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Abstract

The recent advancements in large language models (LLMs) have sparked a growing
apprehension regarding the potential misuse. One approach to mitigating this risk
is to incorporate watermarking techniques into LLMs, allowing for the tracking and
attribution of model outputs. This study examines a crucial aspect of watermark-
ing: how significantly watermarks impact the quality of model-generated outputs.
Previous studies have suggested a trade-off between watermark strength and out-
put quality. However, our research demonstrates that it is possible to integrate
watermarks without affecting the output probability distribution with appropriate
implementation. We refer to this type of watermark as an unbiased watermark.
This has significant implications for the use of LLMs, as it becomes impossible
for users to discern whether a service provider has incorporated watermarks or not.
Furthermore, the presence of watermarks does not compromise the performance
of the model in downstream tasks, ensuring that the overall utility of the language
model is preserved. Our findings contribute to the ongoing discussion around
responsible Al development, suggesting that unbiased watermarks can serve as
an effective means of tracking and attributing model outputs without sacrificing
output quality.

1 Introduction

In recent years, large language models (LLMs) [19} 139, 40] have become an indispensable tool for a
wide range of tasks, including text generation [27, [10]], translation [7, 5], summarization [36]], etc.
With the escalating misuse of LLMs, such as plagiarism, tracking the usage of text generated by
machines has become increasingly important. One viable method to monitor the usage of LLMs
is watermarking [20, 32} 59], which embeds imperceptible information within the generated text,
thereby allowing for efficient detection and tracking of the model’s potential abuse.

Watermarking techniques can serve multiple purposes, such as embedding ownership information
within the generated text to protect the intellectual property rights of the model. It can also help
mitigate potential harm caused by LLMs by monitoring where the model is being used and whether it
is being misused or abused.

A good watermarking method should not adversely affect the normal usage of the language model or
degrade the quality of the generated text. However, a prevailing belief holds that there is an inevitable
trade-off between the strength of the watermark and the quality of the output text. For instance,
recent work by Kirchenbauer et al. [32] introduced a method that augmented the logits of a randomly
selected set of "green" tokens. By tuning the “magnitude of logits adjustment”, they demonstrated a
trade-off between watermark strength and text quality.

Our primary contribution is to challenge this conventional wisdom. We show that with the right
implementation, watermarking can be accomplished without affecting the output quality. We refer to
this particular type of watermark as an unbiased watermark. We approach the problem of output
quality degradation from the perspective of watermark detection. We posit that if the watermark

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



39
40
41
42
43
44
45
46

47
48
49

50
51
52

53
54
55

56

57
58

59
60
61

62
63
64
65

66
67

68
69
70
71
72

73
74
75

76
77
78
79

80
81
82

83
84

causes a decline in output quality, there should be a method to guess the presence of the watermark
based on the quality. Conversely, if the watermark cannot be detected, it implies that the output
quality remains unaffected. Specifically, we provide a proof that with a suitable implementation,
watermarking does not affect the output probability distribution. This has significant implications,
as users who do not have the private key are unable to discern whether a service provider has
applied watermarking to the model. Furthermore, the addition of watermarking does not affect
the performance of the generated text in any downstream tasks. Our main contributions can be
summarized as follows:

* We introduce unbiased watermark, an innovative family of watermark methods that guarantee the
non-degradation of text quality. In addition, we offer a comprehensive framework that facilitates
the design and detection of unbiased watermarks.

* We propose two innovative and practical watermarking techniques known as §-reweight and
~v-reweight. Through extensive experimentation, we demonstrate that these techniques preserve
output quality in machine translation and text summarization tasks.

* We develop an advanced maximin variant of the original log-likelihood ratio test for watermark
detection. This novel detection method comes with theoretical guarantees, specifically an upper
bound on type I error, thus enhancing the reliability of watermark detection in language models.

2 Preliminary

In this section, we delve into the problem of watermarking in the context of LLMs. We begin by
setting up the problem and defining essential concepts.

Problem Modeling: We first introduce several notations to formalize the problem. Let 3 denote the
vocabulary set, which is the set of all possible tokens an LLM can generate in a single step. We then
define the set X* as the collection of all possible strings of any length, including those of length zero.

An LLM generates a sequence of tokens conditioned on a given context. In a single step, the
probability of generating the next token x,,+; € X given the current context, z, zo, ..., T, can be
denoted as Py (zy+1 | 1, T2, ..., ). The LLM operates in an autoregressive fashion, which means
the joint probability of generating multiple tokens x,, 41, ..., Zp+m can be written as:

m
Pri(Tnsts ooy Tngm | T1, %2, 0 Tp) = HPM(:ETL—H' | 1,22, s Ty Tpg1s - ooy Trgie1)-
i=1
For simplicity, we use the following notation: Pu(Zpi1mtm | 1), Where Tpit1mim =
(‘/ETH-lv s 7In+m) € X

In the context of watermarking, we introduce a service provider that holds a private key % from the key
space K. The key k € K is chosen at random from the prior distribution Pk (k). The watermarked
output of the LLM follows distribution Py ., (Zp+1 | 21, X2, ..., Tn; k), which is conditioned on both
the key k and the context x1.,,. Similarly, we use the notation Pas (Zn+1:n+m | T1:n; k) for the
probability of generating a sequence of tokens in a watermarked model.

Objective. Our goal is to devise a watermarking scheme that: a) is efficiently detectable by the
service provider; b) can’t be detected by users and does not negatively impact the quality of the
output.

The reason we focus on the detection of watermarks by users is that it is closely related to the output
quality. If the watermark causes a degradation in the output quality, there should exist a method
to infer the presence of the watermark by examining the quality. Conversely, if the watermark is
undetectable, it implies that it does not impact the output quality.

From a statistical testing perspective, a watermark is considered strictly undetectable if the probability
distributions of the watermarked and non-watermarked outputs are identical. To capture this notion,
we define several desirable properties of watermarking schemes.
Definition 1 (n-shot-undetectable). For a fixed input sequence a € ¥*, we say that watermarked
LLM and key prior pair (P ., Pi) is n-shot-undetectable compared to original LLM Py if
n n
H Py(z' | a) = Z Pr (k) H Prrw(z | ask),  for any n number of strings x* € X*.
i=1 keK i=1
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Definition 2 (downstream-invariant). We say the watermarked LLM and key prior pair (Phg ., Pk)
are invariant compared to original LLM Py on downstream tasks iff

]EmNPMYwHa;k),kNPK [f(m)] = ]EQZNPJM("CL) [f(w)}v
for any strings x, a € ¥*, and for any metric f : ¥* — R.

Note that the one-shot-undetectable property implies the downstream invariant property. Interestingly,
this implication does not require the n-shot-undetectable property for n > 1, which means a water-
marking scheme that is one-shot-undetectable can still maintain the output quality for downstream
tasks even if the user might discern the existence of the watermark through multiple generation
requests.

In summary, we have outlined the preliminary concepts and objectives for developing a watermarking
scheme for LLMs. We highlight the desired properties of n-shot-undetectability and downstream
invariance, as they provide a rigorous theoretical guarantee of quality preservation and integrity in
the deployment of watermark schema. In Section ] we will present a watermark framework that is
provably n-shot-undetectable for any given integer n > 1.

3 Warm up: undetectability in a simplified toy environment

In this subsection, we aim to prove the feasibility of undetectability in a highly simplified toy
environment. This preliminary analysis serves as a foundation for understanding the more complex
scenarios that follow.

Settings. Consider a service provider that offers a random number generation service. The service
outputs a uniformly distributed random number in the set {0, 1}. The clean generation process can
be represented as Pys(x) = 1/2, Vo € {0, 1}. We assume that the key & belongs to the set {0, 1}
and is selected with equal probability. With the watermark added, the probability of the new output
can be expressed as: Pasq,(x | k) = di(z).

Recall that the one-shot-undetectable property can be represented as Py (x) = >, c je Prw(2 |
k) Pg (k). Suppose that a user can only make a single request to the service. If the user is unaware
of the key, the user will be unable to distinguish whether the received result is watermarked or not.
Therefore, in this simplified scenario, the undetectability of the watermark is achieved.

However, there is a considerable gap between this toy example and the practical implementation of
watermarking in LLMs. Firstly, the symbol set 3 in LLMs is far more complex than the binary set
{0, 1}, and the probability distribution is not uniform. Besides, the generation process in LLMs is
autoregressive, which means that more than one symbol are generated iteratively. Furthermore, the
toy example does not satisfy the n-shot-undetectable property for n > 1.

Despite these differences, this simple example provides essential insights that help in understanding
the following sections where we address these challenges. The underlying principles of undetectability
remain constant, while their application becomes more intricate in a more complex environment.

4 Watermarking with unbiased reweighting

In this section, we build upon the intuition from the previous section and extend the approach to
LLMs’ generation. The section is structured as follows: Section {.1] introduces a fundamental
mathematical tool for addressing the reweighting problem in general discrete probability distributions.
Section 4.2 applies the reweighting technique to LLMs. Section[d.3] presents the final framework.

4.1 Distribution reweighting

In its most general form, we consider a random watermark code E and a reweight function R :
Ay, — Ay, which depends on the random watermark code . The set of all possible probability
distributions on the symbol set ¥ is denoted as Ay, which forms a simplex.

Definition 3. A reweighting function is a tuple (£, Pg, R) where & is called the watermark code
space, Pr is a probability distribution on space £, and R is a function R : £ X Ay — As.
For a specific watermark code E € &£, we denote the partially evaluated reweighting function as
RE : Ag — Ag.

Definition 4. Given a random watermark code E and a reweighting function Rg : Ay — Ay, we
say that R is an unbiased reweighting function if and only if for all P € Ay, Eg[Rg(P)] = P.
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4.1.1 Existing reweighting methods

Kirchenbauer et al. [32]] essentially comprise two reweighting methods in their work, but neither of
them satisfies the unbiased property.

Both methods have £ as the set of mappings f : ¥ — {red, green}, such that f maps half of the
tokens in X to ‘red’ and the other half to ‘green’, and Pg as a uniform distribution. Therefore, the
random watermark code E assigns each symbol to either red or green. The “Hard Red List” method
sets the probability of all red symbols to zero and renormalizes the probabilities of the remaining
vocabulary. The second method is “Soft Red List” blocking, where they randomly select the same
“Red List” as the first method and decrease the corresponding probability for red symbols by adding a
constant ¢ to the logits of the green symbols, then apply softmax to obtain the final probabilities.

4.1.2 Unbiased reweighting methods
In this section, we present two reweighting methods that satisfy the unbiased property.

d-reweight: Let the watermark code space £ be the interval [0, 1], and let Pr be the uniform
probability on £. Leveraging Inverse Transform Sampling[ﬂ [[14]], we can sample from distribution
P € Ay using a uniformly distributed random number in [0, 1]. Therefore, we have a mapping
samplingp : € — Y. The d-reweight just returns a delta distribution R (P) = Ssampling , (E)-

It is important to note that while the reweighted distribution for each individual random event E/
is a delta distribution, the mean output token probabilities remain the original distribution P when
considering the randomness of E.

~-reweight: Let the watermark code space £ be the set of all bijective function between vocabularies
set ¥ and a set of indices [|X]] = {1,...,|X]|}, where || is the size of vocabularies set X. Essentially,
any watermark code FE' is an indexing function for vocabularies set >, and is also equivalent to a total
order on Y. Let Pg be the uniform probability on &, it is easy to sample a watermark code E by
randomly shuffling the symbol list.

Assume the original distribution is Pr(t) € Ay, Vt € X. Given the watermark code £ : ¥ — [|Z]],
we construct auxiliary functions F7(i) = >, 1(E(t) < i)Pr(t), Fs(s) = max(2s — 1,0),
Fr/(i) = Fs(Fy(i)). The y-reweight yields new distribution Pr- (t) = Fr.(E(t)) — Fp (E(t) — 1).

“_but"| - “ized" € _but"| - “ized"
B | Shuffle
Tt put] -
Reweight ---F — . -

0 172 1

L Reweight

Kéizedﬂ “iZed" e 6‘|_'but”
I 1 I 1
1 1
Figure 1: Ilustration of J-reweight. Figure 2: Illustration of ~y-reweight.

We provide illustrations of the d-reweight and ~-reweight methods in Figures[l|and 2] Each block
represents a token, and the width represents the probability of that token, so the total length is 1 The
left panel shows the §-reweight method, where each individual random watermark code E € [0, 1]
uniformly sampled from interval [0, 1] corresponds to a specific token according to the horizontal axis,
and the reweighted distribution is just a § distribution on that token, such that the selected token has 1
probability, and all other vocabulary tokens have a probability of 0. The right panel demonstrates the
~v-reweight method. First, the symbol set is shuffled. Then, the left half of the regions are rejected,
and the remaining regions are amplified with a factor of 2.

Both methods are unbiasecﬂ when considering the randomness of the watermark code E. For §-
reweight, we can see that by noticing that the probability of returning a § distribution on a token is

"Detailed definition and rigorous proof can be found in Appendix



171
172
173
174

175

176
177
178
179
180
181
182
183
184

185
186
187

188
189
190

191
192

193
194
195
196
197

199

200
201
202

203
204
205

207
208
209
210

211

212

213
214

215

216
217

218
219

220
221

just the original probability on that token, therefore the weighted average of all delta distributions is
still the original probability. In the case of y-reweight, although certain regions are rejected and the
other regions are amplified, every token has the same probability to be in the rejected or amplified
region, thus ensuring the unbiased property.

4.2 Reweighting for autoregressive model

The reweighting methods presented in the previous section can be applied to single token-generation
directly. Given a prefix x.,, the probability distribution for generating a new token without a
watermark is denoted as Py (+|x1.,) € Ayx. For a random watermark code E, we sample from a
new distribution Pas, (-|€1:n) = RE(Pa(-|Z1.n)) € Ax. If the reweighting function is unbiased,
we have Eg[Rg(Py(|®1:n))] = Pum(-|x1.,). This ensures that, for an individual unaware of
the watermark code, it is impossible to determine whether a new token is sampled directly from
Prr(-|x1.p) or from Py o (-|@1.0; E) for a random watermark E. However, if the watermark code is
known, one can perform statistical hypothesis testing to determine the likelihood of a token being
sampled from either distribution.

The main challenge now is constructing the watermark code E. Since the LLM generation task is
autoregressive, multiple reweighting steps are required, with each step needing a watermark code F;
for reweighting the distribution of token z;.

4.2.1 Independence of watermark codes

It is crucial that E; values are independent to ensure the unbiased nature of the entire sequence, rather
than just the single-token generation process.

Theorem 5. Given an unbiased reweighting function (£, Pg, R), if E; values are i.i.d. with the
distribution PEr we have: EEl,...,En [P]W,w(xl:n|a1:’rn)] = PJW(xl:n‘al:’m)-

If the E; values are not independent, we cannot guarantee that the generation probability of the entire
sequence remains unbiased. As an extreme example, consider a case where all F; values are identical.
Referring to the random bit example in the previous section, assume that the correct distribution is
a sequence where each token is a random O or 1 with equal probability. Identical F; values would
result in identical token outputs, ultimately producing sequences consisting solely of 0’s or 1’s, which
is clearly biased.

4.2.2 Context code

To construct a large number of independent watermark codes F; during watermarking and to know
the used E; values during watermark detection, we follow an approach similar to Kirchenbauer et al.
[32] by combining the information from the prefix and a secret key to construct E;.

For a single token generation process, given a prefix x1, xs, ..., Z,, we consider an abstract context
code space C' and an abstract context code generation function cc : ¥* — C'. Based on the prefix,
we construct the context code ¢, +1 = cc(z1, T2, ..., Tn). Specific examples include using the entire
prefix ¢,+1 = (21, x2, ..., T, ), and using the m most recent prefixes ¢,+1 = (Tp—m+1, .-, Tn). OUr
comprehensive framework accommodates diverse context code generation approaches, particularly
those that integrate error-correcting mechanisms to augment watermark resilience in the face of text
manipulation attacks. Nevertheless, we refrain from delving into these strategies within the confines
of this paper and consider it a subject for subsequent investigation.

The final watermark code is defined as E; = E (¢i, k), using a watermark code generation function
E:CxK—=E.
Definition 6. Given an unbiased reweighting function (£, Pg, R) and a context code space C, an

unbiased watermark code generation function is a tuple (£, P, R, C, K, Py, F) that satisfies:
1. Unbiasedness: B p, [Rp .1 (P)] = P,YP € Ag,Vc € C.

2. Independence: For any n distinct c1,...,c, € C, the values RE(Q k)(P) are mutually
independent.

Theorem 7. For any unbiased reweighting function and context code space, an unbiased watermark
code generation function always exists.

In practice, pseudorandom numbers can be used to implement the unbiased watermark code generation
function in the above theorem. Specifically, the hash value hash(c, k) can be used as a random seed
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to sample E from Pg as an implementation of £ = E (¢, k). In this paper, we employ SHA-256 for
hash function and a 1024-bit random bitstring as the key k.

An unbiased watermark code generation function ensures that watermark codes F; are independent
with each other if only their context codes are different. During the generation of a sequence,
context codes may be repeated, although this is a rare event in practice. If ¢; and c¢; are equal,
then E; and E; are also equal, violating the independence of E;. A simple workaround is to skip
reweighting for a token when encountering a previously used context code. In other words, we set
Prrow(c|@1:ms @1:i—1) = Pprr(+|@1:m, 1.4—1) if the context code has appeared before.

4.3 Framework

Algorithm 1 Watermarking framework

1: Input: key for watermark k € K, prompt a1.,, € X%, generate length n € N, initial code
history cch € 2€ context code function cc : ¥* — C, watermark code generation function

E:C x K — &, and reweighting function R : £ x Ay, — Ay,

2: fort=1,...,ndo

3: P; < Py(- | @1, T1:—1) > original distribution
4 ci < cc(- | arm, ®1:i-1) > context code
5: if ¢; € cch then

6: Qi+ B > skip the reweighting
7: else

8: cch < cch U {c;} > record history
9: E; + E(ci, k) > watermark code
10: Q; < Rg,(FP) > reweighted distribution
11: Sample the next token z; using distribution @);

12: return x;.,

Integrating the tools discussed earlier, we present a general framework for watermarking here. The
algorithm for this framework is outlined in Algorithm ]

We note that our abstract framework requires the specification of two key components in order to be
practically implemented: the unbiased reweight function Rr and the context code function cc.

5 Statistical hypothesis testing for watermark detection

In the previous section, we discussed the process of adding a watermark to a text based on a secret
key k and a given prompt a.,,,. The watermark-embedded text can be sampled from the distribution
Purfow(Z1:m|@1:m; k). In this section, we focus on the watermark detection task, which is the inverse
problem of watermark embedding.

Given a text x1.,, the goal of watermark detection is to infer whether it is more likely to be generated
from the unmarked distribution Py (1., |@1.m) or the marked distribution Pas o (€1:0|@1:m; k).
This problem can be formulated as a statistical hypothesis test between two competing hypotheses:
Hy, which posits that &1 .,, follows the unmarked distribution, and H;, which posits that x;.,, follows
the marked distribution.

5.1 Score-based tesing

We focus on a particular kind of score-based testing, which assigns a score to each token in the text.
The score can be interpreted as the confidence that the token was generated by the watermark model
rather than the original model. Scores s; can be computed based on x;.;, in accordance with the
autoregressive manner of the generation process.

The total score S is given by S = > | s;. A threshold S is set such that if S < S, the null
hypothesis Hj is accepted, indicating insufficient evidence to conclude that the text contains a
watermark. Otherwise, the null hypothesis is rejected. There are two types of error probabilities
associated with this decision process: type I error, which is the probability of incorrectly rejecting
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the null hypothesis under Hy, denoted as P, (S > 5’), and type II error, which is the probability of
incorrectly accepting the null hypothesis under Hy, denoted as Py, (S < 5).

To derive theoretical results, we require the scores to have a specific property: under the null
hypothesis H, the exponential momentum of s; is bounded, conditioned on the preceding context
@1 ;—1. This requirement leads to an upper bound on «, the type I error probability.

To derive theoretical results, we require that the scores have a particular property: the exponential
moment of s; under Hj should be bounded, conditioned on the previous text &1 ;1. This requirement
leads to an upper bound on the type I error rate.

Theorem 8. Given a probability space (2, A, P) and a ¥-valued stochastic process x; : 1 <i <n,
as well as an R-valued stochastic process s;: 1 <i<mn, let F7 = o(z; | 1 < j < i) and
FP = o(sj | 1 < j < i) be the corresponding filtrations, where o(-) denotes the o-algebra
generated by random variables. If F¥ C F¥ and Elexp(s;)|F1] <1, then P(} ;s >t) <e .

Therefore, to ensure that the type I error probability has an upper bound «, we can set the threshold
S as S = —log(a). In the following, we discuss two special scores.

5.2 Log likelihood ratio (LLR) score

According to the Neyman-Pearson lemma, the likelihood ratio test is the most powerful test among

all tests with the same type I error rate. Specifically, the log-likelihood ratio (LLR) score is defined as

Pyrow(Zi|@rm,@1:i—13k) Potow(1im|@1:m;k)
Pyr(zilarm,1:i—1) Py (21inl|aim)

s; = log , and the total score becomes S = log
We now provide an optimization derivation of the above s; to gain intuition and set the foundation
for the maximin variant of the LLR score in the next section. Let P; = Pu(-|@1.m, ®1:i-1),
Q; = Pyw(-|l@iim, ©1.i-1; k), and let s; = S;(x;) € R denote the score corresponding to different
x;. Note that P;, Q);, and S; are all functions with signature > — R, therefore equivalent to vectors
of dimension |X|. We can define the inner product as (F;, S;) = > s, Pi(2)Si(x).

The requirement E[exp(s;)|F;*;] < 1 can be reformulated as (P;, exp(.S;)) < 1, where the expo-
nential function is applied element-wise. Instead of minimizing the type II error directly, we aim to
maximize the average score under Hy, i.e., (Q;, S;).

The optimization problem becomes maxg, (Q;, S;), s.t. (P;,exp(S;)) < 1. The optimal solution is

given by S;(x) = log IQD((;”))

, which recovers the optimal log likelihood ratio score.

5.3 Maximin variant of LLR score

One major limitation of the LLR score described in the previous section is that when Q;(z) = 0,
S;i(x) = —oo. This means that as long as a single token does not come from the watermark model
Py, the score becomes negative infinity, making it impossible to reject the null hypothesis Hy.

A more general reason for this issue is that the watermark model Py ., used in the detection process
may not exactly match the true distribution of the watermarked text. In practice, potential sources of
discrepancy include editing (e.g., a text sampled from Py, ,, may undergo some degree of editing
before being watermark detection) and imperfect estimation of the generation process (e.g., due to
lack of knowledge of the exact prompt and temperature used during generation).

To address this problem, we consider a perturbed generation distribution. Instead of the original
hypothesis H;, where x;.,, follows the watermark distribution Pz ,,, we now assume that x.p,
follows a distribution Py, , which is similar to but not identical to Py ,,. Specifically, during the

generation of each token, the total variation (TV) distance between Q) and @); is bounded by d.

The corresponding new optimization problem is

ma: min £S:), st (P exp(S;)) < 1.
s QLEAS,TV(Q},Q:i)<d (Q:, 5) (B exp(Si)) <

Intuitively, the optimal solution for )/ in the inner optimization decreases Q)}(z) when S;(z) is large
and increases @} (x) when S;(x) is small.

The computation of the maximin solution can be done efficiently in 0] (|2|) time and the specific
algorithm is shown in Appendix [B.5]
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Figure 3: Distribution of perplexity of output for TS and BLEU score for MT.

It is important to note that the maximin variant of the LLR score is more robust than the standard
LLR score, as it yields higher scores when the text has undergone some degree of editing. However,
it is not specifically designed to defend against any attacks.

A hyperparameter d € [0, 1] that represent the perturbation strength is introduced in the score.
Intuitively, if the text to be detected has undergone more editing and deviates further from the
distribution Py ,,, d should be larger. In practice, we recommend using grid search to select the best
(a)

%

value of d. Assuming there are A candidate values for d, corresponding to A different scores s
(1 < a < A), we can modify Theorem@as follows.

)

Theorem 9. Under the same conditions as Theorem@ but with multiple scores sz(-a , we have

n
@) >4 < Aet
P <1I§naa§XA <z; s; ) > t) < Ae™".

Thus, when using grid search, the final threshold should be adjusted as S = — log(a) + log(A). This
ensures that the upper bound of the type I error is still .

6 Experiments

We evaluate the performance of our Unbiased Watermarks on two important applications of seq2seq
models: text summarization (TS) and machine translation (MT). For the TS task, we use the
BART-large model and the CNN-DM [25] corpus as our testing dataset. The MT task involves
translating English to Romanian, for which we employ the Multilingual BART (MBart) [37] model on
the WMT’ 14 En-Ro corpus. For further details on the experiment setup, please refer to Appendix [E]

Table 1: Performance of different watermarking methods on TS and MT. We use F1 scores of
BERTScore and scale BERTScore and ROUGE-1 with a factor of 100.

Text summarization Machine translation
BERTScore T | ROUGE-11 | Perplexity ] | BERTScoret | BLEU %
No Watermark | 32.70 +0.08 | 38.56 & 0.09 | 5.024 4 0.018 55.94+ 0.3 21.8 +0.3
d-reweight 32.71 £0.08 | 38.57+0.09 | 5.022 £+ 0.018 56.3 + 0.3 21.7+0.3
~-reweight 32.69£0.08 | 38.604+0.09 | 5.019 £ 0.018 56.2 +0.3 21.8 +£0.3
Soft(6=0.0) 32.70 £0.08 | 38.56 £ 0.09 | 5.024 +0.018 55.9 +£0.3 21.8+£0.3
Soft(6=1.0) 32.35+0.08 | 38.204+0.09 | 5.313 £0.018 55.1+0.3 21.04+0.3
Soft(6=2.0) 31.21 £0.08 | 37.17+£0.08 | 6.253 & 0.022 53.8+0.3 19.54+0.3

Our primary focus is to compare the performance of our proposed unbiased watermarking methods
including the §-reweight and ~y-reweight, with the soft-red-list method presented by Kirchenbauer
et al. [32]]. The strength of the watermark in the soft-red-list approach is controlled by a parameter 4.

The quality of output post-watermarking is presented in Table[I] We observed that the output quality
remains unaffected by our unbiased watermark methods, both for the j-reweight and ~y-reweight,
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Table 3: Text sampled from OPT-6.7B, with and without watermarks. For "No watermark” (NW),
the score is computed based on §-reweight. When watermarks are included, the corresponding
reweighting function is used for computing score. The optimal perturbation strengths d obtained by
grid search are 0.9, 0.0, 0.0 for three outputs respectively.

Prompt What is a watermark? What’s the purpose of it? score p-ValueEI

NW Why don’t you want it on there? I’'m confused..\nI think he meant to say logo, 0.30 8.14
since he wrote “watermark”, so the first word must be a typo.\nYes! Exactly typo.
Sorry, English is not my native language.. Thanks for the explanation!

0-RW  \nltlis supposed to belwatermarking the pictures that you took with your phoneli 75.9 1.2e—32
think. So, so you can share your pictures and not take credit for them.

¥-RW  \nA watermark is a small image or logo (often in square pixels) that is placed 32.9 5.7e—14
over the larger, original image. It serves primarily to distinguish copyright or
ownership of large images (such as banners and logos) and, on rare occasion, to
identify small[jiffiges (such as thumbnail images for blog posts'and pictures).

irrespective of the task and metric. Conversely, the soft-red-list method, when & = 0, does not
introduce any watermark and hence does not affect output quality. However, for § > 0, it significantly
impairs the quality of output.

Figure [3| provides a more intuitive depiction of the score distributions. It is evident that our unbiased
watermark methods not only ensure that the mean performance remains unaffected but also that the
performance distribution is stable. Conversely, the soft-red-list method shows a notable performance
decrease.

In terms of watermark detection, we com-
pute score associated with each token. The
mean and variance of score per token for
TS and MT are presented in Table 2] As
a heuristic, if the sum of the scores for all
tokens in a sentence reaches 10, a p-value of ~ §-RW  0.8784 + 1.4354 0.4192 £ 1.1361
less than 0.0005 is ensured. If the sum score ~ ~+-RW  0.2207 + 0.3678 0.1056 £ 0.2916
hits 20, the p-value must be less than 3e—8.

Table 2: Mean and variance of score per token for
different reweighting methods and different tasks.

Text summarization Machine translation

Additionally, we provide an example of watermarking applied to a completion task in Table[3] It
visually demonstrates the score distribution across tokens: positive scores are represented in green,
and negative ones in red. The intensity of the color corresponds to the magnitude of the score, with
darker shades representing larger absolute values.

7 Related work

The idea of watermarking text has been widely explored by many researchers [[11}[31},44]145] 4, 28]
49, 143]], even before the advent of large language models. Several techniques involve editing existing
text to add a watermark, such as changing synonyms [54} 157, 9l 59, 66]] or visually indistinguishable
words [46], altering sentence structures [56} 155 [38]], and employing neural networks [22} 23| 67]].

Recent advancements in generative models have opened new possibilities for directly generating
watermarked results. Two relevant works in this domain are by Kirchenbauer et al. [32] and Aaronson
[L]. Due to space constraints, we moved the in-depth analysis and other related work to Section

8 Conclusion

Overall, this paper provides a novel framework of watermarking for language models, demonstrating
that it is possible to use watermark to protect intellectual property and monitor potential misuse
without compromising the quality of the generated text. This research serves as a valuable foundation
for future work in the field of watermarking for large language models.

’This is an upper bound computed based on Theorem@ The upper bound could be larger than 1, but this
does not necessarily imply that the p-value exceeds 1.
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A Related works

A.1 Text watermarking

The idea of watermarking text has been widely explored by many researchers [[11} 31} 44} 45] 4} 28,
490 143|], even before the advent of large language models. Several techniques involve editing existing
text to add a watermark, such as changing synonyms [54} |57} 9/ 59| 166] or visually indistinguishable
words [46], altering sentence structures [36, 155} 138]], and employing neural networks [22} 23| |67]].

Recent advancements in generative models have opened new possibilities for directly generating
watermarked results. Two relevant works in this domain are by Kirchenbauer et al. [32] and Aaronson
[1]]. Kirchenbauer et al.’s pioneering work, which uses the previous context to generate watermarked
tokens, heavily influences our approach. However, their watermarking technique can introduce bias
to the output, leading to performance degradation. Our work addresses this limitation by applying
unbiased reweighting and recording context code history.

Aaronson [1]] have talked about using a pseudo-random cryptographic function for watermarking,
but the details are not disclosed, making it challenging to conduct a direct comparison. Aaronson’s
“cryptographic pseudorandom function" could be a special case of reweighting function in this paper.
However, in his blog, there is no apparent structure akin to “context code history", a mechanism
that plays a crucial role in our work to ensure n-shot-undetectability. Therefore, it remains uncertain
whether Aaronson’s technique could offer a similar theoretical guarantee of n-shot-undetectability
as ours. Additionally, it is not clear if their method provides an upper bound on type I error, like
Theorem

A.2 Attacks on watermarks

Alongside the development of watermarking technologies, various methods to modify and remove
these watermarks and their countermeasures have also been explored. These include attacks based on
invisible characters and homoglyphs [16} 124,41 8], generative attacks such as those that prompted
the model to change its output in a predictable and easily reversible way [32]], and specific instances
such as the emoji attack [18]], and paraphrasing attacks [47, 33].

A.3 Steganography in text

Steganography hides information in text primarily for secret communication. It bears similarities to
watermarking in that it seeks to conceal information. However, while watermarking only needs to
detect the presence of a watermark, steganography must recover all embedded information. Many
approaches have tried to edit existing text, through rule-based transformations [62} 63, 61], synonym-
based methods [48]], and more recently, neural network-based methods [2,58]]. Information can also
be embedded directly during generation [15} 13} [71]].

A.4 Watermarking models

Watermarking has also been applied to models themselves to protect intellectual property rights and
to guard against model stealing or extraction [30} |6} [70l]. The aim here is to gather evidence through
inference services [34} 169] and can be accomplished by adding backdoors to models [3 21} [20].
While they are similar to text watermarking in that they embed information without impacting fair
use, the focus is on tracing the model rather than the text.

A.5 Detecting machine-generated text

The objective of detecting machine-generated text lies in discerning whether a given text has been
produced by an algorithm or written by a human. Such detection is crucial to prevent misuse and
a substantial body of research has explored this area [68} 126} [12} 29,151,153} 152} 160]. However, the
task has become increasingly challenging due to the continual improvement in language models and
the advent of adversarial attacks [17, 165} 47]. The difference between this and text watermarking is
that watermarking is employed to differentiate whether a text is generated by a particular model or
provider, yet the detection of machine-generated text is not concerned with a specific model.
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B Detailed definition and additional proofs

B.1 Detailed definition and additional proofs for Section 4.1

Definition 10 (hard/soft-red-list reweighting [32]). Given two hyper-parameters 0 < v < 1 and
§ > 0, let the watermark code space be € = {E € {0,1}* | |[E=Y(1)| = |y|%|]}, such that f maps
~-portion of the tokens in X to 1 (which interpreted as “green”) and the other portion to 0 (which
interpreted as “red”), and let Py to be the uniform distribution on space E. For any watermark code
E, and for any token distribution P € Ay, the output distribution of the hard-red-list reweighting

function on a token t € ¥ is defined by Rg(P)(t) = % assuming ), s, E(t)P(t) > 0.
The soft-red-list reweighting function is defined by Rg(P)(t) = thzpiigiiétgv?gigé}(t) T where

0 > 0 is a fixed constant.

Theorem 11. Hard-red-list and soft-red-list reweighting functions are biased.

Proof. We first show the hard-red-list reweighting is biased. For v = 0.5, consider ¥ = {a, b},
P(a) =0.9, P(b) = 0.1, we have

1 0
2% Pl +0><W:0.5¢0.9:P(a).

We then show the soft-red-list reweighting is biased. For v = 0.5, consider & = {a, b}, P(a) =
0.9, P(b) = 0.1, we have

e°P(a)

" P(a)
edP(a) + P(b)

1
X Pla)y+ PO

Ru(P)(a) = % «

It is easy to verify that for any § > 0, we have Rg(P)(a) < P(a).
Thus, hard/soft-red-list reweighting are both biased. O

Definition 12 (§-reweight). Let the watermark code space & be the interval [0,1], and let E be
uniformly distributed on E. Given an arbitrary token distribution P € Ay, let B be a bijection
between ¥ and [|3|], we construct a cumulative density function of P w.r.t. B by Fp(t; B) =
Y ves W(B(t') < B(t))P(t'),Vt € X. Then we can define a mapping samplingp : £ — X,

sampling p(E) = B~ (I(E)),

where
I(E) = min B(t) s.t. E < Fp(t; B),

The §-reweight function is defined by Rg(P) := dsumpling  (E)-

Definition 13 (y-reweight). Let the watermark code space £ be the set of all bijective function
between vocabularies set ¥ and a set of indices [|X|] = {1,...,|X|}, where |3| is the size of
vocabularies set 3. Assume the original distribution is Pr(t) € Ax,Vt € X. Given the watermark
code E : ¥ — [|X]], we define

Ag(i) := max {2 (Z 1(E(t) < z‘)PT(t)> —1, o} :

tey

where 1(E(t) < i) = 1 when E(t) < i otherwise 1(E(t) < i) = 0. We define Pp/(g)(t) =
Ap(E(t)) — Ap(E(t) — 1). It’s easy to verify Pr(gy is a distribution by ¥t € ¥, Pr/(gy(t) > 0
and ) s, Pri(g)(t) = 1. Thus, y-reweight function is defined by Rp(Pr) := Pp/(g).

Theorem 14. Both d-reweight and ~y-reweight are unbiased reweighting functions.

Proof. According to Definition 4] we need to show Eg[Rg(P)] = P for arbitrary P € Ay,
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For d-reweight, we have Rg(P) = Ssumpiing,,(£) and E is uniformly distributed on [0, 1]. Thus, we
only need to show V¢ € X, Eg[0sumpiing, () ()] = P(t).

1
IEE [&vamplingP(E) (t)] = / 1(sampllngP (6) = t) dea
0

1
- [ 10t = By,

ey
_ (Fp(t; B) — Fp(B~Y(B(t) = 1); B) B(t) > 1
B {Fp(t B) B(t) =1
= P(t).
For ~-reweight, we need to show Vt € 3, Eg[Rg(Pr)(t)] = Pr(t)
Ee[Re(Pr)(t)] = Ep[Pr (g)(t)] @

= EplAp(E®) — Ap(E(t) — 1)].

Denoted by g (i) = 2 (X, cx, L(E(t) < i)Pr(t')) — 1. VE € &, we consider the reserved order
E" of E, we have E(t) + E"(t) =n + 1 and

9e(E(t))+ge-(E"(t)—1) = 2 (Z[l(E(t’) < E@)+1EF) = E(t) + 1)]PT(t')> —2=0.

t'es

So we have

Ap(E(t)) — Ap(E(t) — 1) + Apr (E"(t)) — Ap-(E"(t) — 1)
=max {gg(E(t)),0} — max{gE( (t) = 1),0} + max {gg(E"()),0} — max {gg(E"(t) — 1),0}
—gE( ()))1(9 (E(t)) > 0) — g (E"(t) — )1(gp-(E"(t) = 1) > 0)+

E"(1))1(ge- (E ())>0) gr(E(t) = 1)1(9r(E(t) — 1) > 0)
—gE( t)1(ge(E ())>0)+9E(E(t)))1(9E(E(t)))<0)—
9e(E(t) —1)1(ge(E(t) — 1) <0) — gr(E(t) — 1)1(ge(E() — 1) > 0)
=gp(E())) — ge(E(t) — 1)
=2Pp(t),
(3)

which yields

Ep[Re(Pr)l(t) =Ep[Ar(E(t) — Ap(E(t) — 1)].
= % (Ee[Ap(E®)) — Ap(E®t) — 1)] + Ep-[Ap-(E"(t) — A (E"(t) — 1)]).

= %EE [2Pr ()]

= Pr(t).
“

B.2 Additional proofs for Section[d.2]
Proof of Theorem[3] We have
EEI ~~~~~~~ [PM w(wl nlal m)]
:EEI WEn_a []EE [PM,w(wl n|a1:m)]]
:EEI ----- En-1 [EEn [PM,w (xn |alzm7 wl:nfl)]PM,w(wltnfl ‘alzm)]
:EE,,, [PM,w($n|a1:ma ml:n—l)MEEl ..... En_1 [PM,w (mlzn—l ‘aflzm)]
:PM(xn|a1:ma m1:71—1)]EE‘1,...,E",l [PM,w(ml:n—l |a'1:m)}7
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where the second last step uses the independence of the E; values and the last step uses the unbi-
asedness of the reweighting function. Repeating the same argument for the remaining E; values, we
obtain

EEl,...,En [PM,w(wlzn‘alzm)] = PM(wl:n|a1:m)~
O]

Proof of Theorem[/] Given a watermark code space £ and a watermark code distribution Pg(e),
we construct a key space K = £¢, where each key k is a function from the context code space to
the watermark code space. The random key probability density function is defined as Pk (k) =

[leec Pr(k(c)).
This construction forms a particular instance of an unbiased watermark code generation function. [

B.3 Detailed theory for Section (4.3

Corollary 15. For every generation request by a user, Algorithm[I|can provide a generation result.
This generation service is n-shot undetectability for any n € NT if the unbiased watermark code
generation function is employed, and the context code history is continuously recorded. Specifically,
the context code history cch is updated after each invocation of Algorithm|l| and the resulting context
code history is used as the initial context code history for the next invocation.

On the other hand, if the context code history is reset after every generation task, the generation
service can only guarantee 1-shot undetectability.

Proof. The key design element in this service is the context code history. By maintaining the context
code history throughout the generation process, we can ensure that each time the reweighting is
performed, the context code is unique, i.e., it has not appeared in any previous generation tasks.
According to the properties of the unbiased watermark code generation function in Definition[d] this
guarantees that the watermark codes generated during each reweighting are independent of previously
generated watermark codes. As a result, the final distribution is unbiased, and n-shot undetectability
is achieved.

However, if the context code history is reset after every generation task, it is possible for two
invocations of Algorithm[I]to produce the same context code, leading to the same watermark code.
Consequently, n-shot undetectability cannot be guaranteed for n > 1, and the generation service can
only provide 1-shot undetectability. O

A straightforward variant of the above approach exists in the form of a batch variant. If the batch
size is set to b and the context code history is reset after each batch, the system can ensure b-shot
undetectability.

B.4 Proof of tailed bounds in Section 3
Proof of Theorem 8]

n n—1
E |exp Zsz =E |exp Zsi Elexp(sy,)|F5-1]
i=1 =1

n—1
p<z)] <<
=1

where the abbreviation in the last step means applying similar inequalities multiple times.

<E

By applying the Chernoff bound, we obtain the desired result. O

Proof of Theorem[9] From Theorem 3, we know that
n
P Zsz(-a) > t) < et
i=1
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Thus,

B.5 Details on maximin variant of LLR score
B.5.1 Derivation of the solution
Recall that we are dealing with the maximin problem given as:

ma: min £, S;
S QleasTV(QLQ)<d (@51
s.t. (P exp(S;)) < 1.
We can find a relaxation by replacing the constraint Q; € Ay with ) Qj(z) = 1 and no longer
requiring @ (x) > 0. Thus, we obtain the following inequality:

min <Q;>SZ> 2

> min
QiEAS,TV(Q},Q:)<d Q> ex Qi(2)=1,TV(Q},Qi)<d

The new maximin problem becomes:

max min Q% S;
Si QLY s QUx)=1,TV(Q},Q:)<d (@ %)

s.t. (P, exp(S;)) < 1.

This relaxation is tight, meaning it does not affect the final maximin optimal solution. This is because,
even though the relaxed problem does not require @;(x) > 0, the maximin problem’s optimal solution
Sy and Q" must satisfy Q,"(x) > 0. Otherwise, S} (z) could be further reduced, implying that
S5 (x) is not an optimal solution and leading to a contradiction.

The inner optimization of the relaxed problem can be solved directly:

min £,8:) =(Q4,S;) +d (min S;(x) — max S;(z) ) .
QD wes Q§($):17TV(Q§7Qi)Sd<QZ > <Q > ( x ( ) x ( )>

This leads to the new maximization optimization problem:
max (Qi, Si) +d (ngn Si(x) — max Si (x))
s.t. (P;,exp(S;)) < 1.
We can find the KKT conditions for this optimization problem by rewriting it as follows:
max  (Q;, 5;) + d(max S; — min S;)
S.Lt. (P;,exp(S;)) <1,

max .S; > S;(z),
min S; < S;(x).

Let the Lagrangian be
L= II}S’aX<QZ‘, Sz> + d(mln Sz — max SL)

+ A1 = (P, exp(S54)))
+ (u,max S; — S;)
+ (v, S; — min S;).
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659 Then, the KKT conditions are:

oL
95,(x) [Qi(z) — u(z) + v(x)] — AP;(z) exp(S;i(z)) = 0,
oL
dmax S; —d+ ;
oL
dminS; d- g”(x) =
A(1 = (P;,exp(S;))) = 0,
(u, max S; — S;) = 0,
<'U, S; — min Sz> = 0.

660 We can solve for the value of \:

oL

e61 Note that A cannot be 0, so the fourth KKT condition implies (P;, exp(.S;)) = 1. Consequently, the
es2 above equation implies A = 1.

663 The final solution is given by:

Qi(z) —

Si(z) =log (( )) v(z )7
u(@) # 0 if Si(z) = max S (z),
(

v(z) #0if Si(x) = mmS( ),

Z u(x) = Z v(z) =d.

TEY zeEX

664 B.5.2 Computing the solution

665 Let
X = {o € 3| 8(2) = max 5 (x)},
Xmin ={z € 2| Si(z) = rrgnSz(x)}

666 If z ¢ Xpax U Xpin, then we have

667 If £ € Xnax, then we have

Qi(x) — u(z) + v(x)

u(x) = d, we obtain:

max S;(z) = S;(z) = log

e6s Summing over all z € X,,ax, and noting that

‘,L.EXIT]HX
i(r) —d+ v(x
max Sq/(l‘) — log Zre)(manx Q ( ) Za:GXmax ( )
¢ e X Fi(2)

669  Similarly,

chEXmin Qz(l') B ZzGXmin ’LL((E) +d
Z5[56)(11111) P,(I)
670 When Zme X u(zx) # 0, it implies that there exists an © € X, such that € X,,,.x, which in

671 turn implies that max, S;(z) = S;(x) = min, S;(x). In this case, the score is trivial, with S;(z) = 0
672 forallxz € X.

min S;(z) = log

19



673
674

675
676
677
678
679
680
681

682

Thus, the conlputation of the maximin solution reduces to finding X ,,x and X,;,, which can be
computed in O(|X|) time. A pseudocode is shown in Algorithm 2

Note that the provided pseudocode is not a real implementation but serves as a schematic representa-
tion of the algorithm. In our experimental implementation, we took into consideration the effective
precision of computer floating-point numbers. To ensure numerical stability and prevent NaNs, we
implemented the algorithm in log space. This makes the algorithm more complex, and additionally,
we designed the algorithm with grid search by reusing previous computation results for acceleration.
We also implemented such algorithm with tensor operator for efficient computation on GPU. For
more details, please refer to the source code.

Algorithm 2 Computation of maximin variant of LLR score

import numpy as np

def get_max_lr(P: np.ndarray, Q: np.ndarray, d: float) -> float:
nnnpot $\ma,:1:_:1: \emp (S(m))$"”"
indexes = sorted(range(len(P)), key=lambda i: Q[i] / P[i], reverse=True)

sum_Q = 0.0
sum_P = 0.0
def _1r(Q):

nonlocal sum_Q, sum_P
if sum_Q <= d:
return 0.0
else:
return (sum_Q - d) / sum_P

1r = _1r()

for i in indexes:
if Q[i] / P[i] < 1r:
break
sum_Q += Q[i]
sum_P += P[i]
1r = _1r()
return 1lr

def get_min_lr(P: np.ndarray, Q: np.ndarray, d: float) -> float:
”””Get $\m’in_:r: \emp (S(:B))$HHII
indexes = sorted(range(len(P)), key=lambda i: Q[il / P[il)

sum_Q = 0.0
sum_P = 0.0
def _1r():

nonlocal sum_Q, sum_P
return (sum_Q + d) / sum_P

1r = _1r()

for i in indexes:
if Q[i] / P[i] > 1r:
break
sum_Q += Q[il]
sum_P += P[i]
1r = _1r()
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return 1lr

def get_S(P: np.ndarray, Q: np.ndarray, d: float) -> np.ndarray:
max_lr = get_max_lr(P, Q, d4)
min_lr = get_min_1lr(P, Q, d)
lr =Q / P
if max_lr <= min_lr:
return np.zeros_like(p)
return np.log(np.clip(lr, min_lr, max_lr))

C Additional discussion

Performance without context code history Despite that “context code history" is necessary to
ensure n-shot-undetectable, it’s possible to bypass this requirement, and always execute steps 9 and
10 in Algorithm[T] In many instances, this won’t significantly degrade the performance of downstream
tasks, as the probability of context code collision is low. However, if one chooses to neglect the
context code history, they effectively waive the theoretical guarantee of n-shot-undetectability and
potentially expose themselves to corner cases that could notably undermine the task performance.
Moreover, users could specifically construct test cases that check for the existence of watermarks.
For instance, prompts like "Generate a random bit (0 or 1):" or "Generate a random bit sequence,
with five dots between every two digits:" would yield incorrect results in the absence of context code
history.

Computation of logits during detection The watermark detection methods in Sections[5.2]and[5.3]
relies on the output probability distribution Py,. Ideally, the Pj; used during detection should be
the same as the one during generation. However, this may not always be possible. Language model
logits depend on various parameters like the prompt, the temperature and sampling policy used
during generation, etc., which might not be accessible during watermark detection. For instance, Py,
depends on the prompt, but during detection, we might only have the text to be examined and not the
prompt from which it was generated.

In such circumstances, we can only resort to using another distribution P;, as an estimation of Pyy.
For instance, if the prompt is missing during detection, we can set the prompt to an empty string and
then calculate the language model probabilities. In a machine translation task, one could translate the
output back to the input language and use that as input. In practice, there’s likely to be a disparity
between P}, and Py, which could lead to a drop in score. We discuss in detail how the score is
affected by changes in logits in Appendix [F.2]

Cost of likelihood computation The detection methods in Sections and[5.3|require the output
probability distribution P,;. This comes at a computational cost: it’s more computationally expensive
than red list-based methods proposed by Kirchenbauer et al. [32], as it involves a language model.
However, the cost is much less than a generation, as it only requires a single forward pass.

On the other hand, our framework also supports likelihood-agnostic detection methods, which have
their own pros and cons. We present a detailed comparison of likelihood-based and likelihood-
agnostic methods and provide an example in Appendix

Perturbation of P The method in Section [5.3|introduces a variation of the log likelihood ratio
test where the watermarked distribution Py ,, is perturbed, resulting in a new optimization problem.
Similarly, we could introduce a perturbation to the original distribution P,;. Specifically, we would
adjust the original constraint of (P;, exp(.S;)) < 1to be (P!, exp(S;)) < 1,VP/,s.tTV(F;, P]) <
d', where TV (P;, P!) denotes the total variation distance between P; and P/ and d’ is a small positive
number.

This new optimization problem can be solved using similar methods as those in Appendix We
have implemented this computation in our codebase. However, for the experiments in this paper, we
only used the case where d’ = 0.
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D Likelihood-agnostic watermark score

Our unbiased watermark can also be detected in a likelihood-agnostic way such that it does not rely
on a language model and its output logits to compute the score.

D.1 Method
D.1.1 Reweighting function

We use the same §-reweighting as in Section but with a different implementation. Instead
of using inverse sampling, we can also use Gumbel trick. Specifically, each watermark code is
a list of |X| number of independent and identically distributed standard Gumbel variables. The
watermark code space is £ = R>. The probability density function of the watermark code is given by

Pp(B) = [[yex e P,

To sample a token using the Gumbel trick, we compute a* = argmax,{log P(a) + F(a)}, and the
reweighted distribution becomes Q = d,~. Gumbel variables allow us to guess the likelihood of a
token coming from the watermark model without relying on logits, as tokens with larger Gumbel
variables are more likely to be picked by the watermark model.

D.1.2 Score design and tail bound

Similar to Section [5] we calculate scores for each token, but without relying on the original and
reweighted distribution P and ). Thus, the design of the likelihood-agnostic score has a certain
degree of arbitrariness, unlike the method in Sections[5.2]and [5.3| which was derived in a principled
way.

We choose the score to be s; = In2 — exp(—FE(a*)). One of the main concerns of this construction
is that it can yield a tail bound similar to Theorem 8]

Theorem 16. For n independent random variables G; ~ Gumbel(0,1), if we define s; = In2 —
exp(—G,), we have Elexp(s;)] < land P(}_;_;s; <t) <e "

For a token with watermark, the average score is E[ln 2 — exp(—G;(a*))] =In2 = 3" .. P(a)? =
In2 — exp(—H2(P)), where Ho(P) is the Rényi entropy of order 2. Therefore, the average score is
positive only when the entropy is high.

Note that Theorem [T6]requires independence of s;, unlike Theorem [§] where the s; can be a random
process. In practice, the Gumbel variables depend on the watermark code, and the watermark code
might repeat, leading to dependencies between Gumbel variables and thus between scores. To address
this issue, for repeating context codes, we set the score to zero, ensuring that Theorem@] remains
applicable.

The detection process is as follows: given a text 1., = (z1,...,,), we obtain a series of context
codes (ccy, . . ., cc,, ) and watermark codes (Eh, . . ., Ey, ). The final scores are computed as
In2 —exp(—E;(x;)) if ce; & ceq,. .. cciq,
S; = .
0 if cc; € ceq,y ..., cCi1.

D.2 Comparison between likelihood-based score and likelihood-agnostic score

Compared to the likelihood-based score, the likelihood-agnostic score has some notable drawbacks.

As it does not rely on logits, it cannot distinguish between high and low entropy situations. In low
entropy cases, the likelihood-agnostic score still tends to have a large absolute value, even though it
does not provide any signal and only contributes noise, lowering the score. In extreme cases, when
the entropy is zero, the generation result is deterministic, and the ideal detection algorithm should
output a zero score, as there is no evidence for or against the presence of the watermark. However,
the likelihood-agnostic score would output a negative average score, giving a false indication that the
text was not generated by a model with watermark.

Moreover, in cases where the original distribution P, is known, the likelihood-agnostic score is
much smaller than the log likelihood ratio based score. According to the Neyman-Pearson lemma,
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the log likelihood ratio test is the most powerful statistical test, and its maximin variant also retains
this property to a certain degree, thus providing a higher score than likelihood-agnostic score.

On the other hand, the likelihood-agnostic score has a lower computational cost, as it does not depend
on the logits computed by a large language model. Furthermore, the fact that likelihood-agnostic
score is independent of logits from the language model makes it more appealing when the original
distribution P, is hard to estimate during detection.

E Detailed experiment setup

We evaluate the performance of our Unbiased Watermarks on two important applications of seq2seq
models: text summarization(TS) and machine translation(MT).

Text summarization. In the TS task, we adopt the test set of of CNN-DM [25]] corpus, which consists
of 11,490 examples. The model applied is BART-large, which contains 400 million parameters.

Machine translation. For the MT task, we employ the WMT’ 14 English (En) to Romanian (Ro)
dataset, which has a test set size of 1,999 examples. The Multilingual Bart (MBart) [37] model and
its official tokenizer is applied.

Watermark setup. We evaluate two reweighting functions in our experiment: §-reweight and
~-reweight. For context code generation, we employ the most recent five tokens as context code.
For example, if the current input to the decoder is (x1, 2, x3), the context code used in generating
x4 would be (z1, 2, x3), considering only three tokens are available. Context code history is reset
before generating each batch, thereby making our method b-shot-undetectable given a batch size of b.
For the unbiased watermark code generation function, we use SHA-256 as the hash function and a
1024-bit random bitstring as the key k. The watermark code E is sampled from Pg using hash(c, k)
as the random seed.

In addition, we compared our method with the soft-red-list watermarking method from Kirchenbauer
et al. [32]. Their method depends on two parameters J, controlling the size of the change in logits,
and ~y, which is the proportion of the green list in the total vocabulary. We test § with three values:
0.0,1.0,2.0, and fix « to be % It is important to clarify that the § and v in our §-reweight and
~-reweight are different from those in Kirchenbauer et al.’s method. In the latter,  and ~ are
hyperparameters, while in our method, §-reweight and ~y-reweight are names of two reweighting
strategies.

Watermark detection. We employ the maximin variant of LLR score for watermark detection. The
score depends on a perturbation strength d and is optimized by performing a grid search over the set
{0,0.1,...,0.9,1.0}, which consists of 11 points. The optimal perturbation strength is the one that
yields the highest score sum.

Evaluation metrics. For the TS task, we employ the ROUGE score [35]], which measures the overlap
in terms of n-grams to assess the effectiveness of the summary in capturing the essential content from
the reference summaries. For the MT task, we use the BLEU score [42] that emphasizes the lexical
similarity between the machine-generated translations and the human reference translations. We
estimated the distribution and standard error of BLEU score based on bootstrapping. In both tasks,
we also apply BERTScore and Perplexity as auxiliary metrics.

Computational costs. Our experiments are carried out on a machine equipped with 2x AMD EPYC
7513 32-Core Processor and 8x A6000 GPUs. All experiments can be completed within 4 hours.

Implementation. The experiments are implemented based on the Huggingface library [64], a popular
platform for developing and sharing models in the NLP community.

F More experiment

F.1 Adding watermark

Tables [ and [5] shows more result under the same setup as Table
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Table 4: Additional result about the performance of different watermarking methods on TS. We scale
BERTScore and ROUGE with a factor of 100.

| BERTScore.Precision T | BERTScore.Recall T |

ROUGE2 T

{

ROUGE-L T

No Watermark
d-reweight
~y-reweight
Soft(6=0.0)
Soft(6=1.0)
Soft(6=2.0)

0.3180 £ 0.0009
0.3180 = 0.0009
0.3180 £ 0.0009
0.3180 = 0.0009
0.3092 +£ 0.0009
0.2908 £ 0.0008

0.3361 £ 0.0010
0.3365 £ 0.0010
0.3360 £ 0.0010
0.3361 £ 0.0010
0.3382 £ 0.0009
0.3339 £ 0.0009

0.1388 + 0.0008
0.1392 £ 0.0008
0.1397 £ 0.0008
0.1388 £ 0.0008
0.1344 £+ 0.0007
0.1238 £ 0.0007

0.2445 £ 0.0008
0.2451 £ 0.0008
0.2451 £ 0.0008
0.2445 £ 0.0008
0.2400 +£ 0.0007
0.2293 £ 0.0007

Table 5: Additional result about the performance of different watermarking methods on MT. We scale
BERTScore with a factor of 100.

| BERTScore.Precision T | BERTScore.Recall T | Perplexity |

No Watermark 0.546 £ 0.003 0.575 £+ 0.003 2.31 £0.07
o-reweight 0.550 £ 0.003 0.579 £ 0.003 2.20 +0.05
~y-reweight 0.549 + 0.003 0.577 £+ 0.003 2.24 + 0.04
Soft(6=0.0) 0.546 £ 0.003 0.575 £ 0.003 2.31 +£0.07
Soft(6=1.0) 0.537 £ 0.003 0.568 £ 0.003 2.43 +0.07
Soft(6=2.0) 0.523 £+ 0.003 0.555 £ 0.003 2.81 +0.07

F.2 Sensitivity of scores

The detection methods in Sections [5.2] and [5.3| rely on the output logits of the language models,
which in turn depend on various factors such as the prompt, the temperature and sampling policy
used during the generation process, and the language model itself. In this section, we measure the
sensitivity of the scores to changes in these parameters.

Watermarked samples are generated from the distribution Py ,,, which comes from reweighting of
the original distribution Pp;. However, during detection, we modify some parameters, including
temperature, sampling policy (top_k), input, and model, resulting in a new probability distribution
/

Py

The following table demonstrates the decrease in scores under different changes, showing that when
P;, is not equal to Py, the scores decline. This implies that more tokens are required to accumulate
sufficient evidence to prove the existence of the watermark.

Table 6: Score per token when the estimated token distribution is computed from a different tempera-
ture than the real token distribution.

Text summarization Machine translation
temperature d-reweight | ~-reweight d-reweight |  ~-reweight
0.5 0.049 £ 0.407 | 0.133 £0.309 | 0.041 £0.303 | 0.084 £0.241
1.0 (groundtruth) | 0.878 +1.435 | 0.220 +0.367 | 0.420 £ 1.135 | 0.105 £ 0.291
1.5 0.036 £0.498 | 0.166 £ 0.455 | 0.019 +0.324 | 0.088 + 0.335

Table 7: Score per token when the estimated token distribution is computed from a different top_k
than the real token distribution.

Text summarization Machine translation
top_k d-reweight |  ~-reweight d-reweight |  ~-reweight
20 0.520 £1.144 | 0.212£0.362 | 0.274£0.859 | 0.101 £0.284
50 (groundtruth) 0.878 1.435 | 0.220 +0.367 | 0.420 +1.135 | 0.105 + 0.291
100 0.582 £1.262 | 0.219£0.369 | 0.288 £0.930 | 0.105 £ 0.292
No top_k sampling | 0.377 £ 1.124 | 0.216 £ 0.373 | 0.022 £ 0.349 | 0.097 £ 0.324

Comparing the two reweight functions, we find that when Py, is equal to Py, the J-reweight always
yields a higher score than the y-reweight. However, when P}, is different from Py, the scores
obtained from the §-reweight exhibit a significant drop, whereas the decline in scores for the -
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Table 8: Score per token when the estimated token distribution is computed with and without input.

Text summarization Machine translation
d-reweight |  ~-reweight d-reweight |  ~y-reweight
with input (groundtruth) | 0.8783 £ 1.4353 | 0.2206 £ 0.3677 | 0.4201 +1.1355 | 0.1058 = 0.2916
without input 0.0108 + 0.2170 | 0.0244 4+ 0.2417 | 0.0096 + 0.2004 | 0.0186 % 0.1904

Table 9: Score per token when the estimated token distribution is computed from a different model
than the real token distribution.

Text summarization
model d-reweight ‘ ~y-reweight
“philschmid/bart-large-cnn-samsum" (groundtruth) | 0.878 £ 1.435 | 0.220 = 0.367
“facebook/bart-large-cnn" 0.041 £0.447 | 0.091 £0.412

reweight is always more gradual than that of the §-reweight. This indicates that the ~y-reweight is less
sensitive to the differences between P, and Py;.

F.3 Likelihood-agnostic score

When applied to text summarization, which is a task with relatively high entropy, the likelihood-
agnostic score is positive on average but an order of magnitude lower than the likelihood-based score.
For machine translation, which is a low entropy task, the average score is negative, and thus cannot
be used to detect watermark in this case.

Table 10: Mean and variance of score per token for d-reweight based on Gumbel trick on different
tasks.

Text summarization Machine translation

Maximin variant of LLR score 0.876 + 1.444 0.429 +1.172
Likelihood-agnostic score 0.078 £0.776 —0.104 +£0.891

G Limitations

G.1 Major Limitations

* First, we note that our unbiased watermarking technique only works for generative processes with
high entropy. In an extreme case, when entropy is 0 and output of the original model is fixed, any
unbiased watermarking method will always yield the same result as the original model. As a result,
it is challenging to integrate our unbiased watermarking approach with beam search algorithms
due to their intrinsic deterministic nature.

» Second, our study does not address the attacks to the watermark. Numerous ways of watermark
removal have been explored, ranging from simple text insertion to more sophisticated methods like
paraphrasing attacks. While these topics are beyond the scope of this paper, they are nonetheless
crucial to consider for a comprehensive understanding of the watermarking problem.

G.2 Minor Limitations

» Even though we have proposed a watermarking framework, there is considerable design space left
unexplored. Many reweighting functions and context codes may be applicable, but it is unclear
which one is optimal in practice, particularly since we currently lack standard evaluation metrics.
We expect that continued research in this area could possibly shed more light on this subject.

¢ In Algorithm [T] the introduction of context code history strictly ensures n-shot-undetectable
watermarking at the expense of additional storage requirements, as the context code history from
past generation processes needs to be retained. This presents a trade-off between storage and
undetectability. For instance, if we store all context codes in the previous n generated outputs,
we can ensure n-shot-undetectability. However, the greater the value of n, the larger the required
storage space, though this does provide stronger undetectability. Generally, storage complexity
increases with O(n).
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H Broader impacts

Our unbiased watermark has removed major hurdles for large-scale application of watermarks. The
two primary obstacles previously were the potential for watermarks to degrade the quality of output
and the possibility for users to discern the presence of watermarks. Our method addresses both of
these issues thoroughly.

H.1 Impact analysis

Traceability and accountability Traceability refers to the ability to trace back the origin of a text.
Any watermarking method, including method in this paper, contribute to traceability. In an era of
misinformation and disinformation, this allows for holding providers accountable for the content
generated by their models.

Identifying model-generated texts Watermarking method can be used to distinguish which texts
are generated by the models. This prevents unnecessary training on the data generated by the models
themselves.

Ownership Watermarking method can help provide evidence in situations where a provider claims
ownership over a generated text [50].

Data privacy concerns The use of different watermarks, if applied discretionarily, could potentially
link generated text back to a specific user or request. This could be seen as a breach of users’ privacy,
raising important data privacy concerns.

Manipulation and removal of watermarks The ongoing development of techniques to manipulate
or remove watermarks could lead to an “arms race" between providers attempting to secure their
watermarks and users trying to remove them.

H.2 Ethical considerations

There are several ethical considerations in the pursuit of watermarking technology.

Consent Users have the right to be informed about the use of watermarks and should have the
option to opt-out.

Transparency Providers should be transparent about the use of watermarks, including information
on what is embedded within these watermarks and how it’s used. If the watermarks contain identifying
information, providers should clearly state who can access this information and take appropriate
measures to prevent potential misuse.

Fair use The application of our watermarking technique should not interfere with the legitimate
use of the service by users.

Our watermarking method does not degrade the quality of the output, ensuring the values of fair use
are upheld. However, it also introduces a potentially challenging issue.

Due to the undetectable nature of our technique, every user might have to assume that the service
they are using has been watermarked, as it cannot be disproved. This raises challenging questions on
how to ensure consent and transparency.

H.3 Conclusion

Our unbiased watermarking method brings improved traceability and attribution and ensures that fair
use is not compromised. However, it also poses significant challenges in data privacy, transparency,
and consent. Any implementation of this system needs to be done thoughtfully and ethically, with
clear communication to users about how it works and what it means for them.
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