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1 Method Details19

We use PointNet++ to encode one latent vector from the point clouds [1]. There are several key20

details regarding its usage.21

• No BatchNorm Layer: In the diffusion policy implementation, exponential moving aver-22

ages (EMA) of the model parameters are used during the testing, which is not compatible23

with BatchNorm.24

• Point Set Abstraction: Point set abstraction is an important operation in PointNet++. In25

our network, we deploy three layers of point set abstraction. For the first set abstraction,26
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we have 512 groups with a radius of 0.04 and 32 points. For the second set abstraction,27

we have 128 groups with a radius of 0.08 and 64 points. For the last set abstraction, all28

sampled points are grouped to extract one latent vector.29

2 Experiments Details30

2.1 Setup31

We summarize object categories and the number of object instances we considered in Table 1.32

Task Category Task Name #Demo Object #Train Instances #Test Instances

Sim. Hang Mug 200 Mug 4 2
Insert Pencil 100 Pencil 2 1

Geo. Details Place Can 60 Soda Can 3 3
Use Toothbrush 60 Toothbrush 1 4

Cat. Gen. Align Shoes 60 Shoe 3 5
Use Spoon 60 Spoon 2 2

Geo. Ambi. Collect Knife 60 Knife 1 2
Open Pen 60 Marker Pen 1 3

Table 1: Task Details Summary. This table summarizes our task categories, specific tasks, objects,
the number of demonstrations, training instances, and testing instances. We evaluate our framework
on eight tasks and eight object categories, where each object category includes several instances
with diverse appearances and shapes. We divide our tasks into four categories to study our method’s
performance under various task types and scenarios, such as simulation and the real world.

Here is a list of task descriptions:33

• Hang Mug (Simulation): Hang a randomly placed mug on a fixed mug tree.34

• Pencil Insertion (Simulation): Pick up a pencil from the table and insert it into the pencil35

sharpener.36

• Collect Knife: Collect a lying knife into an open container, and the knife direction is37

randomly chosen.38

• Open Pen: Bimanually grasp the pen and open it.39

• Flip Can: Flip a lying soda can and place it upright.40

• Use Toothbrush: Grasp the toothbrush and spread the toothpaste on it.41

• Align Shoes: Push shoes towards left.42

• Use Spoon: Grasp spoon and scoop materials.43

Due to space limitations, in all tables, we will use the following abbreviation:44

• Sim.: Simulation45

• Geo. Details: Geometry Details46

• Geo. Ambi.: Geometry Ambiguity47

• Cat. Gen.: Category Generalization48

2.2 Demonstrations49

In the simulation, we use SAPIEN to create simulation environments. We build an oracle policy to50

generate demonstrations in the simulation. The generated dataset contains robot states, multi-view51

RGBD observations, and robot actions.52
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In the real world, the data collection pipeline is similar, with additional calibration steps. We define53

the ChArUco board as the world coordinate and calibrate the camera poses to this coordinate. Then,54

we manually calibrate the transformation between the robot and the world coordinate. After the55

calibration phase, the data collection pipeline records multi-view RGBD observations, robot states,56

and robot actions.57

2.3 Training58

Before training, we preprocess multi-view RGBD observations into 3D semantic fields using the59

frozen DINOv2 encoder and save them to CPU memory. During training, the 3D semantic fields60

and corresponding ground truth actions are randomly sampled and fed into the diffusion policy.61

The training of the diffusion policy follows the practice outlined in the original Diffusion Policy62

paper [2].63

2.4 Inference64

During inference, the diffusion policy takes in one frame of multi-view RGBD observation and65

converts it into 3D semantic fields. Then, the 3D semantic fields are input into the diffusion policy66

to predict an action sequence.67

We measure our inference time on the knife-collecting task, repeating the inference steps 10 times68

and computing the average time. Each inference step takes 0.226 seconds. The predicted action69

sequence is at 10 Hz, meaning the time difference between two consecutive actions in the action se-70

quence is 0.1 seconds. This action sequence is then fed into the low-level controller, which operates71

at 50 Hz.72

2.5 Evaluation73

Here we list the evaluation criteria for each task:74

• Hang Mug (Sim): If the final height of the mug is larger than 0.1m and lower than 0.3m,75

and the xy-space distance between the mug holder and the mug is lower than 0.1m, the76

reward is 1. Otherwise, the reward is 0.77

• Pencil Insertion (Sim): If the pencil’s final height is larger than 0.05m, and the xy-space an-78

gle between the pencil and the hole is smaller than arccos(0.8), the reward is 1. Otherwise,79

the reward is 0.80

• Place Can: The policy rollout is only successful if the can is grasped and placed upright on81

the table.82

• Use Toothbrush: The policy rollout is only successful if the toothbrush is grasped and the83

head of the toothbrush is aligned with the toothpaste tip.84

• Align Shoes: The policy rollout is only successful if the shoe is rotated towards the left.85

• Use Spoon: The policy rollout is only successful if the robot grasps the spoon, scoops the86

coffee beans, and pours into the bowl.87

• Collect Knife: The policy rollout is only successful if the robot grasps the knife handle and88

puts it in the box.89

• Open Pen: The policy rollout is only successful if the robot first grasps the pen body using90

one hand, and then pulls out the pen tap using another hand.91

3 Additional Experiments92

3.1 Quantitative Experiment Table93

As mentioned in Section 4.2 of the main paper, we present a detailed table for Figure 4. This table94

provides more concrete results regarding our comparisons with the baseline methods. We can see95

3



(i) Geometry Insignificant (ii) Category Generalization (iii) Geometry Ambiguity

(a) Total Results (b) Simulation

Su
cc

es
s R

at
e

Hang Mug (Unseen) Pencil Insertion (Unseen)Total

Su
cc

es
s R

at
e

Align Shoes (Unseen) Collect Knife (Unseen)Place Can (Unseen)

(c) Real World

Su
cc

es
s R

at
e

Use Spoon (Unseen) Open Pen (Unseen)Use Toothbrush (Unseen)

Ours 
DP
ACT+3D Semantic Fields
ACT

Figure 1: Success Rate of Extension to ACT. We measure the success rate of our method, diffusion policy,
ACT with our 3D semantic fields, and ACT on unseen instances across different tasks. We found that our 3D
semantic fields can help other imitation learning methods like ACT to generalize to novel instances as well.
However, in practice, we choose the diffusion policy with 3D semantic fields since it performs the best across
different tasks.

that, although the diffusion policy performs well for the seen instances, it fails to generalize to96

novel instances. Compared with our method without semantics, our method also demonstrates the97

effectiveness of incorporating semantic information.98

3.2 Extension to ACT99

We also extend our representation to other imitation learning methods, such as ACT [3]. Figure 1100

shows the experiment results. First, we found that our representation helps other imitation learning101

algorithms generalize to novel instances. This is because raw RGB images are sensitive to environ-102

mental factors and object appearances, while our 3D semantic fields are robust against environmental103

changes and novel instances by explicitly using geometric and semantic information. Second, we104

found that our method outperforms ACT. We believe the main reason is that the diffusion policy is105

better at capturing multi-modal demonstration distribution compared to ACT, which is quite com-106

mon in the real world. In summary, our representation can be applied to different imitation learning107

methods, but we choose the diffusion policy because it performs the best in practice.108

3.3 Ablation on Feature Extraction Backbone109

Originally, we used DINOv2 as the feature backbone [4]. To study the influence of different feature110

backbones on performance, we replace DINOv2 with other feature backbones. Other than DINOv2,111

CLIP and Vision Transformer (ViT) are two of the most common image feature extractors [5, 6].112

Therefore, we replace DINOv2 with CLIP and ViT and compare their performance. First, we try to113
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Task Category Simulation
Task Name Hang Mug Insert Pencil
Instances Seen Unseen Seen Unseen

Ours 95% (19/20) 80% (16/20) 95% (19/20) 90% (18/20)
Ours w/o Semantics 65% (13/20) 85% (17/20) 40% (8/20) 40% (8/20)

Diffusion Policy 95% (19/20) 0% (0/20) 95% (19/20) 25% (5/20)
Diffusion Policy w/ RGBD 0% (0/20) 0% (0/20) 15% (3/20) 20% (4/20)

Task Category Geometry Ambiguity Geometry Details
Task Name Collect Knife Open Pen Place Can Use Toothbrush
Instances Unseen Unseen Unseen Unseen

Ours 100% (9/10) 90% (9/10) 100% (10/10) 100% (10/10)
Ours w/o Semantics 50% (5/10) 50% (5/10) 60% (6/10) 30% (3/10)

Diffusion Policy 0% (0/10) 0% (0/10) 20% (2/10) 20% (2/10)
Diffusion Policy w/ RGBD 60% (6/10) 20% (2/10) 0% (0/10) 20% (2/10)

Task Category Category Generalization
Total (Seen) Total (Unseen)Task Name Collect Knife Open Pen

Instances Unseen Unseen

Ours 100% (10/10) 100% (10/10) 95% (38/40) 93% (93/100)
Ours w/o Semantics 60% (6/10) 90% (9/10) 53% (21/40) 59% (59/100)

Diffusion Policy 30% (3/10) 80% (8/10) 95% (38/40) 20% (20/100)
Diffusion Policy w/ RGBD 10% (1/10) 70% (7/10) 8% (3/40) 22% (22/100)

Table 2: Success Rate. The method was evaluated across eight tasks. We observe that the diffusion
policy performs similarly to our method in the seen environments but shows markedly worse perfor-
mance in unseen instances. In addition, compared with ours without semantics, our method shows
a better performance across different tasks and demonstrates the necessity of semantic information.
These results underscore our policy’s capability to achieve category-level generalization and encode
semantic information.

RGB Observation

Sh
oe

B
oo

k

Raw Point Cloud Ours with DINOv2 Ours with CLIP Ours with ViT

M
ug

No Distinction Among
Object Parts 

Figure 2: 3D Semantic Fields Visualization. We visualize 3D semantic fields in the scene, similar to Figure
6 in the main paper. For ours with DINOv2, object parts from different instances are highlighted consistently.
For example, shoe heads, book titles, and mug handles are highlighted in these scenes. In contrast, ours with
CLIP and ours with ViT fail to highlight object parts consistently. Instead, their heatmap distributes over the
scene and has no distinctions among object parts.
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qualitatively understand what the 3D semantic fields will look like with different feature backbones.114

Second, we quantitatively show the performance of the whole diffusion policy pipeline when the115

feature backbones are different.116

Similar to Figure 6 in the main paper, we use the same 3D semantic field construction and visual-117

ization pipeline with different feature backbones. We visualize the 3D semantic fields of different118

object parts in Figure 2. We found that ours with DINOv2 can consistently highlight the object parts,119

such as shoe heads, book titles, and mug handles, while ours with CLIP and ours with ViT fail to do120

so. Without the capability to distinguish semantically meaningful parts of the object, ours with ViT121

and ours with CLIP fail to generalize to unseen instances, distinguish geometric ambiguities, and122

attend to subtle geometric details. This qualitative result justifies our usage of DINOv2 to generate123

useful 3D semantic fields.124

Table 3 shows our quantitative results, where the experiment process is the same as the main paper.125

The table shows our method’s average success rate is 94%, which is the best among all methods. As126

this table shows, ours with CLIP’s average success rate is 57%, and ours with ViT’s average success127

rate is 55%. This result is close to ours without semantics (58%) as shown in Table 1. This indicates128

that CLIP and ViT do not encode useful semantic information like object parts. In contrast, our129

method can highlight parts of the object that are critical for the task’s success.130

Task Category Task Name Instances Ours Ours with CLIP Ours with ViT

Sim.
Hang Mug Seen 95% (19/20) 55% (11/20) 80% (16/20)

Unseen 80% (16/20) 50% (10/20) 70% (14/20)

Insert Pencil Seen 95% (19/20) 70% (14/20) 55% (11/20)
Unseen 90% (18/20) 45% (9/20) 30% (6/20)

Geo. Ambi. Collect Knife Unseen 100% (10/10) 30% (3/10) 30% (3/10)
Open Pen Unseen 100% (10/10) 50% (5/10) 40% (4/10)

Geo. Details Place Can Unseen 100% (10/10) 40% (4/10) 50% (5/10)
Use Toothbrush Unseen 90% (9/10) 50% (5/10) 50% (5/10)

Cat. Gen. Align Shoes Unseen 100% (10/10) 90% (9/10) 40% (4/10)
Use Spoon Unseen 100% (10/10) 100% (10/10) 90% (9/10)

Total (Unseen) 94% (131/140) 57% (80/140) 55% (77/140)

Table 3: Success Rate for Different Feature Backbones. The method was evaluated across eight
tasks and compared against different feature backbones. We use the average success rate as our
evaluation metric. Compared with ours with CLIP and ours with ViT, our method consistently
outperforms them. This demonstrates that DINOv2 could encode semantic information, such as
parts of object that are important for task completion.

3.4 More Baselines131

We compare with SORNet and DINOBot [7, 8]. We will describe how we compare our work with132

these two baselines in our setting respectively in Section 3.4.1 and Section 3.4.2. Then we present133

results and analyze them in Section 3.4.3.134

3.4.1 SORNet135

SORNet introduces an object-centric representation that can be generalized to objects unseen during136

training. Specifically, SORNet can take in observation from more than one view, where depth is137

optional. It also takes in canonical object views and outputs corresponding embedding for each138

query object. For fair comparisons, we input RGBD observations from four viewpoints and one139

canonical object view into SORNet and obtain one embedding. Then we input this embedding to140

diffusion policy, the same as what did for our approach. We do not use pre-trained models provided141
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by SORNet, since the observation modality and training domain are very different. Instead, we train142

the whole model from scratch.143

3.4.2 DINOBot144

DINOBot introduces a single-shot imitation learning framework that leverages visual features from145

foundational vision models. They first record the key end-effector pose and corresponding RGBD146

observations. Then they record a motion sequence. During testing, they will align current RGBD147

observations with recorded key RGBD observations to make sure the end-effector has arrived at the148

key pose. Then they will replay the motion sequence.149

In our implementation, we choose one of our perspective views as the observation view. For the rest150

of the implementation, we follow the DINOBot.151

3.4.3 Results152

As shown in Table 4, SORNet performs badly for both seen and unseen instances. As mentioned153

by SORNet’s authors, SORNet needs to be trained on a large-scale dataset with diverse object ap-154

pearance and scene layouts. Specifically, they trained SORNet on two datasets, which contain 405155

training objects and 330 training objects respectively. However, we only assume access to a demon-156

stration dataset collected over one or a handful of objects. SORNet cannot effectively extract useful157

representation in this low-data regime, while our representation could generalize to unseen instances158

given the same amount of data.159

Task Category Task Name Instances Ours SORNet [7] DINOBot [8]

Sim.
Hang Mug Seen 95% (19/20) 0% (0/20) 0% (0/20)

Unseen 80% (16/20) 0% (0/20) 0% (0/20)

Insert Pencil Seen 95% (19/20) 0% (0/20) 0% (0/20)
Unseen 90% (18/20) 0% (0/20) 0% (0/20)

Geo. Ambi. Collect Knife Unseen 100% (10/10) 10% (1/10) 0% (0/10)
Open Pen Unseen 100% (10/10) 0% (0/10) N/A% (N/A)

Geo. Details Place Can Unseen 100% (10/10) 20% (2/10) 0% (0/10)
Use Toothbrush Unseen 90% (9/10) 0% (0/10) 0% (0/10)

Cat. Gen. Align Shoes Unseen 100% (10/10) 0% (0/10) 0% (0/10)
Use Spoon Unseen 100% (10/10) 40% (4/10) 0% (0/10)

Total (Unseen) 94% (131/140) 5% (7/140) 0% (0/130)

Table 4: Success Rate for Additional Representation and Imitation Learning Baselines. The
method was evaluated across eight tasks and compared with SORNet and DINOBot. We use the
average success rate as our evaluation metric. The low success rate of SORNet implies that it needs
large-scale data for pre-training, while we only assume access to demonstrations recorded in several
hours. DINOBot’s low success rate implies it is not as flexible as our method for action represen-
tation and task specification. There is no result for the opening pen task because of DINOBot’s
assumption of single-arm manipulation.

As shown in Table 4, DINOBot cannot accomplish the tasks and fails in both seen and unseen160

scenarios. The reasons are twofold. First, DINOBot merely replays the recorded trajectory after the161

6-DoF alignment, which limits its applicability in tasks that require adaptive adjustments based on162

the positions and shapes of objects. Second, DINOBot has only tackled single-arm manipulation163

tasks using a wrist-mounted camera, which restricts its extension to more complicated bimanual164

tasks (e.g., pen opening, as we demonstrated using our method). In contrast, our method represents165

the action as a sequence of end-effector poses, which can be easily extended to a dual-arm setup and166

accomplish a more diversified set of tasks.167
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3.5 t-SNE168

Figure 3: t-SNE for Semantic Features with High
Similarity. Points in similarity fields are selected
based on the top k similarity scores. We compute their
corresponding semantic features and project them into
two-dimensional space using t-SNE. It is clearly ob-
served that all features are clustered and separated from
each other. Each cluster corresponds to a feature that
has semantic meaning, such as mug rings and mug han-
dles.

In addition, we also analyze whether our se-169

mantic fields could carry desired semantic in-170

formation, as shown in Figure 3. We ini-171

tially sample 3D grid points in the workspace172

and select the top 100 points with the highest173

similarity score for each semantic field. For174

the example shown in Figure 3, there are 500175

points in total. Then, we query the descrip-176

tor fields and obtain semantic features corre-177

sponding to the selected points. We reduce the178

high-dimensional semantic features to a two-179

dimensional plane using t-distributed stochas-180

tic neighbor embedding (t-SNE). We observe181

that all points are distinctly separated, and each182

blob corresponds to one object part. This vi-183

sualization shows that our semantic fields have184

a clear semantic meaning for each channel,185

which helps the policy to achieve category-186

level generalization.187

4 Detailed Comparisons with Prior Works188

• Functional Object-Oriented Network for Manipulation Learning [9]: This work proposes189

a structured knowledge representation and generates motion sequences based on the repre-190

sentation. While this work represents the motion sequence as motion harmonics, our191

work is more flexible in action and task representation. In addition, this work does not192

show extensive real-world deployment results, while we focus more on the real-world193

deployment.194

• Affordance Detection for Task-Specific Grasping Using Deep Learning [10]: This work195

uses convolutional neural networks to detect object affordance, class, and orientation for196

task-specific tasks. Although it shows generalization capabilities, it is still restricted to197

grasping tasks. In contrast, our framework supports a wider range of tasks.198

• SORNet: Spatial Object-Centric Representations for Sequential Manipulation [7]: SOR-199

Net proposes an object-centric representation from RGB observations. We note three ma-200

jor differences from SORNet to our work. First, SORNet is object-centric, while ours201

is scene-representation, which needs less prior information. Second, SORNet builds202

representation from RGB, which makes it hard to generalize to novel domains, envi-203

ronments, and backgrounds, but our 3D semantic fields show category-level general-204

ization capabilities. Lastly, through experiments, we found that SORNet might be better205

if pre-trained on a large dataset. In our work, we only assume access to a demonstra-206

tion dataset of one or a handful of objects, while SORNet needs a larger dataset for207

pre-training to have a good performance.208

• Manipulation-Oriented Object Perception in Clutter Through Affordance Coordinate209

Frames [11]: This work introduces the Affordance Coordinate Frame (ACF) for category-210

level pose estimation. It shows impressive category-level generalization capabilities. How-211

ever, this work uses pre-defined motion primitives (grasp, pour, stir) for manipulation,212

which limits applicable tasks. In contrast, we do not assume any prior motion primi-213

tives, which is more flexible for action representation.214

• StructDiffusion: Object-Centric Diffusion for Semantic Rearrangement of Novel Ob-215

jects [12]: This work uses a diffusion model and object-centric transformer to construct216

goal structures given current point clouds and language inputs. They mainly focus on pick-217
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ing and placing tasks using modular methods, including the grasping planner and motion218

planner. Their modular method might not transfer to other tasks and other types of219

objects like deformable objects and granular objects easily. Without assumptions for220

target tasks and objects, our framework is flexible for object types and task specifica-221

tions.222

• A Survey of Semantic Reasoning Frameworks for Robotic Systems [13]: We position our223

work as instance-level semantic reasoning according to this survey. In our work, we pro-224

pose 3D semantic fields, which can differentiate the object parts using foundational vision225

models.226

• Learning Generalizable Feature Fields for Mobile Manipulation [14]: GeFF is a concur-227

rent work using Generelizable NeRF for mobile manipulation [15]. There are two major228

differences between our work and GeFF. First, we do not distill feature fields from foun-229

dational vision models to avoid the loss in generalization capabilities. Second, GeFF230

uses open-push-close action sequences to accomplish tasks, while our policy predicts231

the end-effector trajectory, which is more flexible.232

• Evaluating Robustness of Visual Representations for Object Assembly Task Requiring233

Spatio-Geometrical Reasoning [16]: This work mainly focuses on object assembly tasks234

by evaluating the robustness of visual representations from RGB observations. First, since235

RGB observation is sensitive to environment and instance variance, our method pro-236

poses to use 3D semantic fields to help the generalization of diffusion policy. Second,237

instead of focusing on assembly tasks, our framework is tested on a broader set of238

tasks.239

• You Only Demonstrate Once: Category-Level Manipulation from Single Visual Demonstra-240

tion [17]: You Only Demonstrate Once introduces the category-level generalizable last-241

inch policy using model-free pose estimation and trajectory transformation. There are two242

major differences. First, their behavior cloning algorithm is replaying the trajectory243

using the object’s pose, which limits their applicability to tasks requiring adaptive ad-244

justments based on the positions and shapes of objects. In contrast, we represent the245

trajectory as a sequence of end-effector poses, which is more flexible for task spec-246

ification. In addition, they assume the object is rigidly attached to the end-effector,247

which is not applicable to some tasks like pushing the shoe. In summary, many of our248

tasks are not doable using this framework.249

• On the Effectiveness of Retrieval, Alignment, and Replay in Manipulation and DINOBot:250

Robot Manipulation via Retrieval and Alignment with Vision Foundation Models [8, 18]:251

This line of work from the set of authors proposes a generalizable imitation learning frame-252

work, following phases of retrieval, alignment, and replay. DINOBot is the latest work253

enhancing the prior work using vision foundation models. First, DINOBot merely re-254

plays the recorded trajectory after the 6-DoF alignment, which limits its applicabil-255

ity in tasks that require adaptive adjustments based on the positions and shapes of256

objects. Second, DINOBot has only tackled single-arm manipulation tasks using a257

wrist-mounted camera, which restricts its extension to more complicated bimanual258

tasks (e.g., pen opening, as we demonstrated using our method). In contrast, our259

method represents the action as a sequence of end-effector poses, which can be easily260

extended to a dual-arm setup and accomplish a more diversified set of tasks.261
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