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A Implementation Details on the UBSOFTEngine

Figure 1: Hierarchical Grids for Spatially Adaptive Scheme.

Figure 2: A robot dog walks in a desert with dunes.

A.1 Spatial Adaptive Scheme

To improve the efficiency of our proposed algorithm, we implement a dynamic data structure based
on tagging and amortized restructuring to support the deletion and addition of particles during the
resampling process.

The hierarchical grid system introduced in section 3.2 is illustrated in Figure 1. Centering on the
robot’s position, grids of varying granularity are nested, enabling spatial discretization to varying
degrees based on the robot’s position. Unlike traditional MPM, which applies a uniform granularity
across the entire spatial domain, our hierarchical grid adapts dynamically according to the distance to
the agent.

With the proposed spatial adaptive scheme, UBSOFT is able to efficiently simulate large-scale
scenes filled with soft materials, enabling real-time and long-horizon robot learning in unbounded
environments, such as a robot dog walking on a desert in Figure 2.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.
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B UBSOFT Tasks and Evaluation Details

B.1 Task Details

In RL algorithms, we employ stratified sampling and downsampling from all particles to construct
the observation input.

In all manipulation tasks, we utilize a simulation step of 2e-4 seconds, and we establish a maximum
action range specific to each task to ensure system stability. In locomotion tasks, the simulation step
is 2e-3 seconds composed of 10 sub-steps for easier control policy learning. All tasks run faster than
real time (more than 60 FPS where each frame is a simulation step) on a laptop computer equipped
with an Nvidia RTX 4090 GPU and an Intel i9 CPU.

B.2 Reward Design

In each task, the reward is defined as R = —aL + 3, where L is the total loss of the entire episode,
« and 3 are task-specific constant for reward scaling.

Sand Painting. We use the state of particles in the ground-truth policy as the target state, compute
the chamfer distance d; between the current state and the target state at each time step, and sum them
up as the total loss, £ = 3,d;.

Scoop Out. This task has two phases, inserting the shovel into the sand and then lifting the shovel
to scoop out the duck. We found that simple matching with goal patterns is hard to learn and not
robust enough. Therefore, we divided the learning process into two stages as well. In the first stage,
the goal is to encourage the shovel to approach a position under the duck, thus l; = ||pshover — Pt
where p; is dynamically computed as p; = pguck — (0,0, 0.03). In the second stage, the goal is to
encourage the shovel to lift and scoop out the duck, thus Iy = —2zpover + Ma,¢, Where ng ¢ is the
number of particles within 0.1m around the duck at time step <. Finally, total loss is computed as
L =30t 11 + (1 —0y) - la), where o indicates whether step ¢ is in the first stage.

Dig A Hole. Similar to the Scoop Out task, this task also consists of two stages. In the first stage, the
loss function {1 = |zspover — 2p| encourages the shovel to descend, where z, is the z-coordinate of a
predefined point below the sand surface. In the second stage, the loss function lo = —(Zshover — 2p)
encourages the shovel to ascend. The final total loss is computed the same way as in Scoop Out,
L =3%4(ot 11 + (1 — o0¢) - I2), where oy indicates whether step ¢ is in the first stage.

Smooth Surface. In this task, we use the number of particles above a predefined threshold as the
metric. Specifically, the loss is defined as £ = ¥;~1(ns s — ns1—1), Where ng, is the number of
particles above the average sand surface height.

Quadruped Walk. At each step, we compute the distance d; between the current state and the target
state, represented by the pelvis joint state. The target state is defined as the robot’s state that maintains
a forward velocity close to 1 m/s. The total loss £ = 3, d; is the sum of these distances.

Humanoid Stand. To maintain the humanoid robot in a standing pose, we compute the delta height
between the current state and the initial state, represented by the pelvis joint state d,, ; and the head
joint state dp, ;. The total loss £ = X;(d,, ; + dp, ;) is the sum of these delta heights.

Humanoid Walk. The target state is defined as the humanoid robot’s state that maintains a forward
velocity close to 1m/s without falling to the ground. At each step, we compute the distance d, between
the current and the target pelvis state, reflecting the forward velocity. Additionally, we compute the
delta head joint height dj, ;, representing the standing pose. The total loss £ = X;(d; + dp, ;) is the
sum of the forward distances and the delta heights.
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Task Quadruped Sand Walk ~ Humanoid Snow Stand ~ Humanoid Snow Walk

PPO 862.8+94.8 528.3£32.1 518.8+32.7
SAC 1572.8+245.5 553.1+£34.7 475.3+£34.8
CMA-ES 1037.9£123.3 717.7+£47.7 524.5+£19.3

Task Quadruped Snow Walk  Humanoid Snow Stand ~ Humanoid Snow Walk

PPO 2387.4+336.7 507.0£12.0 460.2+21.4
SAC 1225.0£201.8 753.3+61.3 530.9+37.2
CMA-ES 1160.6£95.9 716.6£39.9 554.1+30.6

Task Quadruped Elastic Walk  Humanoid Elastic Stand Humanoid Elastic Walk

PPO 2387.4+514.6 555.7£36.6 485.1£32.2
SAC 1214.6£276.6 653.4£51.2 579.7+37.3
CMA-ES 1224.4+156.5 686.2+31.9 648.8+40.4

Table 1: The final accumulated reward and the standard deviation for each method.

C Additional Experiments Results

C.1 Locomotion Task Results on More Materials

To further investigate our environment, we conduct experiments with locomotion tasks on more
materials, including sand particles, snow particles, and elastic particles. The results are presented
in Table 1 and Figure 3. Similar to the results reported in the main paper, reinforcement learning
algorithms generally struggle with these tasks. In particular, PPO generally fails on humanoid standing
tasks across all surfaces. On the other hand, the sampling-based trajectory optimization algorithm,
represented by CMA-ES, typically achieves better performance. This pattern is further amplified
by the large and complex state and action spaces associated with locomotion tasks. Additionally,
maintaining a specified pose or moving forward consistently remains challenging for end-to-end
training, especially on diverse rough surfaces. Consequently, developing an improved policy for
locomotion tasks remains a significant challenge.
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Figure 3: Reward curves for all methods on locomotion tasks, including PPO, SAC, and CMA-ES.
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