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A Implementation Details on the UBSOFTEngine1

Figure 1: Hierarchical Grids for Spatially Adaptive Scheme.

Figure 2: A robot dog walks in a desert with dunes.

A.1 Spatial Adaptive Scheme2

To improve the efficiency of our proposed algorithm, we implement a dynamic data structure based3

on tagging and amortized restructuring to support the deletion and addition of particles during the4

resampling process.5

The hierarchical grid system introduced in section 3.2 is illustrated in Figure 1. Centering on the6

robot’s position, grids of varying granularity are nested, enabling spatial discretization to varying7

degrees based on the robot’s position. Unlike traditional MPM, which applies a uniform granularity8

across the entire spatial domain, our hierarchical grid adapts dynamically according to the distance to9

the agent.10

With the proposed spatial adaptive scheme, UBSOFT is able to efficiently simulate large-scale11

scenes filled with soft materials, enabling real-time and long-horizon robot learning in unbounded12

environments, such as a robot dog walking on a desert in Figure 2.13

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



B UBSOFT Tasks and Evaluation Details14

B.1 Task Details15

In RL algorithms, we employ stratified sampling and downsampling from all particles to construct16

the observation input.17

In all manipulation tasks, we utilize a simulation step of 2e-4 seconds, and we establish a maximum18

action range specific to each task to ensure system stability. In locomotion tasks, the simulation step19

is 2e-3 seconds composed of 10 sub-steps for easier control policy learning. All tasks run faster than20

real time (more than 60 FPS where each frame is a simulation step) on a laptop computer equipped21

with an Nvidia RTX 4090 GPU and an Intel i9 CPU.22

B.2 Reward Design23

In each task, the reward is defined as R = −αL+ β, where L is the total loss of the entire episode,24

α and β are task-specific constant for reward scaling.25

Sand Painting. We use the state of particles in the ground-truth policy as the target state, compute26

the chamfer distance dt between the current state and the target state at each time step, and sum them27

up as the total loss, L = Σtdt.28

Scoop Out. This task has two phases, inserting the shovel into the sand and then lifting the shovel29

to scoop out the duck. We found that simple matching with goal patterns is hard to learn and not30

robust enough. Therefore, we divided the learning process into two stages as well. In the first stage,31

the goal is to encourage the shovel to approach a position under the duck, thus l1 = ∥pshovel − pt∥,32

where pt is dynamically computed as pt = pduck − (0, 0, 0.03). In the second stage, the goal is to33

encourage the shovel to lift and scoop out the duck, thus l2 = −zshovel + nd,t, where nd,t is the34

number of particles within 0.1m around the duck at time step i. Finally, total loss is computed as35

L = Σt(σt · l1 + (1− σt) · l2), where σt indicates whether step t is in the first stage.36

Dig A Hole. Similar to the Scoop Out task, this task also consists of two stages. In the first stage, the37

loss function l1 = |zshovel − zp| encourages the shovel to descend, where zp is the z-coordinate of a38

predefined point below the sand surface. In the second stage, the loss function l2 = −(zshovel − zp)39

encourages the shovel to ascend. The final total loss is computed the same way as in Scoop Out,40

L = Σt(σt · l1 + (1− σt) · l2), where σt indicates whether step t is in the first stage.41

Smooth Surface. In this task, we use the number of particles above a predefined threshold as the42

metric. Specifically, the loss is defined as L = Σt>1(ns,t − ns,t−1), where ns,t is the number of43

particles above the average sand surface height.44

Quadruped Walk. At each step, we compute the distance dt between the current state and the target45

state, represented by the pelvis joint state. The target state is defined as the robot’s state that maintains46

a forward velocity close to 1 m/s. The total loss L = Σtdt is the sum of these distances.47

Humanoid Stand. To maintain the humanoid robot in a standing pose, we compute the delta height48

between the current state and the initial state, represented by the pelvis joint state dp,t and the head49

joint state dh,t. The total loss L = Σt(dp,t + dh,t) is the sum of these delta heights.50

Humanoid Walk. The target state is defined as the humanoid robot’s state that maintains a forward51

velocity close to 1m/s without falling to the ground. At each step, we compute the distance dt between52

the current and the target pelvis state, reflecting the forward velocity. Additionally, we compute the53

delta head joint height dh,t, representing the standing pose. The total loss L = Σt(dt + dh,t) is the54

sum of the forward distances and the delta heights.55
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Task Quadruped Sand Walk Humanoid Snow Stand Humanoid Snow Walk

PPO 862.8±94.8 528.3±32.1 518.8±32.7

SAC 1572.8±245.5 553.1±34.7 475.3±34.8

CMA-ES 1037.9±123.3 717.7±47.7 524.5±19.3

Task Quadruped Snow Walk Humanoid Snow Stand Humanoid Snow Walk

PPO 2387.4±336.7 507.0±12.0 460.2±21.4

SAC 1225.0±201.8 753.3±61.3 530.9±37.2

CMA-ES 1160.6±95.9 716.6±39.9 554.1±30.6

Task Quadruped Elastic Walk Humanoid Elastic Stand Humanoid Elastic Walk

PPO 2387.4±514.6 555.7±36.6 485.1±32.2

SAC 1214.6±276.6 653.4±51.2 579.7±37.3

CMA-ES 1224.4±156.5 686.2±31.9 648.8±40.4
Table 1: The final accumulated reward and the standard deviation for each method.

C Additional Experiments Results56

C.1 Locomotion Task Results on More Materials57

To further investigate our environment, we conduct experiments with locomotion tasks on more58

materials, including sand particles, snow particles, and elastic particles. The results are presented59

in Table 1 and Figure 3. Similar to the results reported in the main paper, reinforcement learning60

algorithms generally struggle with these tasks. In particular, PPO generally fails on humanoid standing61

tasks across all surfaces. On the other hand, the sampling-based trajectory optimization algorithm,62

represented by CMA-ES, typically achieves better performance. This pattern is further amplified63

by the large and complex state and action spaces associated with locomotion tasks. Additionally,64

maintaining a specified pose or moving forward consistently remains challenging for end-to-end65

training, especially on diverse rough surfaces. Consequently, developing an improved policy for66

locomotion tasks remains a significant challenge.67
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Figure 3: Reward curves for all methods on locomotion tasks, including PPO, SAC, and CMA-ES.
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