarity Quality
Keep original order 0.0605 9.01
Random 0.0574 8.99

Table 12: Effect of keyword order.

# of keywords Avg. Similarity Quality
1 0.0621 8.71
3 0.0574 8.99
5 0.0543 8.63
10 0.0541 7.08

Table 13: Effect of number of keywords.

Data Arc HellaSwag TQA MMLU Winogrande GSM8k
UltraFeedback (for reference) 0.00085 0.00030 0.00122 0.00199 0.00000 0.00531
Seed SFT Data 0.00085 0.00010 0.00122 0.00036 0.00079 0.00076
Synthetic Preference Data 0.00000 0.00000 0.00122 0.00064 0.00000 0.00000

Table 14: Proportion of leaked data for various test datasets when compared with UltraFeedback,
Seed SFT Data, and Synthetic Preference Data.

Data AlpacaEval 2.0 Areana-Hard MT-Bench
UltraFeedback 0.00248 0.00600 0.01250
Seed SFT Data 0.00373 0.01200 0.01250
Synthetic Preference Data 0.00124 0.00800 0.00000

Table 15: Proportion of leaked data for additional test datasets when compared with UltraFeedback,
Seed SFT Data, and Synthetic Preference Data.

Model LogiQA
(Liu et al., 2020)

MMLU-Pro
(Wang et al., 2024b)

SiQA
(Sap et al., 2019)

QA4MRE
(Peñas et al., 2013)

NQ
(Kwiatkowski et al., 2019)

SFT 30.88 36.12 46.21 46.13 11.55
SynPO 4 iters 31.95 37.28 49.18 49.30 12.80

Model PubMedQA
(Jin et al., 2019)

RACE
(Lai et al., 2017)

SWAG
(Zellers et al., 2018)

EQ-Bench
(Paech, 2023)

Story Cloze
(Mostafazadeh et al., 2016)

SFT 73.20 44.59 76.91 46.79 10.55
SynPO 4 iters 75.44 46.70 77.19 55.82 12.80

Table 16: Evaluation results on 10 additional LM Evaluation Harness tasks, using Llama3.

Model History Biology Chemistry Physics MathQA
Llama3-SFT 38.29 34.29 24.64 32.00 24.22
SynPO 4 iters 45.53 39.05 31.88 35.00 28.49

Table 17: Evaluation results on AGIEval for different domains, using Llama3.
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