
OPENFWI: Large-scale Multi-structural
Benchmark Datasets for Full Waveform Inversion

Supplemental Material

Chengyuan Deng1,2,∗ Shihang Feng1,∗ Hanchen Wang1 Xitong Zhang1,3

Peng Jin1,4 Yinan Feng1 Qili Zeng1 Yinpeng Chen5 Youzuo Lin1

1Los Alamos National Laboratory 2Rutgers University 3Michigan State University
4The Pennsylvania State University 5Microsoft Research

{charles.deng, shihang, hanchen.wang, xitongz, pjin, ynf, ylin}@lanl.gov
qili.zeng.cs@gmail.com, yiche@microsoft.com

Supplementary materials arrangement:

• Section 1 highlights the public resources to support the reproducibility and describes the
licenses of the OPENFWI data and released code.

• Section 2 illustrates the generation pipeline of velocity maps.

• Section 3 lists the configurations of seismic forward modeling.

• Section 4 introduces the format of dataset files, the practice of naming, and other details.

• Section 5 shows the network architecture design and specifies the parameters involved.

• Section 6 provides all parameters and configurations for training to guarantee reproducibility.

• Section 7 contains more illustrations of predicted velocity maps for all datasets.

• Section 8 introduces the subsurface complexity metrics with concrete numerical results and
illustrations.

• Section 9 demonstrates more details on the generalization test and analysis of the results.

• Section 10 conducts the case study of uncertainty quantification.

• Section 11 includes the robustness analysis and how to improve model robustness.

• Section 12 compares inversion results and computational cost of physics-driven methods
and data-driven methods.

• Section 13 studies if predicting 2D slices by InversionNet can have comparable results as
InversionNet3D.

• Section 14 elaborates the test strategy in the real-world situation.

• Section 15 establishes a connection from OPENFWI to passive geological inference and its
potential applications.

• Section 16 has more discussion on previous versions of datasets and current limitations of
OPENFWI.
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1 OPENFWI Public Resources and Licenses

First and foremost, the reproducibility of OPENFWI benchmarks is guaranteed by a number of
public resources, listed below. Remarkably, we have a group (link available below) where any
related discussion is welcome. Our team also promises to maintain the platform and support further
developments based on the community feedback.

• Website: https://openfwi-lanl.github.io
• Dataset URL: https://openfwi-lanl.github.io/docs/data.html#vel
• Github Repository: https://github.com/lanl/openfwi
• Pretrained Models: https://tinyurl.com/bddzkxfz
• Tutorial: https://openfwi-lanl.github.io/tutorial/
• Google Group: https://groups.google.com/g/openfwi

The codes are released on Github under OSS license and BSD-3 license, as required by the Los
Alamos National Lab and the Department of Energy, U.S.A. We also attach the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License to the data.

2 Velocity Map Generation

In this section, we introduce the data generation pipelines. Essentially, the data generation follows
two steps: (1) synthesizing velocity maps c and (2) generating seismic data p via forward modeling.
In the first step, we generate the velocity maps from three different prior information: mathematical
representations, natural images, and geological reservoir, which notably contributes to the dataset
diversity. In the second step, the seismic data is obtained from the synthetic velocity maps via forward
modeling. Figure 1 illustrates the data generation process with three priors elaborated below.

Priors
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Figure 1: Data generation pipelines. The velocity maps c are built from three different priors, then the seismic
data p are generated via forward modeling. Velocity maps c and seismic data p are collected to construct the
four families of datasets.

Mathematical Representations: The sediments are usually deposited as flat-lying layers so that the
velocity map c0 is initialized as a combination of multiple flattened layers with random width. To
mimic the curved folds and faults caused by the geological activities, “Vel Family” and “Fault Family”
are generated by recursively applying the following equations to c0, respectively:

ci(x, y) = ci−1(x, ai sin(2πkix)); i > 0, (1)

ci(x, y) =

{
c0(x+ si, ai sin(2πkix) + s′i), y ≥ fi(x)
ci−1(x, y), y < fi(x)

; i > 0, (2)

where si, s′i, ki and ai are random variables in i-th iteration. fi(·) is a random linear function for
fault simulation. Pixels that are out of map’s boundaries are filled by the nearest available values.
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Table 1: Seismic Forward Modeling Configuration

Dataset
Grid

Spacing

Source

Frequency

Source

Spacing

Source

Numbers

Receiver

Spacing

Receiver

Numbers

Time

Spacing

Time

Steps

Boundary

Grids

“Vel, Fault and Style” Family 10 m 15 Hz 140 m 5 10 m 70 0.001 s 1,001 120

Kimberlina-CO2 10 m 10 Hz 400 m 9 40 m 101 0.002 s 1,251 120

3D Kimberlina-V1 10 m 15 Hz 800 m 5×5 100 m 40×40 0.001 s 5,001 100

Natural Images: “Style Family” is obtained with a style transfer network R(·) trained with the
Marmousi model [1] as the style image and the natural images n from COCO dataset [2] as the
content images2. The details of the network can be referred to [3]. The velocity maps are constructed
using

c = (1− α)R(n) + αcb, (3)

where cb is an 1D background velocity map with linearly increasing velocity value, and α is the
weight between the style-transferred velocity map R(n) and cb.

Geological Reservoir: “Kimberlina Family” is built under DOE’s National Risk Assessment Program
(NRAP) based on a potential CO2 reservoir at the Kimberlina site in the southern San Joaquin Basin,
CA, USA [4]. The hydrologic-state models h are produced with reservoir-simulation scenario [5] and
then converted into velocity maps c following the petrophysical transformation methods P (·) [6]:

c = P (h). (4)

3 Seismic Forward Modeling Details

We follow the forward modeling algorithm at https://csim.kaust.edu.sa/files/
SeismicInversion/Chapter.FD/lab.FD2.8/lab.html. The seismic data is simulated using
finite difference methods [7] with the absorbing boundary condition [8] and the Ricker wavelet is the
source function. The original code in the link is written in MATLAB. To increase its computational
efficiency and its compatibility with the neural network, we change its scheme to 2-4 (2nd-order
accuracy in time and 4th-order in space) and rewrite it in Python. Sources and receivers are evenly
distributed on the surface. The details of the forward modeling configuration are listed in Table 1,
including the grid spacing of the velocity maps, the central frequency of the source wavelet, and so
on. Below is an example of the acquisition geometry setting in the MATLAB script for the 1st source
in “Vel, Fault and Style” datasets:

nz=70; nx=70;
dx=10; nbc=120; nt=1001; dt=0.001;
freq=15; s=ricker(freq,dt); isFS=false;
coord.sx = 1*dx; coord.sz = 1*dx;
coord.gx=(1:nx)*dx; coord.gz=ones(size(coord.gx))*dx;

4 OPENFWI Datasets: Illustration, Format, Naming, Loading

This section contains instructions on the usage of all datasets. We emphasize that all velocity maps
and seismic data are saved as “.npy” files, therefore, could be conveniently accessed through Python.
Other details may vary as datasets have different sizes, functions, and generation backgrounds. For
the rest of this section, we go through each dataset carefully.

4.1 Vel Family

The seismic data and velocity maps are saved in two folders,{./data} and {./model}, respectively.
The naming of files follows the format of {data}{n} for seismic data and {model}{n} for velocity
maps, n denotes the index of a file (starting from 1). Notice that for the same n, data and model

2For the training, we use the Github package at https://github.com/kewellcjj/pytorch-multiple-style-transfer
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become a pair. Each file contains 500 samples. The training set and testing set are split as 24K/6K,
the corresponding training data are {./data1-48.npy} (paired with {./model1-48.npy}), and
the rest are testing data. Examples are shown in Figure 2.

Velocity Map Seismic Data

Figure 2: Example of velocity maps and seismic data in “Vel Family”. The left part shows one velocity map
from each dataset, and the right demonstrates all five channels of the seismic data. The red stars in the velocity
map indicate the location of sources while the receivers are distributed all over the surface.

4.2 Fault Family

The naming of files can be described as {vel|seis}_{n}_1_{i}.npy, where vel and seis specify
if a file includes velocity maps or seismic data, n represents the number of initial flatten layers for
velocity maps generation and i is the index of a file (start from 0) among the ones with the same n.
The sizes of training and testing datasets are 48K/6K. Examples are shown in Figure 3.

4.3 Style Family

The saving and naming of “Style Family” is same with “Vel Family”, seismic data {data}{n}
are saved in {./data} while {model}{n} are saved in {./model}, n denotes the index of a file
(starting from 1). Each file contains 500 samples. The training set and testing set are split as 60K/7K,
the corresponding training data are {./data1-120.npy} (paired with {./model1-120.npy}),
and testing data are contained in {./data121-134.npy} (paired with {./model121-134.npy}).
Examples are shown in Figure 4.

4.4 Kimberlina Family

The seismic data and velocity maps of Kimberlina-CO2 dataset are saved in four fold-
ers,{./kimberlina_co2_{phase} _data}, {./kimberlina_co2_{phase} _label}, where
{phase} denotes “train” or “test”. We use a naming convention of {data}_sim{n}_t{m} for seismic
data and {label}_sim{n}_t{m} for velocity maps, n denotes the 4-digit index of a simulation
(starting from 0), and m represents the timesteps from 10 to 200 (at every 10 years). Each file contains
one sample, and for the same n and m, data and model become a pair. Examples of Kimberlina-CO2

are shown in Figure 5.
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Velocity Map Seismic Data

Figure 3: Example of velocity maps and seismic data in “Fault Family”. The left part shows one velocity map
from each dataset, and the right demonstrates all five channels of the seismic data. The red stars in the velocity
map indicate the location of sources while the receivers are distributed all over the surface.

Velocity Map Seismic Data

Figure 4: Example of velocity maps and seismic data in “Style Family”. The left shows the velocity maps, the
first two rows are sampled from Style-A and the last two from Style-B. The right demonstrates all five channels
of the seismic data. The red stars in the velocity map indicate the location of sources while the receivers are
distributed all over the surface.

In 3D Kimberlina-V13. The velocity maps are stored in {./velocity_model.tar.gz}
as {year{m}_cut{n}.npy}. m represents the injection year and n denotes the index of a

33D Kimberlina-V1 will be released at https://edx.netl.doe.gov/ upon approval by Los Alamos
National Laboratory and U.S. Department of Energy.
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Velocity Map Seismic Data

Figure 5: Example of velocity maps and seismic data in Kimberlina-CO2 dataset. The left shows the velocity
maps with leakage in different levels (First two rows: small; Third row: medium; Last row: Large). The right
demonstrates five channels among all nine channels of the seismic data. The red stars in the velocity map indicate
the location of sources while the receivers are distributed all over the surface.

file (starting from 1). Since the seismic data is too large, they are split into 12 files
{seismic_data.tar.gz.partaa∼al}. Examples of 3D Kimberlina-V1 are shown in Figure 6.
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Figure 6: Example of velocity map and seismic data in 3D Kimberlina-V1 dataset. The left is the velocity
map and the right is seismic data with the source located in the center of the surface. The red stars in the velocity
map indicate the location of sources and the yellow dash lines are the survey lines. The receivers are distributed
every 100 m over the surface.
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5 OPENFWI Benchmarks: Network Architecture

The OPENFWI benchmarks are established upon four deep learning methods: InversionNet [9],
VelocityGAN [10], and UPFWI [11] for 2D and InversionNet3D [12] for 3D FWI. All details of
these methods can be retrieved from their original papers, while in this section we describe the
network architecture adopted particularly for the OPENFWI datasets. Note that the ten datasets in the
“Vel”, “Fault” and “Style” family have the same size, thus share identical network architectures. The
Kimberlina-CO2 data requires a minor change on the convolution kernel parameters.

5.1 InversionNet

InversionNet is an encoder-decoder structural CNN network. The encoder extracts the hyper-features
of the seismic input, and the decoder estimates the corresponding velocity map from the compressed
latent vector. We stack 14 CNN layers in the encoder where the first layer has a 7 ∗ 1 kernel size,
and the following six layers have a 3 ∗ 1 kernel size. Stride 2 is applied every the other layer to
reduce the data dimension to the velocity map dimension. Then six 3 ∗ 3 CNN layers are used to
extract spatial-temporal features in the compressed data, in which the data is down-sampled every
the other layer using stride 2. After that, a CNN layer with an 8 ∗ 9 kernel size is stacked to flatten
the feature maps to the output latent vector size, which is 512 in our implementation. The decoder
first applies a deconvolutional layer on the latent vector to generate a 5 ∗ 5 ∗ 512 tensor with a
kernel size 5, followed by a convolutional layer with the same number of input and output channels.
The deconvolution-convolution process is then duplicated for 4 times with a kernel size of 4 in the
deconvolutional layers, resulting in a feature map with a size of 80 ∗ 80 ∗ 32. Finally, we center-crop
the feature map by a 70 ∗ 70 window and apply a 3 ∗ 3 convolution layer to output a single channel
velocity map. Thus, there are 14 CNN layers in the encoder and 11 layers in the decoder. All the
aforementioned convolutional and deconvolutional layers are followed by batch normalization and
leakyReLU as the activation function.

5.2 VelocityGAN

VelocityGAN is a generative adversarial network, its generator has the same architecture as the
encoder-decoder network in InversionNet. The discriminator is a 9-layer CNN. First, eight 3 ∗ 3
CNN layers are used to extract spatial-temporal features in the velocity maps, in which the data is
down-sampled every the other layer using stride 2. Then, a CNN layer with a 5 ∗ 5 kernel size and
zero padding is used as the output layer. Similarly, all the aforementioned convolutional layers are
followed by batch normalization and leakyReLU as the activation function. To train the GAN, we
use Wasserstein loss with a gradient penalty besides the pixel-wise ℓ1-norm and ℓ2-norm losses to
distinguish the real and generated velocity maps.

5.3 UPFWI

UPFWI is an unsupervised learning method that utilizes convolutional layers in an encoder-decoder
architecture. The general network architecture is the same as the one in InversionNet, except for the
decoder uses CNN layers with nearest neighbor upsampling as the deconvolutional layers.

Unlike the other benchmark methods, UPFWI minimizes the data difference by the following loss
function:

ℓ(p, p̃) = λ1ℓ1(p, p̃) + λ2ℓ2(p, p̃) + λ3ℓper1(ϕ(p), ϕ(p̃)) + λ4ℓper2(ϕ(p), ϕ(p̃)), (5)

where p and p̃ are the input and reconstructed seismic data from the forward operator as in section 3.
ℓ1 and ℓ2 are the ℓ1-norm and ℓ2-norm losses measuring the pixel-wise data losses, respectively.
And the ℓper1 and ℓper2 are the ℓ1- and ℓ2-norm distance of the perceptual losses that we extract
data features from conv3 in a VGG-16 network pre-trained on ImageNet. ϕ(·) represents the output
features of the VGG-16 network. λi are the hyper-parameters that balance the four parts of the total
loss.

5.4 InversionNet3D

As a natural extension of InversionNet in the 3D domain, InversionNet3D was constructed in a similar
topological structure. The shallowest version, from which the results in this paper were obtained,
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was built upon 13 layers in both encoder and decoder with each layer being a 3D convolution or
deconvolution followed by batch normalization and LeakyReLU activation. In order to reduce
memory consumption and computational complexity, two of the most important barriers of 3D FWI,
the filter size and stride of each layer were deliberately chosen and another two special components,
group convolution, and invertible layers were also employed in certain stages of the network. As a
result, this baseline network has 14.42 million parameters and consumes 9.93GB of memory with a
batch size of one. It is recommended to refer to the original paper for a more accurate and detailed
description of the network architecture.

6 OPENFWI Benchmarks: Training Configurations

In this section, we provide the details of training configurations to guarantee reproducibility. All
the experiments are implemented on NVIDIA Tesla P100 GPUs. We have released the pretrained
model via Google drive: https://tinyurl.com/bddzkxfz. The codes and related information
are available on Github: https://github.com/lanl/OpenFWI.

In 2D benchmarks, we use identical hyperparameters across all datasets for InversionNet and Veloci-
tyGAN, while the training of UPFWI varies a little on different datasets. In particular, we employ
AdamW [13] optimizer with a weight decay of 1 × 10−4 and momentum parameters β1 = 0.9,
β2 = 0.999 to update all models. For InversionNet, the learning rate is 1 × 10−4, and no decay
is applied. The size of a mini-batch is 256. We train all InversionNet models for 120 epochs. For
VelocityGAN, the learning rate of both generator and discriminator is 1 × 10−4, and no decay is
applied. We set the size of a mini-batch to 64. Following the strategy of [14], we perform three
discriminator iterations per generator update. All VelocityGAN models are trained for 480 epochs.
For UPFWI, the initial learning rate is 3.2× 10−4, and we reduce the learning rate by a factor of 10
at epochs 150 and 175, except for the experiments on CurveVel-A and CurveVel-B where no decay
is applied. The size of a mini-batch is 128 in the experiments on CurveVel-A and CurveVel-B and
256 in all the other experiments. We follow [11] and set the weight of each loss term to 1. Due to
relatively high computational cost, we train UPFWI models for as many epochs as we can. The
number of epochs in different experiments ranges from 200 to 500. In 3D benchmarks, we keep the
same training configurations of InversionNet3D in all experiments, and details can be found in [12].

During training, we apply min-max normalization to rescale velocity maps and seismic data to
[−1, 1]. The velocity values range from 1500m/s to 4500m/s, and the amplitude of seismic data is
between −20 and 60 in “Vel Family”, “Fault Family” and “Style Family”. For “Kim Family”, velocity
values range from 947 m/s to 2545 m/s in Kimberlina-CO2 and from 1975 m/s to 3892 m/s in
3D Kimberlina-V1.

7 Illustration of Inversion Results

The benchmarks adopt numerical evaluations of the inversion results by SSIM. Here we present
illustrations across different methods on all datasets in Figures 7 to 10. We notice that VelocityGAN
usually provides the best results, but it requires more time for training. UPFWI uses the difference
between predicted and observed seismic data as the loss function so that it is sensitive to the boundaries
of the layers, which are the causes of the reflection waves in the data. Moreover, the deep regions of
the velocity maps are hard to invert in UPFWI due to the limited seismic illuminations [15].

8 Velocity Map Complexity

In this section, we introduce three metrics applied to measure the velocity map complexity: spatial
information [16], gradient sparsity index [17], and Shannon entropy [18]. Shannon entropy is the
most widely-applied quantifier of “the amount of information”, and by definition, it is the expectation
of the logarithm of the variable in the dataset. Spatial information (SI) is an estimator of the border
magnitude since it is obtained from the Sober operator [19], which is an edge detection filter. The
gradient sparsity index (GSI) calculates the percentage of non-smooth pixels in an image also by
applying the Sober operator. Specifically, let Gx and Gy denote the gradient magnitude on horizontal
and vertical coordinates (x, y) obtained via the Sober filter, G denotes the matrix with Gp as the
element on pixel p, and P denotes the total number of pixels, and then we have the following
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Ground Truth InversionNet
(ℓ" Norm)

InversionNet
(ℓ# Norm)

VelocityGAN
(ℓ" Norm)

VelocityGAN
(ℓ# Norm)

UPFWI

Figure 7: Example of ground truth and inversion results in “Vel Family”. The left part shows the ground truth
velocity map, and the right demonstrates the inversion results with InversionNet, VelocityGAN, and UPFWI.
From the first row to the last: FlatVel-A, FlatVel-B, CurveVel-A, CurveVel-B.

Ground Truth InversionNet
(ℓ" Norm)

InversionNet
(ℓ# Norm)

VelocityGAN
(ℓ" Norm)

VelocityGAN
(ℓ# Norm)

UPFWI

Figure 8: Example of ground truth and inversion results in “Fault Family”. The left part shows the ground
truth velocity map, and the right demonstrates the inversion results with InversionNet, VelocityGAN, and UPFWI.
From the first row to the last: FlatFault-A, FlatFault-B, CurveFault-A, CurveFault-B.

definitions:
SImean = E

√
(G2

x +G2
y), (6)

GSI = ∥vec(G)∥0

P . (7)
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Ground Truth InversionNet
(ℓ" Norm)

InversionNet
(ℓ# Norm)

VelocityGAN
(ℓ" Norm)

VelocityGAN
(ℓ# Norm)

UPFWI

Figure 9: Example of ground truth and inversion results in “Style Family”. The left part shows the ground
truth velocity map, and the right demonstrates the inversion results with InversionNet, VelocityGAN, and UPFWI.
First two rows: Style-A, last two rows: Style-B.

Ground	Truth InversionNet

( Norm)ℓ1

InversionNet

( 	Norm)ℓ2

Ground	Truth InversionNet3D

( 	Norm)ℓ1

InversionNet3D

( 	Norm)ℓ2

Figure 10: Example of ground truth and inversion results in “Kim Family”. The left part shows the ground
truth and the InversionNet inversion results with the Kimberlina-CO2 dataset. The right part shows the 2D slices
of the ground truth and the InversionNet3D inversion results with the 3D Kimberlina-V1 dataset.

The measurement of velocity map complexity sharpens our understanding of the datasets and
hopefully becomes guidance for researchers to choose appropriate datasets. The numerical results
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are presented in Table 2. For more intuition, Figure 11 illustrates velocity maps with the values of
three metrics of their complexity. Based on the complexity, benchmark results, and our experience,
beginning users may benefit from simple datasets (FlatVel-A, FlatVel-B, CurveVel-A, FlatFault-A,
Curve-Fault-A, and Kimberlina-CO2) while advanced solutions should be evaluated on challenging
datasets (CurveVel-B, FlatFault-B, CurveFault-B, Style-A, and Style-B).

Table 2: Velocity Map Complexity of 2D Datasets

Dataset Spatial Information Gradient Sparsity Index Shannon Entropy
FlatVel-A 0.07 0.12 2.30
FlatVel-B 0.34 0.13 2.32

CurveVel-A 0.10 0.24 2.38
CurveVel-B 0.46 0.24 2.40
FlatFault-A 0.10 0.26 2.92
FlatFault-B 0.16 0.26 3.45

CurveFault-A 0.11 0.32 3.50
CurveFault-B 0.24 0.45 3.50

Style-A 0.04 1.00 12.20
Style-B 0.07 1.00 12.22

Kimberlina-CO2 0.01 0.54 7.35

Spatial Information: 0.068 
Gradient Sparsity Index: 0.114

Shannon Entropy: 2.079

Spatial Information: 0.010 
Gradient Sparsity Index: 0.396

Shannon Entropy: 6.073

Spatial Information: 0.145 
Gradient Sparsity Index: 0.440

Shannon Entropy: 3.211

Spatial Information: 0.076 
Gradient Sparsity Index: 1.0

Shannon Entropy: 12.252

Figure 11: Examples of different levels of velocity map complexity from each dataset family.

We have several observations from Table 2. First, the three metrics are mostly consistent with
each other for each dataset. Second, the datasets in version B always have higher complexity than
version A, which meets our expectations that version B is the hard version. Third, the datasets with
curve structures show higher complexity than the corresponding datasets with flat structures (e.g.
CurveVel-A versus FlatVel-A).

The major limitation of this measurement is that none of the three metrics is able to provide a coherent
evaluation across all datasets. For example, although “Style Family” datasets have more complicated
details than “Vel” and “Fault” family datasets, which is consistent with the Shannon-entropy, we
cannot imply it from the spatial information. We remark that the discrepancy is due to the difference
in data generation methods. In short, we emphasize that although we can justify the numerical results
by cross-referencing between three metrics, it would be better to have one comprehensive analysis
that utilizes all three metrics.

9 Generalization Test

In this section, we provide detailed results of the generalization test on InversionNet, VelocityGAN
and UPFWI in Tables 3 to 5, respectively. “FVA” is short for “FlatVel-A”, and the same naming rule
applies to the rest datasets. The blue, orange and green boxes indicate the intra-domain tests with
“Vel Family”, “Fault Family” and “Style Family”, respectively. The lower triangle entries always have
larger values than the upper entries for all three inversion methods, except there are a few outliers
with InversionNet. The performance of VelocityGAN and UPFWI is better than the InversionNet,
which is consistent with the results in [11, 10]. Moreover, InversionNet uses a larger batch size than
the other two methods, which may degrade its generalization ability.
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Table 3: Generalization performance on 10 2D datasets with InversionNet. The blue, orange and green boxes
indicates the intra-domain tests with “Vel Family”, “Fault Family” and “Style Family”.

Source
Target FVA FVB CVA CVB FFA FFB CFA CFB STA STB

FVA – 0.51 0.55 0.30 0.84 0.52 0.66 0.43 0.51 0.50
FVB 0.42 – 0.48 0.22 0.34 0.51 0.36 0.42 0.27 0.20
CVA 0.44 0.46 – 0.25 0.39 0.54 0.42 0.42 0.39 0.29
CVB 0.69 0.53 0.52 – 0.78 0.50 0.37 0.41 0.50 0.46
FFA 0.86 0.17 0.23 0.22 – 0.23 0.46 0.23 0.30 0.34
FFB 0.42 0.45 0.50 0.19 0.40 – 0.41 0.52 0.39 0.33
CFA 0.09 0.10 0.15 0.05 0.14 0.13 – 0.14 0.56 0.51
CFB 0.38 0.40 0.50 0.19 0.38 0.59 0.42 – 0.36 0.31
STA 0.44 0.38 0.59 0.20 0.46 0.51 0.62 0.42 – 0.55
STB 0.48 0.28 0.42 0.23 0.47 0.42 0.50 0.35 0.59 –

Table 4: Generalization performance on 10 2D datasets with VelocityGAN. The blue, orange and green boxes
indicates the intra-domain tests with “Vel Family”, “Fault Family” and “Style Family”.

Source
Target FVA FVB CVA CVB FFA FFB CFA CFB STA STB

FVA – 0.50 0.63 0.36 0.84 0.54 0.69 0.42 0.52 0.48
FVB 0.94 – 0.58 0.38 0.82 0.49 0.68 0.37 0.54 0.45
CVA 0.88 0.50 – 0.44 0.89 0.58 0.83 0.46 0.61 0.53
CVB 0.79 0.75 0.75 – 0.86 0.54 0.79 0.42 0.60 0.51
FFA 0.83 0.47 0.63 0.38 – 0.56 0.75 0.44 0.58 0.51
FFB 0.86 0.49 0.67 0.40 0.91 – 0.82 0.53 0.63 0.55
CFA 0.79 0.38 0.66 0.34 0.92 0.58 – 0.48 0.58 0.50
CFB 0.70 0.43 0.67 0.38 0.79 0.64 0.60 – 0.62 0.53
STA 0.66 0.37 0.56 0.32 0.67 0.53 0.63 0.43 – 0.66
STB 0.52 0.29 0.47 0.25 0.51 0.47 0.50 0.39 0.70 –

Table 5: Generalization performance on 10 2D datasets with UPFWI. The blue, orange and green boxes
indicates the intra-domain tests with “Vel Family”, “Fault Family” and “Style Family”.

Source
Target FVA FVB CVA CVB FFA FFB CFA CFB STA STB

FVA – 0.49 0.63 0.28 0.84 0.54 0.70 0.41 0.58 0.53
FVB 0.64 – 0.56 0.28 0.49 0.49 0.47 0.37 0.45 0.34
CVA 0.71 0.48 – 0.38 0.68 0.55 0.69 0.45 0.52 0.43
CVB 0.70 0.57 0.67 – 0.78 0.53 0.75 0.44 0.58 0.49
FFA 0.90 0.50 0.60 0.37 – 0.53 0.72 0.42 0.54 0.49
FFB 0.66 0.50 0.61 0.34 0.62 – 0.62 0.47 0.55 0.45
CFA 0.76 0.50 0.63 0.38 0.81 0.56 – 0.46 0.60 0.50
CFB 0.52 0.34 0.48 0.29 0.53 0.43 0.52 – 0.51 0.39
STA 0.54 0.36 0.53 0.28 0.51 0.48 0.53 0.41 – 0.58
STB 0.49 0.30 0.45 0.23 0.48 0.42 0.48 0.35 0.63 –

10 Uncertainty Quantification

We further conduct experiments on CurveVel-A to quantify uncertainty in InversionNet as a case
study. Following [20], we modify the network architecture by adding a dropout layer with dropout
rate p = 0.2 after each convolutional layer except the last one. As shown in Figure 12, The uncertainty
on boundaries is higher than in other regions, which implies the prediction sensitivity around the
boundaries. To quantify the correlation between the uncertainty and boundaries, we calculate the
Pearson correlation coefficient between the uncertainty value and the gradient magnitude on the edge.
The value is 0.5462, indicating a moderate positive correlation as shown in Figure 13. As illustrated
in Table 6, the uncertainty increases gradually when increasing the noise level. We also include the
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Table 7: Quantitative results of mean variance on 2D datasets. The model is trained on CurveVel-A.

Dataset FlatVel-A FlatVel-B CurveVel-A CurveVel-B FlatFault-A FlatFault-B CurveFault-A CurveFault-B Style-A Style-B

Variance (10−3) 2.6065 4.1899 1.3903 3.5000 4.2857 2.4679 2.3639 2.3142 2.9280 2.9946

average peak-to-noise ratio (PSNR) in the table. The PSNR of a sample is defined as

PSNR = 10 log10
(pmax − pmin)

2

ℓ2(p− p′)
, (8)

where pmax and pmin denote the maximum and minimum possible values of the seismic data in a
dataset, p is the clean seismic data, and p′ is the noisy data. Moreover, the uncertainty values of cross
datasets are much higher than training and testing on the same dataset, which indicates that domain
shifts lead to an increase in uncertainty as compared in Table 7.

Ground 
Truth Prediction Uncertainty Edge Ground 

Truth Prediction Uncertainty Edge

Figure 12: Uncertainty visualization. The uncertainty is higher on the boundaries compared with other regions.

Figure 13: The correlation between the
mean variance and the gradient magni-
tude on velocity edge.

Table 6: Quantitative results of uncertainty quantification
on noisy seismic input. Gaussian noise with different stan-
dard deviation is added to seismic data during testing (σtest).

σtest (10−4) PSNR (dB) Variance (10−3)
0 100.00 1.3903

0.1 70.41 1.3970
0.5 63.40 1.4269
1.0 60.38 1.4479
5.0 53.32 1.5621

11 Robustness Test

In this section, we provide the quantitative results, visualization, and detailed analysis of the robustness
test. Table 8 shows averaged performance across all 2D datasets (Kimberlina-CO2 excluded) on both
clean and noisy data. It is illustrated that InversionNets trained with ℓ1 loss and ℓ2 loss are both the
most sensitive to noise compared to other models.
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Table 8: Quantitative results of different models on 2D and 3D datasets with noisy seismic input
(Kimberlina-CO2 excluded). Gaussian noise with different standard deviation σtest is added to seismic
data during testing. Performance in all three metrics is averaged across all datasets for 2D models. Performance
is averaged across all channel selections for InversionNet3D. The least degradation is highlighted.

Method
σtest = 0

σtest = 1× 10−5 σtest = 5× 10−5 σtest = 1× 10−4 σtest = 5× 10−4

PSNR=70.41dB PSNR=63.40dB PSNR=60.38dB PSNR=53.32dB

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

InversionNet-ℓ1 0.0708 0.1316 0.8187 0.0769 0.1381 0.8131 0.1142 0.1879 0.7779 0.1519 0.2362 0.7419 0.2418 0.3530 0.6387

Degradation(%) \ \ \ -8.66 -4.97 -0.69 -61.32 -42.78 -4.98 -114.70 -79.48 -9.38 -241.70 -168.26 -21.99

InversionNet-ℓ2 0.0727 0.1211 0.8333 0.0788 0.1280 0.8290 0.1028 0.1609 0.8076 0.1348 0.2048 0.7784 0.2301 0.3309 0.6802

Degradation(%) \ \ \ -8.45 -5.72 -0.51 -41.48 -32.91 -3.08 -85.54 -69.14 -6.59 -216.63 -173.35 -18.37

VelocityGAN-ℓ1 0.0713 0.1286 0.8341 0.0725 0.1292 0.8329 0.0825 0.1416 0.8247 0.0951 0.1581 0.8147 0.1644 0.2526 0.7451

Degradation(%) \ \ \ -1.73 -0.47 -0.14 -15.65 -10.11 -1.12 -33.35 -22.89 -2.33 -130.60 -96.35 -10.67

VelocityGAN-ℓ2 0.0723 0.1209 0.8380 0.0722 0.1208 0.8364 0.0773 0.1273 0.8297 0.0858 0.1380 0.8212 0.1818 0.2722 0.7444

Degradation(%) \ \ \ +0.11 +0.06 -0.19 -6.91 -5.33 -0.99 -18.60 -14.18 -2.01 -151.38 -125.17 -11.17

UPFWI 0.1326 0.2252 0.7716 0.1324 0.2241 0.7700 0.1437 0.2395 0.7560 0.1639 0.2680 0.7360 0.2286 0.3503 0.6725

Degradation(%) \ \ \ +0.14 +0.48 -0.21 -8.43 -6.33 -2.01 -23.66 -18.97 -4.61 -72.45 -55.51 -12.85

InversionNet3D-ℓ1 0.0107 0.0281 0.9837 0.0319 0.0719 0.9665 0.0320 0.0720 0.9665 0.0319 0.0719 0.9664 0.0340 0.0759 0.9731

Degradation(%) \ \ \ -199.21 -155.41 -1.75 -199.78 -155.86 -1.75 -199.37 -155.51 -1.76 -218.59 -169.73 -1.08

InversionNet3D-ℓ2 0.0155 0.0306 0.9462 0.0384 0.0867 0.9355 0.0388 0.0877 0.9353 0.0390 0.0879 0.9352 0.0411 0.0924 0.9346

Degradation(%) \ \ \ -148.51 -182.93 -1.13 -151.00 -186.12 -1.15 -152.21 -186.85 -1.16 -165.80 -201.41 -1.22
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Figure 14: Comparison of inversion results generated by different models trained with various levels of
noise on CurveVel-A. When facing noisy seismic input, the models trained with corresponding level of noise
yield more accurate inversion results compared to those trained on clean data.

The results of 3D robustness test are also summarized in Table 8. We average the performance of
the three-channel selections in the benchmark result. We observe that both the ℓ1- and ℓ2-trained
InversionNet3D models are robust to Gaussian noise. The MAE/RMSE increase by 175% on average
compared to clean data benchmark results, mainly due to the clean MAE/RMSE being already
small. The SSIM slightly decreases by a maximum of 1.76% due to the background velocity of 3D
Kimberlina-V1 remaining unchanged for all the samples which have more weight than the reservoir
region when calculating SSIM.

In addition to adding noise during testing, we are also interested in whether training models on
noisy data can improve robustness. We train our models on CurveVel-A with two levels of Gaussian
noise (σtrain = 1× 10−4 and σtrain = 5× 10−4) added separately to seismic data. Table 9 shows
quantitative results of those models on both clean data and noisy data. We observe that introducing
noise into training effectively improves model robustness for all three models when the testing noise
level is high. When the testing noise level is lower than the training noise level, results are mixed.
Specifically, InversionNet trained with noisy data achieves better performance than the one trained on
clean data, while the other two models (VelocityGAN and UPFWI) have a slight performance drop.
Visualization of results is shown in Figure 14.
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Table 9: Quantitative results of different models trained with noisy seismic data on CurveVel-A. Gaussian
noise with different standard deviation is added to seismic data during training (σtrain) and testing (σtest)

Method σtrain

(10−4)
σtest = 0 σtest = 1× 10−5 σtest = 5× 10−5 σtest = 1× 10−4 σtest = 5× 10−4

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

InversionNet-ℓ1

0 0.0685 0.1273 0.8074 0.0721 0.1315 0.8006 0.1530 0.2536 0.7248 0.1609 0.3600 0.6751 0.2401 0.3387 0.6081

1 0.0675 0.1238 0.8242 0.0672 0.1236 0.8245 0.0674 0.1238 0.8246 0.0676 0.1241 0.8246 0.0780 0.1391 0.8036

5 0.0657 0.1228 0.8340 0.0659 0.1230 0.8338 0.0662 0.1234 0.8336 0.0663 0.1234 0.8338 0.0637 0.1205 0.8376

InversionNet-ℓ2

0 0.0691 0.1202 0.8223 0.0759 0.1273 0.8178 0.0830 0.1364 0.7989 0.1185 0.1839 0.7523 0.2530 0.3599 0.5887

1 0.0665 0.1165 0.8402 0.0662 0.1162 0.8405 0.0656 0.1155 0.8412 0.0655 0.1155 0.8409 0.0894 0.1449 0.8024

5 0.0687 0.1198 0.8360 0.0686 0.1197 0.8362 0.0683 0.1194 0.8366 0.0680 0.1189 0.8372 0.0668 0.1175 0.8391

VelocityGAN-ℓ1

0 0.0483 0.1034 0.8625 0.0490 0.1042 0.8615 0.0518 0.1070 0.8583 0.0557 0.1111 0.8546 0.1331 0.2166 0.7969

1 0.0534 0.1083 0.8630 0.0529 0.1078 0.8632 0.0517 0.1065 0.8638 0.0512 0.1060 0.8639 0.0591 0.1156 0.8534

5 0.0524 0.1081 0.8618 0.0524 0.1081 0.8619 0.0523 0.1079 0.8621 0.0520 0.1077 0.8624 0.0516 0.1073 0.8627

VelocityGAN-ℓ2

0 0.0510 0.0976 0.8759 0.0519 0.0985 0.8752 0.0559 0.1027 0.8721 0.0651 0.1136 0.8652 0.2025 0.3103 0.7643

1 0.0627 0.1122 0.8333 0.0622 0.1117 0.8333 0.0608 0.1104 0.8335 0.0603 0.1098 0.8333 0.0666 0.1170 0.8258

5 0.0618 0.1072 0.8083 0.0617 0.1070 0.8084 0.0613 0.1065 0.8089 0.0610 0.1061 0.8093 0.0606 0.1054 0.8100

UPFWI

0 0.0805 0.1411 0.8443 0.0798 0.1411 0.8437 0.0835 0.1481 0.8379 0.0927 0.1620 0.8292 0.1897 0.2988 0.7683

1 0.0869 0.1604 0.8278 0.0870 0.1608 0.8279 0.0877 0.1632 0.8280 0.0894 0.1676 0.8272 0.1206 0.2241 0.8057

5 0.0923 0.1671 0.8233 0.0922 0.1671 0.8233 0.0921 0.1673 0.8233 0.0920 0.1676 0.8233 0.0953 0.1785 0.8188

12 Comparison with Physics-driven Methods

In this section, we select 500 samples from each 2D dataset and 1 samples from the 3D dataset to
test the performance of physics-driven methods. Multi-scale full waveform inversion [21, 22] is
performed with the six different low-pass filters that the cutoff frequencies equal to (1, 3, 5, 10, 20, 30)
Hz. We use three different initial maps in the inversion: homogeneous maps, linear increasing maps,
and smoothed maps. Homogeneous maps are built with a constant velocity equal to minimum velocity
on the surface. The velocity increases linearly with depth in linear increasing maps. Smoothed maps
are obtained by applying mean filters to the ground truth velocity maps. ℓ2-norm loss function and
the conjugated gradient method are used for the iterative updating of the velocity maps. The inversion
stops when the loss change is less than 0.1%.

Quantitative results of the physics-driven methods are given in Table 10 and their illustrations are
presented in Figures 15 to 18. Compared with data-driven FWI results in Figures 7 to 10, physics-
driven FWI results have more artifacts and the performance of physics-driven FWI strongly depends
on the quality of initial maps. The initial map with higher SSIM leads to FWI results with higher
SSIM. The building of the initial maps is very important and how to obtain a good initial map is
still an open research topic [23, 24, 25]. For 3D Kimberlina-V1 data, the loss is hard to converge
with homogeneous and linear increasing initial maps due to their poor qualities. The inversion with
smoothed initial maps is greatly affected by the acquisition footprint [26]. As a result, the inversion
results have strong artifacts at the surface in Figure 18 and their SSIM is even lower than the initial
maps in Table 10.

Computational cost comparison: The per-sample computation time of physics-driven methods
and the average training time of data-driven methods for each sample is given in Table 11. Recall
that all the experiments are implemented on NVIDIA Tesla P100 GPUs. Physic-driven methods
and data-driven methods measure computational cost differently. Physics-driven methods do not
require a training stage but directly optimize the testing data for multiple epochs to generate the
inversion results, while data-driven methods need to be trained for several epochs and then applied to
the test data for a one-time inference. Thus, the computational comparison varies over different ratios
between the number of training and test samples. The relationship between total computation time
per test sample and train/test ratio is given in Figure 19. The total computation time of data-driven
methods is the summation of the training and test time. The physics-driven methods do not need
training, so the total computation time is their computation time on a test set only.

All three data-driven methods are faster when the ratio between the number of training and test
samples is less than 62. Typically, the ratios for all twelve OPENFWI datasets are significantly lower
(about 10) as in Figure 20. Therefore, data-driven methods speed up 6 times more than physics-driven
methods.
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The time complexity of physics-driven methods is O(N3) for 2D cases and O(N4) for 3D cases.
Their computational costs grow much faster than those of data-driven methods when the sizes of the
velocity maps and seismic data increase. For example, the total computation time of the physics-
driven method with 3D Kimberlina-V1 dataset is 475 times more than that of Vel Family. For
InversionNet with 3D Kimberlina-V1 dataset, the total computation time is only 40 times more than
that of Vel Family. In conclusion, data-driven methods have obvious computational advantages on
large velocity maps.

Initial Map
(Linear increasing)

Inversion Result
(Linear increasing)

Initial Map
(Smoothed)

Initial Map
(Homogeneous)

Inversion Result
(Homogeneous)

Inversion Result
(Smoothed)

Ground Truth

Figure 15: Example of ground truth and physics-driven inversion results in “Vel Family”. The left part
shows the ground truth velocity map, and the right demonstrates the initial maps and inversion results with
homogeneous, linear increasing, and smoothed initial maps. From the first row to the last: FlatVel-A, FlatVel-B,
CurveVel-A, CurveVel-B.

13 Comparison between InversionNet and InversionNet3D

In this section, we compare the performance of the InversionNet when dealing with 3D data as 2D
slices with the benchmark performance of InversionNet3D. Treating the Earth as 2D planes is a
common way to deal with real data. To quantify the difference between 2D and 3D training strategies,
we perform the following two 2D experiments and compare their results with the InversionNet3D
benchmark results on the 3D Kimberlina-V1 dataset.
In the first experiment (3D simulation, 2D slices), we slice each “velocity/seismic” data sample in
the 3D Kimberlina-V1 dataset into five vertical 2D slices along both inline (X) and cross-line (Y )
directions according to the source locations. Thus, each 3D sample generates 10 2D velocity/seismic
data pairs as training/validation samples. In the second experiment (2D simulation), we slice each
“velocity” sample in the 3D Kimberlina-V1 dataset into 40 vertical 2D slices along the inline (X)
direction according to the receiver locations. We then use the benchmark 2D finite difference forward
operator to generate seismic data in the 2D planes and pair it with the corresponding 2D velocity
slices as training/validation samples. The sources and receivers are in the same 2D vertical planes.
In total, 18K 2D slice pairs are generated in the first experiment and 73K are generated in the
second experiment. The samples are used to train an InversionNet under a 90/10 training/validation
separation ratio. Once trained, we test the networks’ performance and compare the results with the
InversionNet3D benchmark. The performance comparison is listed in Table 12. The table shows
that the InversionNet performance is comparable to the InversionNet3D performance. For the 3D
simulation 2D slices experiment, the MAE loss and the RMSE loss of InversionNet are about 20%
less than the ones of InversionNet3D using an ℓ1 training loss, and are about 50% larger when using
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Figure 16: Example of ground truth and physics-driven inversion results in “Fault Family”. The left
part shows the ground truth velocity map, and the right demonstrates the initial maps and inversion results
with homogeneous, linear increasing and smoothed initial maps. From the first row to the last: FlatFault-A,
FlatFault-B, CurveFault-A, CurveFault-B.
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(Linear increasing)

Inversion Result
(Linear increasing)

Initial Map
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Initial Map
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Figure 17: Example of ground truth and physics-driven inversion results in “Style Family”. The left part
shows the ground truth velocity map, and the right demonstrates the initial maps and inversion results with
homogeneous, linear increasing, and smoothed initial maps. First two rows: Style-A and Style-B, last two rows:
Kimberlina-CO2.
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Figure 18: Example of ground truth and physics-driven inversion results in “3D Kimberlina-V1”. The
ground truth velocity map, the smoothed initial maps and inversion results.
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Figure 19: The relationship between total computation time per test sample and train/test ratio. The
total computation time of data-driven methods is the summation of the training and test time. The purple,
green and blue numbers are the train/test ratio when the computation time of the data-driven methods (UPFWI,
VelocityGAN and InversionNet) is equal to the physics-driven method (Multi-scale FWI).

an ℓ2 training loss. The SSIM of InversionNet is 1.86% lower than the one of InversionNet3D using
an ℓ1 training loss, and is about 0.38% higher when using an ℓ2 training loss. For the 2D simulation
experiment, the MAE loss and the RMSE loss of InversionNet are about 68% less than the ones of
InversionNet3D using an ℓ1 training loss, and are about 87% smaller when using an ℓ2 training loss.
The SSIM of InversionNet is 0.79% higher than the one of InversionNet3D using an ℓ1 training loss,
and is about 4.55% higher when using an ℓ2 training loss.
To conclude, the performance of an end-to-end InversionNet that assumes the 3D Earth as 2D planes
is comparable to that of the InversionNet3D. However, 3D training returns the whole volume of
the region while 2D training returns only a few slices of the 3D volume. People may need further
processing, for example, interpolation between slices, to obtain the whole 3D velocity volume.
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Table 10: Quantitative results of physics-driven FWI on OPENFWI datasets with homogeneous, linear
increasing, smoothed maps as initial maps.

Dataset Map
Homogeneous Map Linear Increasing Map Smoothed Map

MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

FlatVel-A
Initial 0.5553 0.7536 0.2249 0.1841 0.2438 0.4657 0.0641 0.1089 0.7087

Result 0.0643 0.1318 0.8009 0.0426 0.0768 0.8370 0.0324 0.0621 0.8689

FlatVel-B
Initial 0.5222 0.7186 0.1568 0.4899 0.6752 0.1547 0.1752 0.2634 0.4850

Result 0.1920 0.3712 0.5495 0.2112 0.4042 0.5293 0.0938 0.1902 0.6908

CurveVel-A
Initial 0.5599 0.7578 0.1968 0.2397 0.3178 0.3415 0.0871 0.1405 0.6349

Result 0.1173 0.2120 0.6447 0.0966 0.1666 0.6654 0.0721 0.1282 0.7347

CurveVel-B
Initial 0.5129 0.7199 0.1528 0.4901 0.6699 0.1395 0.2166 0.3150 0.3991

Result 0.2465 0.4084 0.4157 0.2670 0.4402 0.3966 0.1734 0.3020 0.5142

FlatFault-A
Initial 0.5123 0.7737 0.1224 0.2728 0.3613 0.3309 0.0619 0.1543 0.7846

Result 0.0559 0.1102 0.8222 0.0560 0.1095 0.8244 0.0412 0.0834 0.8607

FlatFault-B
Initial 0.8476 1.0324 0.0028 0.2881 0.3682 0.2819 0.1082 0.1705 0.5790

Result 0.1442 0.2366 0.5547 0.1247 0.1992 0.5907 0.0961 0.1599 0.6596

CurveFault-A
Initial 0.5064 0.7567 0.1288 0.2730 0.3604 0.3381 0.0655 0.1533 0.7886

Result 0.0764 0.1397 0.7652 0.0742 0.1369 0.7716 0.0563 0.1078 0.8190

CurveFault-B
Initial 0.8493 1.0297 0.0063 0.3084 0.3931 0.2186 0.1484 0.2191 0.4672

Result 0.1783 0.2832 0.4837 0.1637 0.2537 0.5078 0.1311 0.2066 0.5765

Style-A
Initial 0.7571 0.8812 0.1395 0.2513 0.3195 0.2881 0.0775 0.1042 0.6703

Result 0.1229 0.2007 0.6018 0.0903 0.1491 0.6866 0.0552 0.0948 0.7986

Style-B
Initial 0.8165 0.9219 0.0710 0.1564 0.1927 0.3578 0.0910 0.1080 0.4931

Result 0.1344 0.1914 0.4599 0.0764 0.1102 0.6521 0.0821 0.1168 0.6132

Kimberlina-CO2

Initial 0.2033 0.2656 0.8198 0.0792 0.1512 0.8873 0.0689 0.1061 0.8924

Result 0.0434 0.0914 0.9137 0.0419 0.0904 0.9125 0.0404 0.0896 0.9122

3D Kimberlina-V1
Initial N.A. N.A. N.A. N.A. N.A. N.A. 0.1174 0.2891 0.7975

Result N.A. N.A. N.A. N.A. N.A. N.A. 0.5248 0.7581 0.5861

Table 11: Pre sample computation time of physics-driven and data-driven FWI.

Computation Time Method Vel Family Fault Family Style Family Kimberlina-CO2 3D Kimberlina-V1

Physics-driven FWI tp Multi-scale FWI 364s 370s 222s 2036s 48h

Data-driven FWI td

InversionNet 0.3s 0.3s 0.33s 0.84s 11.90s

VelocityGAN 1.29s 1.2s 1.8s 7.68s N.A.

UPFWI 4.5s 4.5s 3.6s N.A. N.A.

Table 12: Quantitative results of two InversionNet training strategies compared with the averaged Inversion-
Net3D benchmark on the 3D Kimberlina-V1 dataset.

Network Architecture Data Generator MAE↓ RMSE↓ SSIM↑

InversionNet-ℓ1
3D simulation, 2D slices 0.0080 0.0215 0.9652

2D simulation 0.0028 0.0093 0.9917

InversionNet-ℓ2
3D simulation, 2D slices 0.0300 0.0401 0.9500

2D simulation 0.0019 0.0042 0.9974
InversionNet3D-ℓ1 3D simulation 0.0105 0.0276 0.9838
InversionNet3D-ℓ2 3D simulation 0.0155 0.0306 0.9462

19



0 2 4 6 8 10
0

100

200

300

400
Multi-scale FWI
InversionNet
VelocityGAN
UPFWI

0 2 4 6 8 10
0

100

200

300

400
Multi-scale FWI
InversionNet
VelocityGAN
UPFWI

0 2 4 6 8 10
0

100

200

300

400
Multi-scale FWI
InversionNet
VelocityGAN
UPFWI

0 2 4 6 8 10
0

500

1000

1500

2000

2500
Multi-scale FWI
InversionNet
VelocityGAN

0 2 4 6 8 10 12
0

0.5

1

1.5

2 105

Multi-scale FWI
InversionNet

Train/Test Ratio

To
ta
lT
im

e
pr
e
Te
st
Sa
m
pl
e
(s
)

Train/Test Ratio

Train/Test Ratio Train/Test Ratio Train/Test Ratio

To
ta
lT
im

e
pr
e
Te
st
Sa
m
pl
e
(s
)

To
ta
lT
im

e
pr
e
Te
st
Sa
m
pl
e
(s
)

To
ta
lT
im

e
pr
e
Te
st
Sa
m
pl
e
(s
)

To
ta
lT
im

e
pr
e
Te
st
Sa
m
pl
e
(s
)

Vel Family Fault Family Style Family

Kimberlina-CO2 3D Kimberlina-V1

Figure 20: The comparison between total computation time per test sample of physics-driven methods
and data-driven methods in OPENFWI regarding to train/test ratio. The computation time of data-driven
methods (square, triangle and star markers) is much loss than the physics-driven method (circle marker) in
OPENFWI dataset.

14 Test Strategy in Real-world Situation

The selection of the best inversion model is to minimize the discrepancy between the predicted
velocity map and ground truth, which can be written as

argmin
m

D(cpred, ctrue) (9)

where D is the discrepancy, cpred is the predicted velocity map given by inversion model m and ctrue
is the ground truth. The discrepancy D may be obtained by calculation (ℓ1 or ℓ2 norm), or may be
obtained from domain experts.

In the real-world case, ctrue may not be available . If we have a prior velocity map cprior, we will
be able to calculate argmin

m
D(cpred, cprior) to approximate Eq (9). However, the inversion models

must be trained to give cpred. In order to save computational cost, we can minimize the discrepancy
between the training set and the prior velocity map:

argmin
m

∑
traini

D(ctraini
, cprior) (10)

where traini is the index of the training samples corresponding to m.

If there is no prior information, we would suggest using the seismic loss as the discrepancy, which is
similar to physics-driven FWI:

argmin
m

||f(cpred)− dtrue||2 (11)

where f is the forward modeling operator and dtrue is the observed seismic data. Below is the
demonstration of this scheme.

Here we conduct an experiment to demonstrate how to choose a dataset for the target in the real
scenario. We choose a real velocity map in the Gulf of Mexico [27] and simulate the seismic data as
the pseudo-real data. Then we apply all twenty models trained across ten datasets (two models trained
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per dataset using ℓ1 and ℓ2 norm, respectively). We choose the two models with the minimal seismic
loss. The RMSE between the predicted seismic data and the pseudo-real data is given in Figure 21.
The best model trained using ℓ1 is from the FlatVel-B dataset and the best model trained using ℓ2 is
from the Style-A dataset. Both models generate reasonably good velocity maps.
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Figure 21: Seismic data loss between predicted seismic data and pseudo-real data. Among all the models
trained with ℓ1 norm and ℓ2 norm, models trained with FlatFault-B and Style-A have the lowest RMSE,
respectively. The predicted velocity maps with these two models are shown.

All of the methods mentioned above would require some additional effort to select the best datasets to
use. If we would like to choose one with minimal effort, we would suggest using the "Style Family"
in that this particular dataset yields highly diversified features obtained from natural images. That
would enable the inversion of field data in general cases. You may choose version A or version B
depending on the requirement of the velocity resolution.

15 Passive Picking
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Figure 22: P-wave arrival pickings by InversionNet trained on the Style-B dataset. Arrival labels manually
generated and used in the training stage.

The current OPENFWI datasets mainly focus on geophysical imaging problems with active or
controlled seismic sources, meaning the seismic sources are usually controlled explosions or generated
by vibrators. However, there is another sub-field of geophysical imaging problems, passive seismic
imaging, in which the source term is unknown. It is a common problem in global seismology,
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hydraulic fracturing monitoring, shale oil/gas exploration, CO2 injection monitoring, and many
other fields of study. The main objective is to find the passive seismic source information, including
source spatial location, onset, and seismic moment tensor, when giving a trustful velocity model. A
potential contribution of OPENFWI to passive seismic problems is using the provided large number
of simulated traces to train a neural network, such as PhaseNet [28], that can do arrival picking or
event detection, which is an important step for passive seismic imaging problems. We take P-wave
arrival picking as an example in this paper. We convert the Style-B dataset by adding (a) the labels
of P-wave arrivals, and (b) strong Gaussian noise (σ = 5 × 10−3) to the seismic traces. Then we
train an InversionNet to predict the P-wave arrivals from noisy seismic traces. The corresponding
test results are shown in Figure 22, which indicates the InversionNet trained on the converted dataset
accurately recognizes P-wave arrivals. Besides, people may also manually set the sources in the
OPENFWI dataset as unknowns, though they are all located on the top surface, and invert the sources
and velocity models in FWI schemes [29, 30] or by neural networks. In a future OPENFWI version,
we may open-source passive seismic datasets and benchmarks upon data availability and approval of
DOE and LANL.

16 Discussion

16.1 Past Version

We remark that several datasets with the same name have been used in previous publications.
Specifically, FlatVel-A and CurveVel-A first emerged in [9]; FlatFault-A and CurveFault-A were
generated in [11]; Style-A and Style-B were proposed in [3]. OPENFWI unified all datasets in the
“Vel”, “Fault” and the “Style” families in terms of data size and forward modeling parameters, also
training parameters for the benchmarking results. Therefore there is a slight difference from the
previously reported experimental results. From OPENFWI, we will maintain the datasets as presented
now, and the future comparison should also be conducted with OPENFWI benchmarks.

16.2 Limitations

OPENFWI datasets: All datasets are synthesized from only a few prior knowledge (i.e., mathemat-
ical representations, natural images, or geological reservoir), therefore would inherently limit the
representativeness and variability of the generated velocity maps. We also note that the “Style Family”
datasets are excellent candidates for the inversion of field data in general cases. However, there may
be some specific subsurface structures that are not covered by OPENFWI. Additionally, it would be
better if OPENFWI can be validated with some field data for further evaluation.

OPENFWI benchmarks: There are two main limitations with the current benchmarks. One, the 3D
FWI has limited literature and our benchmark is almost solitary. Furthermore, our evaluation strategy
tests randomly selected channels, therefore is not ubiquitous. The other concern is that data-driven
FWI has been flourishing with new advancements, we may not be able to compare all other most
recent methods due to the unavailability of the codes associated.
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