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Abstract

The recent advancements in large language models (LLMs) have sparked a growing1

apprehension regarding the potential misuse. One approach to mitigating this risk2

is to incorporate watermarking techniques into LLMs, allowing for the tracking and3

attribution of model outputs. This study examines a crucial aspect of watermark-4

ing: how significantly watermarks impact the quality of model-generated outputs.5

Previous studies have suggested a trade-off between watermark strength and out-6

put quality. However, our research demonstrates that it is possible to integrate7

watermarks without affecting the output probability distribution with appropriate8

implementation. We refer to this type of watermark as an unbiased watermark.9

This has significant implications for the use of LLMs, as it becomes impossible10

for users to discern whether a service provider has incorporated watermarks or not.11

Furthermore, the presence of watermarks does not compromise the performance12

of the model in downstream tasks, ensuring that the overall utility of the language13

model is preserved. Our findings contribute to the ongoing discussion around14

responsible AI development, suggesting that unbiased watermarks can serve as15

an effective means of tracking and attributing model outputs without sacrificing16

output quality.17

1 Introduction18

In recent years, large language models (LLMs) [19, 39, 40] have become an indispensable tool for a19

wide range of tasks, including text generation [27, 10], translation [7, 5], summarization [36], etc.20

With the escalating misuse of LLMs, such as plagiarism, tracking the usage of text generated by21

machines has become increasingly important. One viable method to monitor the usage of LLMs22

is watermarking [20, 32, 59], which embeds imperceptible information within the generated text,23

thereby allowing for efficient detection and tracking of the model’s potential abuse.24

Watermarking techniques can serve multiple purposes, such as embedding ownership information25

within the generated text to protect the intellectual property rights of the model. It can also help26

mitigate potential harm caused by LLMs by monitoring where the model is being used and whether it27

is being misused or abused.28

A good watermarking method should not adversely affect the normal usage of the language model or29

degrade the quality of the generated text. However, a prevailing belief holds that there is an inevitable30

trade-off between the strength of the watermark and the quality of the output text. For instance,31

recent work by Kirchenbauer et al. [32] introduced a method that augmented the logits of a randomly32

selected set of "green" tokens. By tuning the “magnitude of logits adjustment”, they demonstrated a33

trade-off between watermark strength and text quality.34

Our primary contribution is to challenge this conventional wisdom. We show that with the right35

implementation, watermarking can be accomplished without affecting the output quality. We refer to36

this particular type of watermark as an unbiased watermark. We approach the problem of output37

quality degradation from the perspective of watermark detection. We posit that if the watermark38
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causes a decline in output quality, there should be a method to guess the presence of the watermark39

based on the quality. Conversely, if the watermark cannot be detected, it implies that the output40

quality remains unaffected. Specifically, we provide a proof that with a suitable implementation,41

watermarking does not affect the output probability distribution. This has significant implications,42

as users who do not have the private key are unable to discern whether a service provider has43

applied watermarking to the model. Furthermore, the addition of watermarking does not affect44

the performance of the generated text in any downstream tasks. Our main contributions can be45

summarized as follows:46

• We introduce unbiased watermark, an innovative family of watermark methods that guarantee the47

non-degradation of text quality. In addition, we offer a comprehensive framework that facilitates48

the design and detection of unbiased watermarks.49

• We propose two innovative and practical watermarking techniques known as δ-reweight and50

γ-reweight. Through extensive experimentation, we demonstrate that these techniques preserve51

output quality in machine translation and text summarization tasks.52

• We develop an advanced maximin variant of the original log-likelihood ratio test for watermark53

detection. This novel detection method comes with theoretical guarantees, specifically an upper54

bound on type I error, thus enhancing the reliability of watermark detection in language models.55

2 Preliminary56

In this section, we delve into the problem of watermarking in the context of LLMs. We begin by57

setting up the problem and defining essential concepts.58

Problem Modeling: We first introduce several notations to formalize the problem. Let Σ denote the59

vocabulary set, which is the set of all possible tokens an LLM can generate in a single step. We then60

define the set Σ∗ as the collection of all possible strings of any length, including those of length zero.61

An LLM generates a sequence of tokens conditioned on a given context. In a single step, the62

probability of generating the next token xn+1 ∈ Σ given the current context, x1, x2, ..., xn, can be63

denoted as PM (xn+1 | x1, x2, ..., xn). The LLM operates in an autoregressive fashion, which means64

the joint probability of generating multiple tokens xn+1, . . . , xn+m can be written as:65

PM (xn+1, . . . , xn+m | x1, x2, ..., xn) =

m∏
i=1

PM (xn+i | x1, x2, ..., xn, xn+1, . . . , xn+i−1).

For simplicity, we use the following notation: PM (xn+1:n+m | x1:n), where xn+1:n+m =66

(xn+1, . . . , xn+m) ∈ Σ∗.67

In the context of watermarking, we introduce a service provider that holds a private key k from the key68

space K. The key k ∈ K is chosen at random from the prior distribution PK(k). The watermarked69

output of the LLM follows distribution PM,w(xn+1 | x1, x2, ..., xn; k), which is conditioned on both70

the key k and the context x1:n. Similarly, we use the notation PM,w(xn+1:n+m | x1:n; k) for the71

probability of generating a sequence of tokens in a watermarked model.72

Objective. Our goal is to devise a watermarking scheme that: a) is efficiently detectable by the73

service provider; b) can’t be detected by users and does not negatively impact the quality of the74

output.75

The reason we focus on the detection of watermarks by users is that it is closely related to the output76

quality. If the watermark causes a degradation in the output quality, there should exist a method77

to infer the presence of the watermark by examining the quality. Conversely, if the watermark is78

undetectable, it implies that it does not impact the output quality.79

From a statistical testing perspective, a watermark is considered strictly undetectable if the probability80

distributions of the watermarked and non-watermarked outputs are identical. To capture this notion,81

we define several desirable properties of watermarking schemes.82

Definition 1 (n-shot-undetectable). For a fixed input sequence a ∈ Σ∗, we say that watermarked83

LLM and key prior pair (PM,w, PK) is n-shot-undetectable compared to original LLM PM if84

n∏
i=1

PM (xi | a) =
∑
k∈K

PK(k)

n∏
i=1

PM,w(x
i | a; k), for any n number of strings xi ∈ Σ∗.
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Definition 2 (downstream-invariant). We say the watermarked LLM and key prior pair (PM,w, PK)85

are invariant compared to original LLM PM on downstream tasks iff86

Ex∼PM,w(·|a;k),k∼PK
[f(x)] = Ex∼PM (·|a)[f(x)],

for any strings x,a ∈ Σ∗, and for any metric f : Σ∗ → R.87

Note that the one-shot-undetectable property implies the downstream invariant property. Interestingly,88

this implication does not require the n-shot-undetectable property for n > 1, which means a water-89

marking scheme that is one-shot-undetectable can still maintain the output quality for downstream90

tasks even if the user might discern the existence of the watermark through multiple generation91

requests.92

In summary, we have outlined the preliminary concepts and objectives for developing a watermarking93

scheme for LLMs. We highlight the desired properties of n-shot-undetectability and downstream94

invariance, as they provide a rigorous theoretical guarantee of quality preservation and integrity in95

the deployment of watermark schema. In Section 4, we will present a watermark framework that is96

provably n-shot-undetectable for any given integer n ≥ 1.97

3 Warm up: undetectability in a simplified toy environment98

In this subsection, we aim to prove the feasibility of undetectability in a highly simplified toy99

environment. This preliminary analysis serves as a foundation for understanding the more complex100

scenarios that follow.101

Settings. Consider a service provider that offers a random number generation service. The service102

outputs a uniformly distributed random number in the set {0, 1}. The clean generation process can103

be represented as PM (x) = 1/2, ∀x ∈ {0, 1}. We assume that the key k belongs to the set {0, 1}104

and is selected with equal probability. With the watermark added, the probability of the new output105

can be expressed as: PM,w(x | k) = δk(x).106

Recall that the one-shot-undetectable property can be represented as PM (x) =
∑

k∈K PM,w(x |107

k)PK(k). Suppose that a user can only make a single request to the service. If the user is unaware108

of the key, the user will be unable to distinguish whether the received result is watermarked or not.109

Therefore, in this simplified scenario, the undetectability of the watermark is achieved.110

However, there is a considerable gap between this toy example and the practical implementation of111

watermarking in LLMs. Firstly, the symbol set Σ in LLMs is far more complex than the binary set112

{0, 1}, and the probability distribution is not uniform. Besides, the generation process in LLMs is113

autoregressive, which means that more than one symbol are generated iteratively. Furthermore, the114

toy example does not satisfy the n-shot-undetectable property for n > 1.115

Despite these differences, this simple example provides essential insights that help in understanding116

the following sections where we address these challenges. The underlying principles of undetectability117

remain constant, while their application becomes more intricate in a more complex environment.118

4 Watermarking with unbiased reweighting119

In this section, we build upon the intuition from the previous section and extend the approach to120

LLMs’ generation. The section is structured as follows: Section 4.1 introduces a fundamental121

mathematical tool for addressing the reweighting problem in general discrete probability distributions.122

Section 4.2 applies the reweighting technique to LLMs. Section 4.3 presents the final framework.123

4.1 Distribution reweighting124

In its most general form, we consider a random watermark code E and a reweight function RE :125

∆Σ → ∆Σ, which depends on the random watermark code E. The set of all possible probability126

distributions on the symbol set Σ is denoted as ∆Σ, which forms a simplex.127

Definition 3. A reweighting function is a tuple (E , PE , R) where E is called the watermark code128

space, PE is a probability distribution on space E , and R is a function R : E × ∆Σ → ∆Σ.129

For a specific watermark code E ∈ E , we denote the partially evaluated reweighting function as130

RE : ∆Σ → ∆Σ.131

Definition 4. Given a random watermark code E and a reweighting function RE : ∆Σ → ∆Σ, we132

say that R is an unbiased reweighting function if and only if for all P ∈ ∆Σ, EE [RE(P )] = P .133
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4.1.1 Existing reweighting methods134

Kirchenbauer et al. [32] essentially comprise two reweighting methods in their work, but neither of135

them satisfies the unbiased property.136

Both methods have E as the set of mappings f : Σ → {red, green}, such that f maps half of the137

tokens in Σ to ‘red’ and the other half to ‘green’, and PE as a uniform distribution. Therefore, the138

random watermark code E assigns each symbol to either red or green. The “Hard Red List” method139

sets the probability of all red symbols to zero and renormalizes the probabilities of the remaining140

vocabulary. The second method is “Soft Red List” blocking, where they randomly select the same141

“Red List” as the first method and decrease the corresponding probability for red symbols by adding a142

constant δ to the logits of the green symbols, then apply softmax to obtain the final probabilities.143

4.1.2 Unbiased reweighting methods144

In this section, we present two reweighting methods that satisfy the unbiased property.145

δ-reweight: Let the watermark code space E be the interval [0, 1], and let PE be the uniform146

probability on E . Leveraging Inverse Transform Sampling1 [14], we can sample from distribution147

P ∈ ∆Σ using a uniformly distributed random number in [0, 1]. Therefore, we have a mapping148

samplingP : E → Σ. The δ-reweight just returns a delta distribution RE(P ) = δsamplingP (E).149

It is important to note that while the reweighted distribution for each individual random event E150

is a delta distribution, the mean output token probabilities remain the original distribution P when151

considering the randomness of E.152

γ-reweight: Let the watermark code space E be the set of all bijective function between vocabularies153

set Σ and a set of indices [|Σ|] = {1, . . . , |Σ|}, where |Σ| is the size of vocabularies set Σ. Essentially,154

any watermark code E is an indexing function for vocabularies set Σ, and is also equivalent to a total155

order on Σ. Let PE be the uniform probability on E , it is easy to sample a watermark code E by156

randomly shuffling the symbol list.157

Assume the original distribution is PT (t) ∈ ∆Σ,∀t ∈ Σ. Given the watermark code E : Σ→ [|Σ|],158

we construct auxiliary functions FI(i) =
∑

t∈Σ 1(E(t) ≤ i)PT (t), FS(s) = max(2s − 1, 0),159

FI′(i) = FS(FI(i)). The γ-reweight yields new distribution PT ′(t) = FI′(E(t))− FI′(E(t)− 1).160

... “ but" ... “ized" ...

E

Reweight

“ized"

0 1
Figure 1: Illustration of δ-reweight.

... “ but" ... “ized" ...

... “ized" ... “ but" ...

0 1/2 1

Shuffle

Reweight

“ized" ... “ but" ...

0 1
Figure 2: Illustration of γ-reweight.

We provide illustrations of the δ-reweight and γ-reweight methods in Figures 1 and 2. Each block161

represents a token, and the width represents the probability of that token, so the total length is 1 The162

left panel shows the δ-reweight method, where each individual random watermark code E ∈ [0, 1]163

uniformly sampled from interval [0, 1] corresponds to a specific token according to the horizontal axis,164

and the reweighted distribution is just a δ distribution on that token, such that the selected token has 1165

probability, and all other vocabulary tokens have a probability of 0. The right panel demonstrates the166

γ-reweight method. First, the symbol set is shuffled. Then, the left half of the regions are rejected,167

and the remaining regions are amplified with a factor of 2.168

Both methods are unbiased1 when considering the randomness of the watermark code E. For δ-169

reweight, we can see that by noticing that the probability of returning a δ distribution on a token is170

1Detailed definition and rigorous proof can be found in Appendix B
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just the original probability on that token, therefore the weighted average of all delta distributions is171

still the original probability. In the case of γ-reweight, although certain regions are rejected and the172

other regions are amplified, every token has the same probability to be in the rejected or amplified173

region, thus ensuring the unbiased property.174

4.2 Reweighting for autoregressive model175

The reweighting methods presented in the previous section can be applied to single token-generation176

directly. Given a prefix x1:n, the probability distribution for generating a new token without a177

watermark is denoted as PM (·|x1:n) ∈ ∆Σ. For a random watermark code E, we sample from a178

new distribution PM,w(·|x1:n) = RE(PM (·|x1:n)) ∈ ∆Σ. If the reweighting function is unbiased,179

we have EE [RE(PM (·|x1:n))] = PM (·|x1:n). This ensures that, for an individual unaware of180

the watermark code, it is impossible to determine whether a new token is sampled directly from181

PM (·|x1:n) or from PM,w(·|x1:n;E) for a random watermark E. However, if the watermark code is182

known, one can perform statistical hypothesis testing to determine the likelihood of a token being183

sampled from either distribution.184

The main challenge now is constructing the watermark code E. Since the LLM generation task is185

autoregressive, multiple reweighting steps are required, with each step needing a watermark code Ei186

for reweighting the distribution of token xi.187

4.2.1 Independence of watermark codes188

It is crucial that Ei values are independent to ensure the unbiased nature of the entire sequence, rather189

than just the single-token generation process.190

Theorem 5. Given an unbiased reweighting function (E , PE , R), if Ei values are i.i.d. with the191

distribution PE , we have: EE1,...,En
[PM,w(x1:n|a1:m)] = PM (x1:n|a1:m).192

If the Ei values are not independent, we cannot guarantee that the generation probability of the entire193

sequence remains unbiased. As an extreme example, consider a case where all Ei values are identical.194

Referring to the random bit example in the previous section, assume that the correct distribution is195

a sequence where each token is a random 0 or 1 with equal probability. Identical Ei values would196

result in identical token outputs, ultimately producing sequences consisting solely of 0’s or 1’s, which197

is clearly biased.198

4.2.2 Context code199

To construct a large number of independent watermark codes Ei during watermarking and to know200

the used Ei values during watermark detection, we follow an approach similar to Kirchenbauer et al.201

[32] by combining the information from the prefix and a secret key to construct Ei.202

For a single token generation process, given a prefix x1, x2, ..., xn, we consider an abstract context203

code space C and an abstract context code generation function cc : Σ∗ → C. Based on the prefix,204

we construct the context code cn+1 = cc(x1, x2, ..., xn). Specific examples include using the entire205

prefix cn+1 = (x1, x2, ..., xn), and using the m most recent prefixes cn+1 = (xn−m+1, ..., xn). Our206

comprehensive framework accommodates diverse context code generation approaches, particularly207

those that integrate error-correcting mechanisms to augment watermark resilience in the face of text208

manipulation attacks. Nevertheless, we refrain from delving into these strategies within the confines209

of this paper and consider it a subject for subsequent investigation.210

The final watermark code is defined as Ei = Ê(ci, k), using a watermark code generation function211

Ê : C ×K → E .212

Definition 6. Given an unbiased reweighting function (E , PE , R) and a context code space C, an213

unbiased watermark code generation function is a tuple (E , PE , R, C,K, PK , Ê) that satisfies:214

1. Unbiasedness: Ek∼PK
[RÊ(c,k)(P )] = P,∀P ∈ ∆Σ,∀c ∈ C.215

2. Independence: For any n distinct c1, . . . , cn ∈ C, the values RÊ(ci,k)
(P ) are mutually216

independent.217

Theorem 7. For any unbiased reweighting function and context code space, an unbiased watermark218

code generation function always exists.219

In practice, pseudorandom numbers can be used to implement the unbiased watermark code generation220

function in the above theorem. Specifically, the hash value hash(c, k) can be used as a random seed221

5



to sample E from PE as an implementation of E = Ê(c, k). In this paper, we employ SHA-256 for222

hash function and a 1024-bit random bitstring as the key k.223

An unbiased watermark code generation function ensures that watermark codes Ei are independent224

with each other if only their context codes are different. During the generation of a sequence,225

context codes may be repeated, although this is a rare event in practice. If ci and cj are equal,226

then Ei and Ej are also equal, violating the independence of Ei. A simple workaround is to skip227

reweighting for a token when encountering a previously used context code. In other words, we set228

PM,w(·|a1:m,x1:i−1) = PM (·|a1:m,x1:i−1) if the context code has appeared before.229

4.3 Framework230

Algorithm 1 Watermarking framework

1: Input: key for watermark k ∈ K, prompt a1:m ∈ Σ∗, generate length n ∈ N, initial code
history cch ∈ 2C , context code function cc : Σ∗ → C, watermark code generation function
Ê : C ×K → E , and reweighting function R : E ×∆Σ → ∆Σ.

2: for t = 1, . . . , n do
3: Pi ← PM (· | a1:m,x1:i−1) ▷ original distribution
4: ci ← cc(· | a1:m,x1:i−1) ▷ context code
5: if ci ∈ cch then
6: Qi ← Pi ▷ skip the reweighting
7: else
8: cch← cch ∪ {ci} ▷ record history
9: Ei ← Ê(ci, k) ▷ watermark code

10: Qi ← REi
(Pi) ▷ reweighted distribution

11: Sample the next token xi using distribution Qi

12: return x1:n

Integrating the tools discussed earlier, we present a general framework for watermarking here. The231

algorithm for this framework is outlined in Algorithm 1.232

We note that our abstract framework requires the specification of two key components in order to be233

practically implemented: the unbiased reweight function RE and the context code function cc.234

5 Statistical hypothesis testing for watermark detection235

In the previous section, we discussed the process of adding a watermark to a text based on a secret236

key k and a given prompt a1:m. The watermark-embedded text can be sampled from the distribution237

PM,w(x1:n|a1:m; k). In this section, we focus on the watermark detection task, which is the inverse238

problem of watermark embedding.239

Given a text x1:n, the goal of watermark detection is to infer whether it is more likely to be generated240

from the unmarked distribution PM (x1:n|a1:m) or the marked distribution PM,w(x1:n|a1:m; k).241

This problem can be formulated as a statistical hypothesis test between two competing hypotheses:242

H0, which posits that x1:n follows the unmarked distribution, and H1, which posits that x1:n follows243

the marked distribution.244

5.1 Score-based tesing245

We focus on a particular kind of score-based testing, which assigns a score to each token in the text.246

The score can be interpreted as the confidence that the token was generated by the watermark model247

rather than the original model. Scores si can be computed based on x1:i, in accordance with the248

autoregressive manner of the generation process.249

The total score S is given by S =
∑n

i=1 si. A threshold Ŝ is set such that if S < Ŝ, the null250

hypothesis H0 is accepted, indicating insufficient evidence to conclude that the text contains a251

watermark. Otherwise, the null hypothesis is rejected. There are two types of error probabilities252

associated with this decision process: type I error, which is the probability of incorrectly rejecting253
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the null hypothesis under H0, denoted as PH0(S ≥ Ŝ), and type II error, which is the probability of254

incorrectly accepting the null hypothesis under H1, denoted as PH1
(S < Ŝ).255

To derive theoretical results, we require the scores to have a specific property: under the null256

hypothesis H0, the exponential momentum of si is bounded, conditioned on the preceding context257

x1,i−1. This requirement leads to an upper bound on α, the type I error probability.258

To derive theoretical results, we require that the scores have a particular property: the exponential259

moment of si under H0 should be bounded, conditioned on the previous text x1,i−1. This requirement260

leads to an upper bound on the type I error rate.261

Theorem 8. Given a probability space (Ω,A, P ) and a Σ-valued stochastic process xi : 1 ≤ i ≤ n,262

as well as an R-valued stochastic process si : 1 ≤ i ≤ n, let Fx
i := σ(xj | 1 ≤ j ≤ i) and263

Fs
i := σ(sj | 1 ≤ j ≤ i) be the corresponding filtrations, where σ(·) denotes the σ-algebra264

generated by random variables. If Fs
i ⊆ Fx

i and E[exp(si)|Fx
i−1] ≤ 1, then P (

∑n
i=1 si ≥ t) ≤ e−t.265

Therefore, to ensure that the type I error probability has an upper bound α, we can set the threshold266

Ŝ as Ŝ = − log(α). In the following, we discuss two special scores.267

5.2 Log likelihood ratio (LLR) score268

According to the Neyman-Pearson lemma, the likelihood ratio test is the most powerful test among269

all tests with the same type I error rate. Specifically, the log-likelihood ratio (LLR) score is defined as270

si = log
PM,w(xi|a1:m,x1:i−1;k)
PM (xi|a1:m,x1:i−1)

, and the total score becomes S = log
PM,w(x1:n|a1:m;k)
PM (x1:n|a1:m) .271

We now provide an optimization derivation of the above si to gain intuition and set the foundation272

for the maximin variant of the LLR score in the next section. Let Pi = PM (·|a1:m,x1:i−1),273

Qi = PM,w(·|a1:m,x1:i−1; k), and let si = Si(xi) ∈ R denote the score corresponding to different274

xi. Note that Pi, Qi, and Si are all functions with signature Σ→ R, therefore equivalent to vectors275

of dimension |Σ|. We can define the inner product as ⟨Pi, Si⟩ =
∑

x∈Σ Pi(x)Si(x).276

The requirement E[exp(si)|F x
i−1] ≤ 1 can be reformulated as ⟨Pi, exp(Si)⟩ ≤ 1, where the expo-277

nential function is applied element-wise. Instead of minimizing the type II error directly, we aim to278

maximize the average score under H1, i.e., ⟨Qi, Si⟩.279

The optimization problem becomes maxSi
⟨Qi, Si⟩, s.t. ⟨Pi, exp(Si)⟩ ≤ 1. The optimal solution is280

given by Si(x) = log Qi(x)
Pi(x)

, which recovers the optimal log likelihood ratio score.281

5.3 Maximin variant of LLR score282

One major limitation of the LLR score described in the previous section is that when Qi(x) = 0,283

Si(x) = −∞. This means that as long as a single token does not come from the watermark model284

PM,w, the score becomes negative infinity, making it impossible to reject the null hypothesis H0.285

A more general reason for this issue is that the watermark model PM,w used in the detection process286

may not exactly match the true distribution of the watermarked text. In practice, potential sources of287

discrepancy include editing (e.g., a text sampled from PM,w may undergo some degree of editing288

before being watermark detection) and imperfect estimation of the generation process (e.g., due to289

lack of knowledge of the exact prompt and temperature used during generation).290

To address this problem, we consider a perturbed generation distribution. Instead of the original291

hypothesis H1, where x1:n follows the watermark distribution PM,w, we now assume that x1:n292

follows a distribution P ′
M,w, which is similar to but not identical to PM,w. Specifically, during the293

generation of each token, the total variation (TV) distance between Q′
i and Qi is bounded by d.294

The corresponding new optimization problem is295

max
Si

min
Q′

i∈∆Σ,TV (Q′
i,Qi)≤d

⟨Q′
i, Si⟩, s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

Intuitively, the optimal solution for Q′
i in the inner optimization decreases Q′

i(x) when Si(x) is large296

and increases Q′
i(x) when Si(x) is small.297

The computation of the maximin solution can be done efficiently in Õ(|Σ|) time and the specific298

algorithm is shown in Appendix B.5.299
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(b) Machine translation
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Figure 3: Distribution of perplexity of output for TS and BLEU score for MT.

It is important to note that the maximin variant of the LLR score is more robust than the standard300

LLR score, as it yields higher scores when the text has undergone some degree of editing. However,301

it is not specifically designed to defend against any attacks.302

A hyperparameter d ∈ [0, 1] that represent the perturbation strength is introduced in the score.303

Intuitively, if the text to be detected has undergone more editing and deviates further from the304

distribution PM,w, d should be larger. In practice, we recommend using grid search to select the best305

value of d. Assuming there are A candidate values for d, corresponding to A different scores s(a)i306

(1 ≤ a ≤ A), we can modify Theorem 8 as follows.307

Theorem 9. Under the same conditions as Theorem 8, but with multiple scores s(a)i , we have308

P

(
max

1≤a≤A

(
n∑

i=1

s
(a)
i

)
≥ t

)
≤ Ae−t.

Thus, when using grid search, the final threshold should be adjusted as Ŝ = − log(α) + log(A). This309

ensures that the upper bound of the type I error is still α.310

6 Experiments311

We evaluate the performance of our Unbiased Watermarks on two important applications of seq2seq312

models: text summarization (TS) and machine translation (MT). For the TS task, we use the313

BART-large model [37] and the CNN-DM [25] corpus as our testing dataset. The MT task involves314

translating English to Romanian, for which we employ the Multilingual BART (MBart) [37] model on315

the WMT’14 En-Ro corpus. For further details on the experiment setup, please refer to Appendix E.316

Table 1: Performance of different watermarking methods on TS and MT. We use F1 scores of
BERTScore and scale BERTScore and ROUGE-1 with a factor of 100.

Text summarization Machine translation
BERTScore ↑ ROUGE-1 ↑ Perplexity ↓ BERTScore ↑ BLEU ↑

No Watermark 32.70± 0.08 38.56± 0.09 5.024± 0.018 55.9± 0.3 21.8± 0.3
δ-reweight 32.71± 0.08 38.57± 0.09 5.022± 0.018 56.3± 0.3 21.7± 0.3
γ-reweight 32.69± 0.08 38.60± 0.09 5.019± 0.018 56.2± 0.3 21.8± 0.3
Soft(δ=0.0) 32.70± 0.08 38.56± 0.09 5.024± 0.018 55.9± 0.3 21.8± 0.3
Soft(δ=1.0) 32.35± 0.08 38.20± 0.09 5.313± 0.018 55.1± 0.3 21.0± 0.3
Soft(δ=2.0) 31.21± 0.08 37.17± 0.08 6.253± 0.022 53.8± 0.3 19.5± 0.3

Our primary focus is to compare the performance of our proposed unbiased watermarking methods317

including the δ-reweight and γ-reweight, with the soft-red-list method presented by Kirchenbauer318

et al. [32]. The strength of the watermark in the soft-red-list approach is controlled by a parameter δ.319

The quality of output post-watermarking is presented in Table 1. We observed that the output quality320

remains unaffected by our unbiased watermark methods, both for the δ-reweight and γ-reweight,321
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Table 3: Text sampled from OPT-6.7B, with and without watermarks. For "No watermark” (NW),
the score is computed based on δ-reweight. When watermarks are included, the corresponding
reweighting function is used for computing score. The optimal perturbation strengths d obtained by
grid search are 0.9, 0.0, 0.0 for three outputs respectively.

Prompt What is a watermark? What’s the purpose of it? score p-value2

NW Why don’t you want it on there? I’m confused..\nI think he meant to say logo,
since he wrote ”watermark”, so the first word must be a typo.\nYes! Exactly typo.
Sorry, English is not my native language.. Thanks for the explanation!

0.30 8.14

δ-RW \nIt is supposed to be watermarking the pictures that you took with your phone i
think. So, so you can share your pictures and not take credit for them.

75.9 1.2e−32

γ-RW \nA watermark is a small image or logo (often in square pixels) that is placed
over the larger, original image. It serves primarily to distinguish copyright or
ownership of large images (such as banners and logos) and, on rare occasion, to
identify small images (such as thumbnail images for blog posts and pictures).

32.9 5.7e−14

irrespective of the task and metric. Conversely, the soft-red-list method, when δ = 0, does not322

introduce any watermark and hence does not affect output quality. However, for δ > 0, it significantly323

impairs the quality of output.324

Figure 3 provides a more intuitive depiction of the score distributions. It is evident that our unbiased325

watermark methods not only ensure that the mean performance remains unaffected but also that the326

performance distribution is stable. Conversely, the soft-red-list method shows a notable performance327

decrease.328

Table 2: Mean and variance of score per token for
different reweighting methods and different tasks.

Text summarization Machine translation

δ-RW 0.8784± 1.4354 0.4192± 1.1361
γ-RW 0.2207± 0.3678 0.1056± 0.2916

In terms of watermark detection, we com-329

pute score associated with each token. The330

mean and variance of score per token for331

TS and MT are presented in Table 2. As332

a heuristic, if the sum of the scores for all333

tokens in a sentence reaches 10, a p-value of334

less than 0.0005 is ensured. If the sum score335

hits 20, the p-value must be less than 3e−8.336

Additionally, we provide an example of watermarking applied to a completion task in Table 3. It337

visually demonstrates the score distribution across tokens: positive scores are represented in green,338

and negative ones in red. The intensity of the color corresponds to the magnitude of the score, with339

darker shades representing larger absolute values.340

7 Related work341

The idea of watermarking text has been widely explored by many researchers [11, 31, 44, 45, 4, 28,342

49, 43], even before the advent of large language models. Several techniques involve editing existing343

text to add a watermark, such as changing synonyms [54, 57, 9, 59, 66] or visually indistinguishable344

words [46], altering sentence structures [56, 55, 38], and employing neural networks [22, 23, 67].345

Recent advancements in generative models have opened new possibilities for directly generating346

watermarked results. Two relevant works in this domain are by Kirchenbauer et al. [32] and Aaronson347

[1]. Due to space constraints, we moved the in-depth analysis and other related work to Section A.348

8 Conclusion349

Overall, this paper provides a novel framework of watermarking for language models, demonstrating350

that it is possible to use watermark to protect intellectual property and monitor potential misuse351

without compromising the quality of the generated text. This research serves as a valuable foundation352

for future work in the field of watermarking for large language models.353

2This is an upper bound computed based on Theorem 9. The upper bound could be larger than 1, but this
does not necessarily imply that the p-value exceeds 1.
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A Related works529

A.1 Text watermarking530

The idea of watermarking text has been widely explored by many researchers [11, 31, 44, 45, 4, 28,531

49, 43], even before the advent of large language models. Several techniques involve editing existing532

text to add a watermark, such as changing synonyms [54, 57, 9, 59, 66] or visually indistinguishable533

words [46], altering sentence structures [56, 55, 38], and employing neural networks [22, 23, 67].534

Recent advancements in generative models have opened new possibilities for directly generating535

watermarked results. Two relevant works in this domain are by Kirchenbauer et al. [32] and Aaronson536

[1]. Kirchenbauer et al.’s pioneering work, which uses the previous context to generate watermarked537

tokens, heavily influences our approach. However, their watermarking technique can introduce bias538

to the output, leading to performance degradation. Our work addresses this limitation by applying539

unbiased reweighting and recording context code history.540

Aaronson [1] have talked about using a pseudo-random cryptographic function for watermarking,541

but the details are not disclosed, making it challenging to conduct a direct comparison. Aaronson’s542

“cryptographic pseudorandom function" could be a special case of reweighting function in this paper.543

However, in his blog, there is no apparent structure akin to “context code history", a mechanism544

that plays a crucial role in our work to ensure n-shot-undetectability. Therefore, it remains uncertain545

whether Aaronson’s technique could offer a similar theoretical guarantee of n-shot-undetectability546

as ours. Additionally, it is not clear if their method provides an upper bound on type I error, like547

Theorem 8.548

A.2 Attacks on watermarks549

Alongside the development of watermarking technologies, various methods to modify and remove550

these watermarks and their countermeasures have also been explored. These include attacks based on551

invisible characters and homoglyphs [16, 24, 41, 8], generative attacks such as those that prompted552

the model to change its output in a predictable and easily reversible way [32], and specific instances553

such as the emoji attack [18], and paraphrasing attacks [47, 33].554

A.3 Steganography in text555

Steganography hides information in text primarily for secret communication. It bears similarities to556

watermarking in that it seeks to conceal information. However, while watermarking only needs to557

detect the presence of a watermark, steganography must recover all embedded information. Many558

approaches have tried to edit existing text, through rule-based transformations [62, 63, 61], synonym-559

based methods [48], and more recently, neural network-based methods [2, 58]. Information can also560

be embedded directly during generation [15, 13, 71].561

A.4 Watermarking models562

Watermarking has also been applied to models themselves to protect intellectual property rights and563

to guard against model stealing or extraction [30, 6, 70]. The aim here is to gather evidence through564

inference services [34, 69] and can be accomplished by adding backdoors to models [3, 21, 20].565

While they are similar to text watermarking in that they embed information without impacting fair566

use, the focus is on tracing the model rather than the text.567

A.5 Detecting machine-generated text568

The objective of detecting machine-generated text lies in discerning whether a given text has been569

produced by an algorithm or written by a human. Such detection is crucial to prevent misuse and570

a substantial body of research has explored this area [68, 26, 12, 29, 51, 53, 52, 60]. However, the571

task has become increasingly challenging due to the continual improvement in language models and572

the advent of adversarial attacks [17, 65, 47]. The difference between this and text watermarking is573

that watermarking is employed to differentiate whether a text is generated by a particular model or574

provider, yet the detection of machine-generated text is not concerned with a specific model.575
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B Detailed definition and additional proofs576

B.1 Detailed definition and additional proofs for Section 4.1577

Definition 10 (hard/soft-red-list reweighting [32]). Given two hyper-parameters 0 ≤ γ ≤ 1 and578

δ ≥ 0, let the watermark code space be E = {E ∈ {0, 1}Σ |
∣∣E−1(1)

∣∣ = ⌊γ|Σ|⌋}, such that f maps579

γ-portion of the tokens in Σ to 1 (which interpreted as “green”) and the other portion to 0 (which580

interpreted as “red”), and let PE to be the uniform distribution on space E . For any watermark code581

E, and for any token distribution P ∈ ∆Σ, the output distribution of the hard-red-list reweighting582

function on a token t ∈ Σ is defined by RE(P )(t) = E(t)P (t)∑
t∈Σ E(t)P (t) assuming

∑
t∈Σ E(t)P (t) > 0.583

The soft-red-list reweighting function is defined by RE(P )(t) = exp{logP (t)+δE(t)}∑
t∈Σ exp{logP (t)+δE(t)} , where584

δ > 0 is a fixed constant.585

Theorem 11. Hard-red-list and soft-red-list reweighting functions are biased.586

Proof. We first show the hard-red-list reweighting is biased. For γ = 0.5, consider Σ = {a, b},
P (a) = 0.9, P (b) = 0.1, we have

RE(P )(a) =
1

2
× P (a)

P (a)
+ 0× 0

P (b)
= 0.5 ̸= 0.9 = P (a).

We then show the soft-red-list reweighting is biased. For γ = 0.5, consider Σ = {a, b}, P (a) =
0.9, P (b) = 0.1, we have

RE(P )(a) =
1

2
× eδP (a)

eδP (a) + P (b)
+

1

2
× P (a)

P (a) + eδP (b)
.

It is easy to verify that for any δ > 0, we have RE(P )(a) < P (a).587

Thus, hard/soft-red-list reweighting are both biased.588

Definition 12 (δ-reweight). Let the watermark code space E be the interval [0, 1], and let E be589

uniformly distributed on E . Given an arbitrary token distribution P ∈ ∆Σ, let B be a bijection590

between Σ and [|Σ|], we construct a cumulative density function of P w.r.t. B by FP (t;B) =591 ∑
t′∈Σ 1(B(t′) ≤ B(t))P (t′),∀t ∈ Σ. Then we can define a mapping samplingP : E → Σ,592

samplingP (E) = B−1(I(E)),

where593

I(E) = min
t

B(t) s.t. E ≤ FP (t;B),

The δ-reweight function is defined by RE(P ) := δsamplingP (E).594

Definition 13 (γ-reweight). Let the watermark code space E be the set of all bijective function
between vocabularies set Σ and a set of indices [|Σ|] = {1, . . . , |Σ|}, where |Σ| is the size of
vocabularies set Σ. Assume the original distribution is PT (t) ∈ ∆Σ,∀t ∈ Σ. Given the watermark
code E : Σ→ [|Σ|], we define

AE(i) := max

{
2

(∑
t∈Σ

1(E(t) ≤ i)PT (t)

)
− 1, 0

}
,

where 1(E(t) ≤ i) = 1 when E(t) ≤ i otherwise 1(E(t) ≤ i) = 0. We define PT ′(E)(t) :=595

AE(E(t)) − AE(E(t) − 1). It’s easy to verify PT ′(E) is a distribution by ∀t ∈ Σ, PT ′(E)(t) ≥ 0596

and
∑

t∈Σ PT ′(E)(t) = 1. Thus, γ-reweight function is defined by RE(PT ) := PT ′(E).597

Theorem 14. Both δ-reweight and γ-reweight are unbiased reweighting functions.598

Proof. According to Definition 4, we need to show EE [RE(P )] = P for arbitrary P ∈ ∆Σ.599
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For δ-reweight, we have RE(P ) = δsamplingP (E) and E is uniformly distributed on [0, 1]. Thus, we600

only need to show ∀t ∈ Σ, EE [δsamplingP (E)(t)] = P (t).601

EE [δsamplingP (E)(t)] =

∫ 1

0

1(samplingP (e) = t) de,

=

∫ 1

0

1(I(e) = B(t)) de,

=

{
FP (t;B)− FP (B

−1(B(t)− 1);B) B(t) > 1

FP (t;B) B(t) = 1

= P (t).

(1)

For γ-reweight, we need to show ∀t ∈ Σ, EE [RE(PT )(t)] = PT (t)602

EE [RE(PT )(t)] = EE [PT ′(E)(t)]

= EE [AE(E(t))−AE(E(t)− 1)].
(2)

Denoted by gE(i) = 2
(∑

t′∈Σ 1(E(t′) ≤ i)PT (t
′)
)
− 1. ∀E ∈ E , we consider the reserved order

Er of E, we have E(t) + Er(t) = n+ 1 and

gE(E(t))+gEr (Er(t)−1) = 2

(∑
t′∈Σ

[1(E(t′) ≤ E(t)) + 1(E(t′) ≥ E(t) + 1)]PT (t
′)

)
−2 = 0.

So we have603

AE(E(t))−AE(E(t)− 1) +AEr (Er(t))−AEr (Er(t)− 1)

=max {gE(E(t)), 0} −max {gE(E(t)− 1), 0}+max {grE(Er(t)), 0} −max {grE(Er(t)− 1), 0}
=gE(E(t)))1(gE(E(t)) > 0)− gEr (Er(t)− 1)1(gEr (Er(t)− 1) > 0)+

gEr (Er(t))1(gEr (Er(t)) > 0)− gE(E(t)− 1)1(gE(E(t)− 1) > 0)

=gE(E(t)))1(gE(E(t)) > 0) + gE(E(t)))1(gE(E(t))) < 0)−
gE(E(t)− 1)1(gE(E(t)− 1) < 0)− gE(E(t)− 1)1(gE(E(t)− 1) > 0)

=gE(E(t)))− gE(E(t)− 1)

=2PT (t),
(3)

which yields604

EE [RE(PT )](t) = EE [AE(E(t))−AE(E(t)− 1)].

=
1

2
(EE [AE(E(t))−AE(E(t)− 1)] + EEr [AEr (Er(t))−AEr (Er(t)− 1)]) .

=
1

2
EE [2PT (t)]

= PT (t).
(4)

605

B.2 Additional proofs for Section 4.2606

Proof of Theorem 5. We have607

EE1,...,En
[PM,w(x1:n|a1:m)]

=EE1,...,En−1
[EEn

[PM,w(x1:n|a1:m)]]

=EE1,...,En−1 [EEn [PM,w(xn|a1:m,x1:n−1)]PM,w(x1:n−1|a1:m)]

=EEn
[PM,w(xn|a1:m,x1:n−1)]EE1,...,En−1

[PM,w(x1:n−1|a1:m)]

=PM (xn|a1:m,x1:n−1)EE1,...,En−1
[PM,w(x1:n−1|a1:m)],
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where the second last step uses the independence of the Ei values and the last step uses the unbi-608

asedness of the reweighting function. Repeating the same argument for the remaining Ei values, we609

obtain610

EE1,...,En
[PM,w(x1:n|a1:m)] = PM (x1:n|a1:m).

611

Proof of Theorem 7. Given a watermark code space E and a watermark code distribution PE(e),612

we construct a key space K = EC , where each key k is a function from the context code space to613

the watermark code space. The random key probability density function is defined as PK(k) =614 ∏
c∈C PE(k(c)).615

This construction forms a particular instance of an unbiased watermark code generation function.616

B.3 Detailed theory for Section 4.3617

Corollary 15. For every generation request by a user, Algorithm 1 can provide a generation result.618

This generation service is n-shot undetectability for any n ∈ N+ if the unbiased watermark code619

generation function is employed, and the context code history is continuously recorded. Specifically,620

the context code history cch is updated after each invocation of Algorithm 1, and the resulting context621

code history is used as the initial context code history for the next invocation.622

On the other hand, if the context code history is reset after every generation task, the generation623

service can only guarantee 1-shot undetectability.624

Proof. The key design element in this service is the context code history. By maintaining the context625

code history throughout the generation process, we can ensure that each time the reweighting is626

performed, the context code is unique, i.e., it has not appeared in any previous generation tasks.627

According to the properties of the unbiased watermark code generation function in Definition 6, this628

guarantees that the watermark codes generated during each reweighting are independent of previously629

generated watermark codes. As a result, the final distribution is unbiased, and n-shot undetectability630

is achieved.631

However, if the context code history is reset after every generation task, it is possible for two632

invocations of Algorithm 1 to produce the same context code, leading to the same watermark code.633

Consequently, n-shot undetectability cannot be guaranteed for n > 1, and the generation service can634

only provide 1-shot undetectability.635

A straightforward variant of the above approach exists in the form of a batch variant. If the batch636

size is set to b and the context code history is reset after each batch, the system can ensure b-shot637

undetectability.638

B.4 Proof of tailed bounds in Section 5639

Proof of Theorem 8.

E

[
exp

(
n∑

i=1

si

)]
= E

[
exp

(
n−1∑
i=1

si

)
E[exp(sn)|Fx

n−1]

]

≤ E

[
exp

(
n−1∑
i=1

si

)]
≤ · · · ≤ 1,

where the abbreviation in the last step means applying similar inequalities multiple times.640

By applying the Chernoff bound, we obtain the desired result.641

Proof of Theorem 9. From Theorem 3, we know that642

P

(
n∑

i=1

s
(a)
i ≥ t

)
≤ e−t.
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Thus,643

P

(
max

1≤a≤A

(
n∑

i=1

s
(a)
i

)
≥ t

)
≤

∑
1≤a≤A

P

(
n∑

i=1

s
(a)
i ≥ t

)
≤ Ae−t.

644

B.5 Details on maximin variant of LLR score645

B.5.1 Derivation of the solution646

Recall that we are dealing with the maximin problem given as:647

max
Si

min
Q′

i∈∆Σ,TV (Q′
i,Qi)≤d

⟨Q′
i, Si⟩

s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

We can find a relaxation by replacing the constraint Q′
i ∈ ∆Σ with

∑
x∈Σ Q′

i(x) = 1 and no longer648

requiring Q′
i(x) ≥ 0. Thus, we obtain the following inequality:649

min
Q′

i∈∆Σ,TV (Q′
i,Qi)≤d

⟨Q′
i, Si⟩ ≥ min

Q′
i,
∑

x∈Σ Q′
i(x)=1,TV (Q′

i,Qi)≤d
⟨Q′

i, Si⟩.

The new maximin problem becomes:650

max
Si

min
Q′

i,
∑

x∈Σ Q′
i(x)=1,TV (Q′

i,Qi)≤d
⟨Q′

i, Si⟩

s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

This relaxation is tight, meaning it does not affect the final maximin optimal solution. This is because,651

even though the relaxed problem does not require Q′
i(x) ≥ 0, the maximin problem’s optimal solution652

S∗
i and Q′

i
∗ must satisfy Q′

i
∗
(x) ≥ 0. Otherwise, S∗

i (x) could be further reduced, implying that653

S∗
i (x) is not an optimal solution and leading to a contradiction.654

The inner optimization of the relaxed problem can be solved directly:655

min
Q′

i,
∑

x∈Σ Q′
i(x)=1,TV (Q′

i,Qi)≤d
⟨Q′

i, Si⟩ = ⟨Qi, Si⟩+ d
(
min
x

Si(x)−max
x

Si(x)
)
.

This leads to the new maximization optimization problem:656

max
Si

⟨Qi, Si⟩+ d
(
min
x

Si(x)−max
x

Si(x)
)

s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

We can find the KKT conditions for this optimization problem by rewriting it as follows:657

max
Si

⟨Qi, Si⟩+ d(maxSi −minSi)

s.t. ⟨Pi, exp(Si)⟩ ≤ 1,

maxSi ≥ Si(x),

minSi ≤ Si(x).

Let the Lagrangian be658

L =max
Si

⟨Qi, Si⟩+ d(minSi −maxSi)

+ λ(1− ⟨Pi, exp(Si)⟩)
+ ⟨u,maxSi − Si⟩
+ ⟨v, Si −minSi⟩.
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Then, the KKT conditions are:659

∂L

∂Si(x)
= [Qi(x)− u(x) + v(x)]− λPi(x) exp(Si(x)) = 0,

∂L

∂maxSi
= −d+

∑
x∈Σ

u(x) = 0,

∂L

∂minSi
= d−

∑
x∈Σ

v(x) = 0,

λ(1− ⟨Pi, exp(Si)⟩) = 0,

⟨u,maxSi − Si⟩ = 0,

⟨v, Si −minSi⟩ = 0.

We can solve for the value of λ:660 ∑
x∈Σ

∂L

∂Si(x)
= [1− d+ d]− λ

∑
x∈Σ

Pi(x) exp(Si(x)) = 0.

Note that λ cannot be 0, so the fourth KKT condition implies ⟨Pi, exp(Si)⟩ = 1. Consequently, the661

above equation implies λ = 1.662

The final solution is given by:663

Si(x) = log
Qi(x)− u(x) + v(x)

Pi(x)
,

u(x) ̸= 0 iff Si(x) = max
x

Si(x),

v(x) ̸= 0 iff Si(x) = min
x

Si(x),∑
x∈Σ

u(x) =
∑
x∈Σ

v(x) = d.

B.5.2 Computing the solution664

Let665

Xmax = {x ∈ Σ | Si(x) = max
x

Si(x)},

Xmin = {x ∈ Σ | Si(x) = min
x

Si(x)}.

If x /∈ Xmax ∪Xmin, then we have666

Si(x) = log
Qi(x)

Pi(x)
.

If x ∈ Xmax, then we have667

max
x

Si(x) = Si(x) = log
Qi(x)− u(x) + v(x)

Pi(x)
.

Summing over all x ∈ Xmax, and noting that
∑

x∈Xmax
u(x) = d, we obtain:668

max
x

Si(x) = log

∑
x∈Xmax

Qi(x)− d+
∑

x∈Xmax
v(x)∑

x∈Xmax
Pi(x)

.

Similarly,669

min
x

Si(x) = log

∑
x∈Xmin

Qi(x)−
∑

x∈Xmin
u(x) + d∑

x∈Xmin
Pi(x)

.

When
∑

x∈Xmin
u(x) ̸= 0, it implies that there exists an x ∈ Xmin such that x ∈ Xmax, which in670

turn implies that maxx Si(x) = Si(x) = minx Si(x). In this case, the score is trivial, with Si(x) = 0671

for all x ∈ Σ.672
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Thus, the computation of the maximin solution reduces to finding Xmax and Xmin, which can be673

computed in Õ(|Σ|) time. A pseudocode is shown in Algorithm 2.674

Note that the provided pseudocode is not a real implementation but serves as a schematic representa-675

tion of the algorithm. In our experimental implementation, we took into consideration the effective676

precision of computer floating-point numbers. To ensure numerical stability and prevent NaNs, we677

implemented the algorithm in log space. This makes the algorithm more complex, and additionally,678

we designed the algorithm with grid search by reusing previous computation results for acceleration.679

We also implemented such algorithm with tensor operator for efficient computation on GPU. For680

more details, please refer to the source code.681

Algorithm 2 Computation of maximin variant of LLR score682

import numpy as np

def get_max_lr(P: np.ndarray, Q: np.ndarray, d: float) -> float:
"""Get $\max_x \exp(S(x))$"""
indexes = sorted(range(len(P)), key=lambda i: Q[i] / P[i], reverse=True)

sum_Q = 0.0
sum_P = 0.0

def _lr():
nonlocal sum_Q, sum_P
if sum_Q <= d:

return 0.0
else:

return (sum_Q - d) / sum_P

lr = _lr()

for i in indexes:
if Q[i] / P[i] < lr:

break
sum_Q += Q[i]
sum_P += P[i]
lr = _lr()

return lr

def get_min_lr(P: np.ndarray, Q: np.ndarray, d: float) -> float:
"""Get $\min_x \exp(S(x))$"""
indexes = sorted(range(len(P)), key=lambda i: Q[i] / P[i])

sum_Q = 0.0
sum_P = 0.0

def _lr():
nonlocal sum_Q, sum_P
return (sum_Q + d) / sum_P

lr = _lr()

for i in indexes:
if Q[i] / P[i] > lr:

break
sum_Q += Q[i]
sum_P += P[i]
lr = _lr()

20



return lr

def get_S(P: np.ndarray, Q: np.ndarray, d: float) -> np.ndarray:
max_lr = get_max_lr(P, Q, d)
min_lr = get_min_lr(P, Q, d)
lr = Q / P
if max_lr <= min_lr:

return np.zeros_like(p)
return np.log(np.clip(lr, min_lr, max_lr))

C Additional discussion683

Performance without context code history Despite that “context code history" is necessary to684

ensure n-shot-undetectable, it’s possible to bypass this requirement, and always execute steps 9 and685

10 in Algorithm 1. In many instances, this won’t significantly degrade the performance of downstream686

tasks, as the probability of context code collision is low. However, if one chooses to neglect the687

context code history, they effectively waive the theoretical guarantee of n-shot-undetectability and688

potentially expose themselves to corner cases that could notably undermine the task performance.689

Moreover, users could specifically construct test cases that check for the existence of watermarks.690

For instance, prompts like "Generate a random bit (0 or 1):" or "Generate a random bit sequence,691

with five dots between every two digits:" would yield incorrect results in the absence of context code692

history.693

Computation of logits during detection The watermark detection methods in Sections 5.2 and 5.3694

relies on the output probability distribution PM . Ideally, the PM used during detection should be695

the same as the one during generation. However, this may not always be possible. Language model696

logits depend on various parameters like the prompt, the temperature and sampling policy used697

during generation, etc., which might not be accessible during watermark detection. For instance, PM698

depends on the prompt, but during detection, we might only have the text to be examined and not the699

prompt from which it was generated.700

In such circumstances, we can only resort to using another distribution P ′
M as an estimation of PM .701

For instance, if the prompt is missing during detection, we can set the prompt to an empty string and702

then calculate the language model probabilities. In a machine translation task, one could translate the703

output back to the input language and use that as input. In practice, there’s likely to be a disparity704

between P ′
M and PM , which could lead to a drop in score. We discuss in detail how the score is705

affected by changes in logits in Appendix F.2.706

Cost of likelihood computation The detection methods in Sections 5.2 and 5.3 require the output707

probability distribution PM . This comes at a computational cost: it’s more computationally expensive708

than red list-based methods proposed by Kirchenbauer et al. [32], as it involves a language model.709

However, the cost is much less than a generation, as it only requires a single forward pass.710

On the other hand, our framework also supports likelihood-agnostic detection methods, which have711

their own pros and cons. We present a detailed comparison of likelihood-based and likelihood-712

agnostic methods and provide an example in Appendix D.713

Perturbation of P The method in Section 5.3 introduces a variation of the log likelihood ratio714

test where the watermarked distribution PM,w is perturbed, resulting in a new optimization problem.715

Similarly, we could introduce a perturbation to the original distribution PM . Specifically, we would716

adjust the original constraint of ⟨Pi, exp(Si)⟩ ≤ 1 to be ⟨P ′
i , exp(Si)⟩ ≤ 1,∀P ′

i , s.t.TV (Pi, P
′
i ) ≤717

d′, where TV (Pi, P
′
i ) denotes the total variation distance between Pi and P ′

i and d′ is a small positive718

number.719

This new optimization problem can be solved using similar methods as those in Appendix B.5.2. We720

have implemented this computation in our codebase. However, for the experiments in this paper, we721

only used the case where d′ = 0.722
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D Likelihood-agnostic watermark score723

Our unbiased watermark can also be detected in a likelihood-agnostic way such that it does not rely724

on a language model and its output logits to compute the score.725

D.1 Method726

D.1.1 Reweighting function727

We use the same δ-reweighting as in Section 4.1.2, but with a different implementation. Instead728

of using inverse sampling, we can also use Gumbel trick. Specifically, each watermark code is729

a list of |Σ| number of independent and identically distributed standard Gumbel variables. The730

watermark code space is E = RΣ. The probability density function of the watermark code is given by731

PE(E) =
∏

a∈Σ e−E(a)+eE(a)

.732

To sample a token using the Gumbel trick, we compute a∗ = argmaxa{logP (a) +E(a)}, and the733

reweighted distribution becomes Q = δa∗ . Gumbel variables allow us to guess the likelihood of a734

token coming from the watermark model without relying on logits, as tokens with larger Gumbel735

variables are more likely to be picked by the watermark model.736

D.1.2 Score design and tail bound737

Similar to Section 5, we calculate scores for each token, but without relying on the original and738

reweighted distribution P and Q. Thus, the design of the likelihood-agnostic score has a certain739

degree of arbitrariness, unlike the method in Sections 5.2 and 5.3 which was derived in a principled740

way.741

We choose the score to be si = ln 2− exp(−E(a∗)). One of the main concerns of this construction742

is that it can yield a tail bound similar to Theorem 8.743

Theorem 16. For n independent random variables Gi ∼ Gumbel(0, 1), if we define si = ln 2 −744

exp(−Gi), we have E[exp(si)] ≤ 1 and P (
∑n

i=1 si ≤ t) ≤ e−t.745

For a token with watermark, the average score is E[ln 2− exp(−Gi(a
∗))] = ln 2−

∑
a∈Σ P (a)2 =746

ln 2− exp(−H2(P )), where H2(P ) is the Rényi entropy of order 2. Therefore, the average score is747

positive only when the entropy is high.748

Note that Theorem 16 requires independence of si, unlike Theorem 8 where the si can be a random749

process. In practice, the Gumbel variables depend on the watermark code, and the watermark code750

might repeat, leading to dependencies between Gumbel variables and thus between scores. To address751

this issue, for repeating context codes, we set the score to zero, ensuring that Theorem 16 remains752

applicable.753

The detection process is as follows: given a text x1:n = (x1, . . . , xn), we obtain a series of context
codes (cc1, . . . , ccn) and watermark codes (E1, . . . , En). The final scores are computed as

si =

{
ln 2− exp(−Ei(xi)) if cci /∈ cc1, . . . , cci−1,

0 if cci ∈ cc1, . . . , cci−1.

D.2 Comparison between likelihood-based score and likelihood-agnostic score754

Compared to the likelihood-based score, the likelihood-agnostic score has some notable drawbacks.755

As it does not rely on logits, it cannot distinguish between high and low entropy situations. In low756

entropy cases, the likelihood-agnostic score still tends to have a large absolute value, even though it757

does not provide any signal and only contributes noise, lowering the score. In extreme cases, when758

the entropy is zero, the generation result is deterministic, and the ideal detection algorithm should759

output a zero score, as there is no evidence for or against the presence of the watermark. However,760

the likelihood-agnostic score would output a negative average score, giving a false indication that the761

text was not generated by a model with watermark.762

Moreover, in cases where the original distribution PM is known, the likelihood-agnostic score is763

much smaller than the log likelihood ratio based score. According to the Neyman-Pearson lemma,764
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the log likelihood ratio test is the most powerful statistical test, and its maximin variant also retains765

this property to a certain degree, thus providing a higher score than likelihood-agnostic score.766

On the other hand, the likelihood-agnostic score has a lower computational cost, as it does not depend767

on the logits computed by a large language model. Furthermore, the fact that likelihood-agnostic768

score is independent of logits from the language model makes it more appealing when the original769

distribution PM is hard to estimate during detection.770

E Detailed experiment setup771

We evaluate the performance of our Unbiased Watermarks on two important applications of seq2seq772

models: text summarization(TS) and machine translation(MT).773

Text summarization. In the TS task, we adopt the test set of of CNN-DM [25] corpus, which consists774

of 11,490 examples. The model applied is BART-large, which contains 400 million parameters.775

Machine translation. For the MT task, we employ the WMT’14 English (En) to Romanian (Ro)776

dataset, which has a test set size of 1,999 examples. The Multilingual Bart (MBart) [37] model and777

its official tokenizer is applied.778

Watermark setup. We evaluate two reweighting functions in our experiment: δ-reweight and779

γ-reweight. For context code generation, we employ the most recent five tokens as context code.780

For example, if the current input to the decoder is (x1, x2, x3), the context code used in generating781

x4 would be (x1, x2, x3), considering only three tokens are available. Context code history is reset782

before generating each batch, thereby making our method b-shot-undetectable given a batch size of b.783

For the unbiased watermark code generation function, we use SHA-256 as the hash function and a784

1024-bit random bitstring as the key k. The watermark code E is sampled from PE using hash(c, k)785

as the random seed.786

In addition, we compared our method with the soft-red-list watermarking method from Kirchenbauer787

et al. [32]. Their method depends on two parameters δ, controlling the size of the change in logits,788

and γ, which is the proportion of the green list in the total vocabulary. We test δ with three values:789

0.0, 1.0, 2.0, and fix γ to be 1
2 . It is important to clarify that the δ and γ in our δ-reweight and790

γ-reweight are different from those in Kirchenbauer et al.’s method. In the latter, δ and γ are791

hyperparameters, while in our method, δ-reweight and γ-reweight are names of two reweighting792

strategies.793

Watermark detection. We employ the maximin variant of LLR score for watermark detection. The794

score depends on a perturbation strength d and is optimized by performing a grid search over the set795

{0, 0.1, . . . , 0.9, 1.0}, which consists of 11 points. The optimal perturbation strength is the one that796

yields the highest score sum.797

Evaluation metrics. For the TS task, we employ the ROUGE score [35], which measures the overlap798

in terms of n-grams to assess the effectiveness of the summary in capturing the essential content from799

the reference summaries. For the MT task, we use the BLEU score [42] that emphasizes the lexical800

similarity between the machine-generated translations and the human reference translations. We801

estimated the distribution and standard error of BLEU score based on bootstrapping. In both tasks,802

we also apply BERTScore and Perplexity as auxiliary metrics.803

Computational costs. Our experiments are carried out on a machine equipped with 2x AMD EPYC804

7513 32-Core Processor and 8x A6000 GPUs. All experiments can be completed within 4 hours.805

Implementation. The experiments are implemented based on the Huggingface library [64], a popular806

platform for developing and sharing models in the NLP community.807

F More experiment808

F.1 Adding watermark809

Tables 4 and 5 shows more result under the same setup as Table 1.810
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Table 4: Additional result about the performance of different watermarking methods on TS. We scale
BERTScore and ROUGE with a factor of 100.

BERTScore.Precision ↑ BERTScore.Recall ↑ ROUGE-2 ↑ ROUGE-L ↑
No Watermark 0.3180± 0.0009 0.3361± 0.0010 0.1388± 0.0008 0.2445± 0.0008
δ-reweight 0.3180± 0.0009 0.3365± 0.0010 0.1392± 0.0008 0.2451± 0.0008
γ-reweight 0.3180± 0.0009 0.3360± 0.0010 0.1397± 0.0008 0.2451± 0.0008
Soft(δ=0.0) 0.3180± 0.0009 0.3361± 0.0010 0.1388± 0.0008 0.2445± 0.0008
Soft(δ=1.0) 0.3092± 0.0009 0.3382± 0.0009 0.1344± 0.0007 0.2400± 0.0007
Soft(δ=2.0) 0.2908± 0.0008 0.3339± 0.0009 0.1238± 0.0007 0.2293± 0.0007

Table 5: Additional result about the performance of different watermarking methods on MT. We scale
BERTScore with a factor of 100.

BERTScore.Precision ↑ BERTScore.Recall ↑ Perplexity ↓
No Watermark 0.546± 0.003 0.575± 0.003 2.31± 0.07
δ-reweight 0.550± 0.003 0.579± 0.003 2.20± 0.05
γ-reweight 0.549± 0.003 0.577± 0.003 2.24± 0.04
Soft(δ=0.0) 0.546± 0.003 0.575± 0.003 2.31± 0.07
Soft(δ=1.0) 0.537± 0.003 0.568± 0.003 2.43± 0.07
Soft(δ=2.0) 0.523± 0.003 0.555± 0.003 2.81± 0.07

F.2 Sensitivity of scores811

The detection methods in Sections 5.2 and 5.3 rely on the output logits of the language models,812

which in turn depend on various factors such as the prompt, the temperature and sampling policy813

used during the generation process, and the language model itself. In this section, we measure the814

sensitivity of the scores to changes in these parameters.815

Watermarked samples are generated from the distribution PM,w, which comes from reweighting of816

the original distribution PM . However, during detection, we modify some parameters, including817

temperature, sampling policy (top_k), input, and model, resulting in a new probability distribution818

P ′
M .819

The following table demonstrates the decrease in scores under different changes, showing that when820

P ′
M is not equal to PM , the scores decline. This implies that more tokens are required to accumulate821

sufficient evidence to prove the existence of the watermark.822

Table 6: Score per token when the estimated token distribution is computed from a different tempera-
ture than the real token distribution.

Text summarization Machine translation
temperature δ-reweight γ-reweight δ-reweight γ-reweight

0.5 0.049± 0.407 0.133± 0.309 0.041± 0.303 0.084± 0.241
1.0 (groundtruth) 0.878± 1.435 0.220± 0.367 0.420± 1.135 0.105± 0.291
1.5 0.036± 0.498 0.166± 0.455 0.019± 0.324 0.088± 0.335

Table 7: Score per token when the estimated token distribution is computed from a different top_k
than the real token distribution.

Text summarization Machine translation
top_k δ-reweight γ-reweight δ-reweight γ-reweight

20 0.520± 1.144 0.212± 0.362 0.274± 0.859 0.101± 0.284
50 (groundtruth) 0.878± 1.435 0.220± 0.367 0.420± 1.135 0.105± 0.291
100 0.582± 1.262 0.219± 0.369 0.288± 0.930 0.105± 0.292
No top_k sampling 0.377± 1.124 0.216± 0.373 0.022± 0.349 0.097± 0.324

Comparing the two reweight functions, we find that when P ′
M is equal to PM , the δ-reweight always823

yields a higher score than the γ-reweight. However, when P ′
M is different from PM , the scores824

obtained from the δ-reweight exhibit a significant drop, whereas the decline in scores for the γ-825
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Table 8: Score per token when the estimated token distribution is computed with and without input.
Text summarization Machine translation

δ-reweight γ-reweight δ-reweight γ-reweight

with input (groundtruth) 0.8783± 1.4353 0.2206± 0.3677 0.4201± 1.1355 0.1058± 0.2916
without input 0.0108± 0.2170 0.0244± 0.2417 0.0096± 0.2004 0.0186± 0.1904

Table 9: Score per token when the estimated token distribution is computed from a different model
than the real token distribution.

Text summarization
model δ-reweight γ-reweight

“philschmid/bart-large-cnn-samsum" (groundtruth) 0.878± 1.435 0.220± 0.367
“facebook/bart-large-cnn" 0.041± 0.447 0.091± 0.412

reweight is always more gradual than that of the δ-reweight. This indicates that the γ-reweight is less826

sensitive to the differences between P ′
M and PM .827

F.3 Likelihood-agnostic score828

When applied to text summarization, which is a task with relatively high entropy, the likelihood-829

agnostic score is positive on average but an order of magnitude lower than the likelihood-based score.830

For machine translation, which is a low entropy task, the average score is negative, and thus cannot831

be used to detect watermark in this case.832

Table 10: Mean and variance of score per token for δ-reweight based on Gumbel trick on different
tasks.

Text summarization Machine translation

Maximin variant of LLR score 0.876± 1.444 0.429± 1.172
Likelihood-agnostic score 0.078± 0.776 −0.104± 0.891

G Limitations833

G.1 Major Limitations834

• First, we note that our unbiased watermarking technique only works for generative processes with835

high entropy. In an extreme case, when entropy is 0 and output of the original model is fixed, any836

unbiased watermarking method will always yield the same result as the original model. As a result,837

it is challenging to integrate our unbiased watermarking approach with beam search algorithms838

due to their intrinsic deterministic nature.839

• Second, our study does not address the attacks to the watermark. Numerous ways of watermark840

removal have been explored, ranging from simple text insertion to more sophisticated methods like841

paraphrasing attacks. While these topics are beyond the scope of this paper, they are nonetheless842

crucial to consider for a comprehensive understanding of the watermarking problem.843

G.2 Minor Limitations844

• Even though we have proposed a watermarking framework, there is considerable design space left845

unexplored. Many reweighting functions and context codes may be applicable, but it is unclear846

which one is optimal in practice, particularly since we currently lack standard evaluation metrics.847

We expect that continued research in this area could possibly shed more light on this subject.848

• In Algorithm 1, the introduction of context code history strictly ensures n-shot-undetectable849

watermarking at the expense of additional storage requirements, as the context code history from850

past generation processes needs to be retained. This presents a trade-off between storage and851

undetectability. For instance, if we store all context codes in the previous n generated outputs,852

we can ensure n-shot-undetectability. However, the greater the value of n, the larger the required853

storage space, though this does provide stronger undetectability. Generally, storage complexity854

increases with O(n).855
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H Broader impacts856

Our unbiased watermark has removed major hurdles for large-scale application of watermarks. The857

two primary obstacles previously were the potential for watermarks to degrade the quality of output858

and the possibility for users to discern the presence of watermarks. Our method addresses both of859

these issues thoroughly.860

H.1 Impact analysis861

Traceability and accountability Traceability refers to the ability to trace back the origin of a text.862

Any watermarking method, including method in this paper, contribute to traceability. In an era of863

misinformation and disinformation, this allows for holding providers accountable for the content864

generated by their models.865

Identifying model-generated texts Watermarking method can be used to distinguish which texts866

are generated by the models. This prevents unnecessary training on the data generated by the models867

themselves.868

Ownership Watermarking method can help provide evidence in situations where a provider claims869

ownership over a generated text [50].870

Data privacy concerns The use of different watermarks, if applied discretionarily, could potentially871

link generated text back to a specific user or request. This could be seen as a breach of users’ privacy,872

raising important data privacy concerns.873

Manipulation and removal of watermarks The ongoing development of techniques to manipulate874

or remove watermarks could lead to an “arms race" between providers attempting to secure their875

watermarks and users trying to remove them.876

H.2 Ethical considerations877

There are several ethical considerations in the pursuit of watermarking technology.878

Consent Users have the right to be informed about the use of watermarks and should have the879

option to opt-out.880

Transparency Providers should be transparent about the use of watermarks, including information881

on what is embedded within these watermarks and how it’s used. If the watermarks contain identifying882

information, providers should clearly state who can access this information and take appropriate883

measures to prevent potential misuse.884

Fair use The application of our watermarking technique should not interfere with the legitimate885

use of the service by users.886

Our watermarking method does not degrade the quality of the output, ensuring the values of fair use887

are upheld. However, it also introduces a potentially challenging issue.888

Due to the undetectable nature of our technique, every user might have to assume that the service889

they are using has been watermarked, as it cannot be disproved. This raises challenging questions on890

how to ensure consent and transparency.891

H.3 Conclusion892

Our unbiased watermarking method brings improved traceability and attribution and ensures that fair893

use is not compromised. However, it also poses significant challenges in data privacy, transparency,894

and consent. Any implementation of this system needs to be done thoughtfully and ethically, with895

clear communication to users about how it works and what it means for them.896
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