
Supplementary Material: Fairness in Ranking under Uncertainty

A Related Work

As algorithmic techniques, especially machine learning, find widespread applications in decision
making, there is notable interest in understanding its societal impacts. While algorithmic decisions
can counteract existing biases by preventing human error and implicit bias, data-driven algorithms
may also create new avenues for introducing unintended bias (Barocas and Selbst, 2016). There have
been numerous attempts to define notions of fairness in the supervised learning setting, especially for
binary classification and risk assessment (Calders et al., 2009; Zliobaite, 2015; Dwork et al., 2012;
Hardt et al., 2016; Mehrabi et al., 2019). The group fairness perspective imposes constraints like
demographic parity (Calders et al., 2009; Zliobaite, 2015) and equalized odds (Hardt et al., 2016).
Follow-up work has proposed techniques for implementing fairness through pre-processing methods
(Calmon et al., 2017; Lum and Johndrow, 2016), in process while learning the model (Zemel et al.,
2013; Woodworth et al., 2017; Zafar et al., 2017) and post-processing methods (Hardt et al., 2016;
Pleiss et al., 2017; Kim et al., 2019), in addition to causal approaches to fairness (Kilbertus et al.,
2017; Kusner et al., 2017).

Individual fairness, on the other hand, is concerned with comparing the outcomes of agents directly,
not in aggregate. Specifically, the individual fairness axiom states that two individuals similar
with respect to a task should receive similar outcomes (Dwork et al., 2012). While the property of
individual fairness is highly desirable, it is hard to define precisely; in particular, it is highly dependent
on the definition of a suitable similarity notion. Although similar in spirit, our work sidesteps this
need to define a similarity metric between agents in the feature space. Rather, we view an agent’s
features solely as noisy signals about the agent’s merit and posit that a comparison of these merits
— and the principal’s uncertainty about them — should determine the relative ranking. Individual
fairness definitions have also been adopted in online learning settings such as stochastic multi-armed
bandits (Patil et al., 2020; Heidari and Krause, 2018; Schumann et al., 2019; Celis et al., 2018), where
the desired property is that a worse arm is never “favored” over a better arm despite the algorithm’s
uncertainty over the true payoffs (Joseph et al., 2016), or a smooth fairness assumption that a pair of
arms be selected with similar probability if they have a similar payoff distribution (Liu et al., 2017).
While these definitions are derived from the same tenet of fairness as Axiom 1 for a pair of agents,
we extend it to rankings, where n agents are compared at a time.

Rankings are a primary interface through which machine learning models support human decision
making, ranging from recommendation and search in online systems to machine-learned assessments
for college admissions and recruiting. One added difficulty with considering fairness in the context
of rankings is that the decision for an agent (where to rank that agent) depends not only on their
own merits, but on others’ merits as well (Dwork et al., 2019). The existing work can be roughly
categorized into three groups: Composition-based, opportunity-based, and evidence-based notions of
fairness. The notions of fairness based on the composition of the ranking operate along the lines of
demographic parity (Zliobaite, 2015; Calders et al., 2009), proposing definitions and methods that
minimize the difference in the (weighted) representation between groups in a prefix of the ranking
(Yang and Stoyanovich, 2017; Celis et al., 2018; Asudehy et al., 2019; Zehlike et al., 2017; Mehrotra
et al., 2018; Zehlike and Castillo, 2020). Other works argue against the winner-take-all allocation of
economic opportunity (e.g., exposure, clickthrough, etc.) to the ranked agents or groups of agents,
and that the allocation should be based on a notion of merit (Singh and Joachims, 2018; Biega et al.,
2018; Diaz et al., 2020). Meanwhile, the metric-based notions equate a ranking with a set of pairwise
comparisons, and define fairness notions based on parity of pairwise metrics within and across groups
(Kallus and Zhou, 2019; Beutel et al., 2019; Narasimhan et al., 2020; Lahoti et al., 2019). Similar to
pairwise accuracy definitions, evidence-based notions such as (Dwork et al., 2019) propose semantic
notions such as domination-compatibility and evidence-consistency, based on relative ordering of
subsets within the training data. Our fairness axiom combines the opportunity-based and evidence-
based notions by stating that the economic opportunity allocated to the agents must be consistent
with the existing evidence about their relative ordering.

Ranking has been widely studied in the field of Information Retrieval (IR), mostly in the context
of optimizing user utility. The Probability Ranking Principle (PRP) (Robertson, 1977), a guiding
principle for ranking in IR, states that user utility is optimal when documents (i.e., the agents) are
ranked by expected values of their estimated relevance (merit) to the user. While this certainly holds
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when the estimates are unbiased and devoid of uncertainty, we argue that it leads to unfair rankings for
agents about whose merits the model might be uncertain. While the research on diversified rankings
in IR appears related, in comparison to our work, the goal there is to maximize user utility alone
by handling uncertainty about the user’s information needs (Radlinski et al., 2009) and to avoid
redundancy in the ranking (Clarke et al., 2008; Carbonell and Goldstein, 1998). Besides ranking
diversity, IR methods have dealt with uncertainty in relevance that comes via users’ implicit or
explicit feedback (Penha and Hauff, 2021; Soufiani et al., 2012), as well as stochasticity arising
from optimizing over probabilistic rankings instead of discrete combinatorial structures (Taylor et al.,
2008; Burges et al., 2005). It is only recently that there has been an interest in developing evaluation
metrics (Diaz et al., 2020) and learning algorithms (Singh and Joachims, 2019; Morik et al., 2020)
that use stochastic ranking models to deal with unfair exposure.

Additional recent strands of work on fairness in selection problems focus on fairly selecting indi-
viduals distributed across different groups in the presence of group-based implicit bias (Kleinberg
and Raghavan, 2018; Celis et al., 2020), noisy sensitive attributes (Mehrotra and Celis, 2021), or
incomparable merits across different groups (Kearns et al., 2017). Kearns et al. (2017) present a way
to fairly select k individuals distributed across d populations where each population can be sorted by
merit without uncertainty but merit in one population cannot be directly compared to merit in another.
Hence, they propose using the true CDF rank as a derived merit criterion that can be compared. There
has also been recent interest in studying the effect of uncertainty regarding sensitive attributes, labels
and other features used by the machine learning model on the accuracy-based fairness properties of
the model (Ghosh et al., 2021; Prost et al., 2021). In contrast, our work takes a more fundamental
approach to defining a merit-based notion of fairness arising due to the presence of uncertainty when
estimating merits based on fully observed features and outcomes.

B Additional Model Discussion

B.1 Information Acquisition Incentives for the Principal

An additional benefit of requiring the use of fair ranking policies is that it makes the principal bear
more of the cost of an inaccurate Γ, and thereby incentivizes the principal to improve the distribution
Γ. To see this at a high level, notice that if Γ precisely revealed merits, then the optimal and fair
policies would coincide. In the presence of uncertainty, an unrestricted principal will optimize utility,
and in particular do better than a principal who is constrained to be (partially or completely) fair.
Thus, a fair principal stands to gain more by obtaining perfect information. The following example
shows that this difference can be substantial, i.e., the information acquisition incentives for a fair
principal can be much higher.
Example 1. Consider again the case of a job portal. To keep the example simple, consider a scenario
in which the portal tries to recommend exactly one candidate for a position.3 There are two groups
of candidates, which we call majority and underrepresented minority (URM). The majority group
contains exactly one candidate of merit 1, all others having merit 0; the URM group contains exactly
one candidate of merit 1 + ε, all others having merit 0 as well. Due to past experience with the
majority group, the portal’s distribution Γ over merits precisely pinpoints the meritorious majority
candidate, but reveals no information about the meritorious URM candidate; that is, the distribution
places equal probability on each of the URM candidates having merit 1 + ε.

A utility-maximizing portal will therefore go with “the known thing,” obtaining utility 1 from
recommending the majority candidate. The loss in utility from ignoring the URM candidates is only
ε. Now consider a portal required to be 1-fair. Because each of the URM candidates is the best
candidate with probability 1/n (when there are n URM candidates), and the majority candidate is
known to never be the best candidate, each URM candidate must be recommended with probability
1/n. Here, the uncertainty about which URM candidate is meritorious will provide the portal with a
utility that is only (1+ε)/n.

In this example, fairness strengthens the incentive for the portal to acquire more information about
the URM group; specifically, to learn to perfectly identify the meritorious candidate. Under full
knowledge, the portal will now have utility 1 + ε for both the fair and the utility-maximizing policy.

3This can be considered a ranking problem in which the first slot has w1 = 1, while all other slots have
weight 0.
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For the utility-maximizing portal, this is the optimal choice; and for the fair strategy, it is perfectly
fair to always select the (deterministically known) best candidate. Thus, a portal forced to use the fair
strategy stands to increase its utility by a much larger amount; at least in this example, our definition
of fairness splits the cost of a high-variance distribution Γ more evenly between the principal and
the affected agents when compared to the utility-optimizing policy, where almost all the cost of
uncertainty is borne by the agents in the URM group. This drastically increases the principal’s
incentives for more accurate and equitable information gathering.

To what extent the insights from this example generalize to arbitrary settings (e.g., whether the
principal always stands to gain more from additional information when forced to be fairer) is a
fascinating direction for future research.

B.2 Ordinal Merit and High-Risk High-Reward Agents

As we discussed earlier, Proposition 2.1 highlights the fact that our definition of fairness only considers
ordinal properties, i.e., comparisons, of merit. This means that frequently selecting “moonshot” agents
(those with very rare very high merit) would be considered unfair. We argue that this is not a drawback
of our fairness definition; rather, if moonshot attempts are worth supporting frequently, then the
definition of merit should be altered to reflect this understanding. As a result, viewing the merit
definition under the prism of our fairness definition helps reveal misalignments between stated merit
and actual preferences.

For a concrete example, consider two agents: agent A has known merit 1, while agent B has merit
M � 1 with probability 1% and 0 with probability 99%. When M > 100, agent B has larger
expected merit, but regardless of whether M > 100 or M ≤ 100, a fully fair principal cannot select
B with probability more than 1%. One may consider this a shortcoming of our model: it would
prevent, for instance, a funding agency (which tries to be fair to research grant PIs) from focusing on
high-risk high-reward research. We argue that the shortcoming will typically not be in the fairness
definition, but in the chosen definition of merit. For concreteness, suppose that the status quo is
to evaluate merit as the total number of citations which the funded work attracts during the next
century.4 Also, for simplicity, suppose that “high-reward” research is research that attracts more than
100,000 citations over the next century. If we consider one unit of merit as 1000 citations, and assume
that the typical research grant results in work attracting about that many citations, then the funding
agency faces the problem from the previous paragraph, and will not be able to support PI B with
probability more than 1%. This goes against the express preference of many funding agencies for
high-risk high-reward work.

However, if one truly believes that high-reward work is fundamentally different (e.g., it will change
the world), then this difference should be explicitly modeled in the notion of merit. For example,
rather than “number of citations,” an alternative notion of merit would be “probability that the
number of citations exceeds 100,000.” This approach would allow the agency to select PIs based
on the posterior probability (based on observed attributes, such as track record and the proposal) of
producing such high-impact work. Of course, in reality, different aspects of merit can be combined to
define a more accurate notion of merit that reflects what society values as true merit of research.

The restrictions imposed on a principal by our framework will and should force the principal to
articulate actual merit of agents carefully, rather than adding ad hoc objectives. Once merit has
been clearly defined, we anticipate that the conflict between fairness and societal objectives will be
significantly reduced.

C Omitted Proofs

Here, we provide proofs omitted in § 3. The results are restated here for convenience. Proposition 3.1
is standard, and we only include a proof for completeness.

Proposition 3.1 σ∗Γ is a utility-maximizing ranking policy for the principal, even over randomized
policies.

4This measure is chosen for simplicity of discussion, not to actually endorse this metric.
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Proof. Let π be a randomized policy for the principal. We will use a standard exchange argument
to show that making π more similar to σ∗Γ can only increase the principal’s utility. Recall that by
Equation (2), the principal’s utility under π can be written as

U(π |Γ) =
∑
x∈X

∑
k

p
(π)
x,k · Ev∼Γ [vx] · wk.

Assume that π does not sort x by non-increasing Ev∼Γ [vx]. Then, there exist two positions j < k

and two agents x, y such that Ev∼Γ [vx] > Ev∼Γ [vy], and p
(π)
x,k > 0 and p

(π)
y,j > 0. Let ε =

min(p
(π)
x,k, p

(π)
y,j ) > 0, and consider the modified policy which subtracts ε from p

(π)
x,k and p(π)

y,j and adds

ε to p(π)
x,j and p(π)

y,k. This changes the expected utility of the policy by

ε · (Ev∼Γ [vx] · wj + Ev∼Γ [vy] · wk − Ev∼Γ [vx] · wk − Ev∼Γ [vy] · wj)
= ε · (wj − wk) · (Ev∼Γ [vx]− Ev∼Γ [vy]) ≥ 0.

By repeating this type of update, the policy eventually becomes fully sorted, weakly increasing the
utility with every step. Thus, the optimal policy must be sorted by Ev∼Γ [vx].

Lemma 3.1 Consider two ranking policies π1 and π2 such that π1 is φ1-fair and π2 is φ2-fair. A
policy that randomizes between π1 and π2 with probabilities q and 1 − q, respectively, is at least
(qφ1 + (1− q)φ2)-fair and obtains expected utility qU(π1 |Γ) + (1− q)U(π2 |Γ).

Proof. Both the utility and fairness proofs are straightforward. The proof of fairness decomposes
the probability of agent i being in position k under the mixing policy into the two constituent parts,
then pulls terms through the sum. The proof of the utility bound uses Equation (2) and linearity of
expectations. We now give details of the proofs.

We write πMix for the policy that randomizes between π1 and π2 with probabilities q and 1 − q,
respectively. Using Equation (2), we can express the utility of πMix as

U(πMix |Γ) = Eσ∼πMix,v∼Γ [U(σ |v)]

= Ev∼Γ

[∑
σ

πMix(σ) · U(σ |v)

]

= Ev∼Γ

[∑
σ

(q · π1(σ) + (1− q) · π2(σ)) · U(σ |v)

]

= q · Ev∼Γ

[∑
σ

π1(σ) · U(σ |v)

]
+ (1− q) · Ev∼Γ

[∑
σ

π2(σ) · U(σ |v)

]
= qU(π1 |Γ) + (1− q)U(π2 |Γ).

Similarly, we prove that π is at least (qφ1 + (1 − q)φ2)-fair if π1 and π2 are φ1- and φ2-fair,
respectively:

k∑
k′=1

p
(π)
x,k′ =

k∑
k′=1

q · p(π1)
x,k′ + (1− q) · p(π2)

x,k′

= q ·
k∑

k′=1

p
(π1)
x,k′ + (1− q) ·

k∑
k′=1

p
(π2)
x,k′

≥ qφ1 · Pv∼Γ

[
M(v)

x,k

]
+ (1− q)φ2 · Pv∼Γ

[
M(v)

x,k

]
= (q · φ1 + (1− q) · φ2) · Pv∼Γ

[
M(v)

x,k

]
,

where the inequality used that π1 is φ1-fair and π2 is φ2-fair. Hence, we have proved that π is
(q · φ1 + (1− q) · φ2)-fair under Γ.
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Lemma 3.2 All 1-fair ranking policies have the same utility for the principal.

Proof. Let π be a 1-fair ranking policy. By Equation (1), π must satisfy the following constraints:
k∑

k′=1

p
(π)
x,k′ ≥ Pv∼Γ

[
M(v)

x,k

]
for all x and k. (4)

Summing over all x (for any fixed k), both the left-hand side and right-hand side sum to k; for the
left-hand side, this is the expected number of agents placed in the top k positions by π, while for
the right-hand side, it is the expected number of agents among the top k in merit. Because the weak
inequality (4) holds for all x and k, yet the sum over x is equal, each inequality must hold with
equality:

k∑
k′=1

p
(π)
x,k′ = Pv∼Γ

[
M(v)

x,k

]
for all x and k.

This implies that

p
(π)
x,k = Pv∼Γ

[
M(v)

x,k

]
− Pv∼Γ

[
M(v)

x,k−1

]
,

which is completely determined by Γ. Substituting these values of p(π)
x,k into the principal’s utility, we

see that it is independent of the specific 1-fair policy used.

Proposition C.1. Consider an algorithm that draws m = (κ+1) log(2n)
2ε2 i.i.d. samples of the agents’

joint merits from Γ, and then estimates each probability Pv∼Γ

[
M(v)

x,k

]
by the empirical frequency

with which x was in position k or higher. Then, with probability at least 1− n−κ, all Pv∼Γ

[
M(v)

x,k

]
are estimated with additive error at most ±ε.

Proof. Focus on one agent x, and write qk = Pv∼Γ

[
M(v)

x,k

]
. Notice that the qk form the CDF

of the rank of x. Let Zk,j = 1 iff x is among the top k agents (by merit) in the jth of the m
samples. Then, P[Zk,j = 1] = qk, and the estimate Zk = 1

m ·
∑
j Zk,j is the average of m

independent Bin(qk) random variables. By the DKW Inequality for the uniform convergence of the
empirical CDF to the true CDF (Dvoretzky et al., 1956; Massart, 1990), we get that with probability
at least 1− 2 exp(−2mε2) ≥ 1− n−(κ+1), all of the estimates Zk are within ±ε of the true values
Pv∼Γ

[
M(v)

x,k

]
. A union bound over all n agents now completes the proof.

While the estimates may be off by additive ε terms, it is fairly easy to compensate for such errors at a
small loss in fairness and utility, as follows:

Proposition C.2. For each x, k, let qx,k be an empirical estimate of Pv∼Γ

[
M(v)

x,k

]
such that |qx,k −

Pv∼Γ

[
M(v)

x,k

]
| ≤ ε and

∑
x qx,k = k for all k. Consider the solution to the LP (3) with fairness

parameter φ, using5 q′x,k =
k(qx,k+ε)
k+nε in place of the (unknown) Pv∼Γ

[
M(v)

x,k

]
. Then, the resulting

sampling distribution is at least ( φ
1+nε )-fair, and guarantees the principal a utility within a factor

1
1+nε of the optimum φ-fair solution.

Proof. First, notice that by the assumption that the qx,k were good approximations for Pv∼Γ

[
M(v)

x,k

]
,

we can bound that q′x,k ≥ k
k+nε · Pv∼Γ

[
M(v)

x,k

]
.

5Notice that the q′x,k in fact satisfy that
∑
x q

′
x,k = k

k+nε

∑
x(qx,k + ε) = k

k+nε
· (k + nε) = k, so they

can be used as input to the LP.
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Because the LP’s solution (px,k)x,k is φ-fair with respect to the q′x,k, we get that

k∑
k′=1

px,k′ ≥ φ · q′x,k ≥
kφ

k + nε
· Pv∼Γ

[
M(v)

x,k

]
≥ φ

1 + nε
· Pv∼Γ

[
M(v)

x,k

]
for all x, k; thus, the solution is ( φ

1+nε )-fair.

Next, we analyze the principal’s utility. Let (p∗x,k)x,k be a φ-fair solution maximizing the principal’s

utility, and write z∗x,k =
∑k
k′=1 p

∗
x,k′ for the probability that agent x is ranked among the top k

positions in the optimum solution. Now define z′x,k = min(z∗x,k, k − φ ·
∑
x′ 6=x q

′
x′,k).

We will prove the following two facts: (1) The principal’s utility under the probabilities z′x,k is not
much smaller than under the original z∗x,k, and (2) Every feasible solution (px,k)x,k to the LP with
fairness parameter φ and q′x,k satisfies

∑
k′≤k px,k′ ≥ z′x,k for all x, k.

1. To show the first claim, we first use a standard way to rewrite the principal’s objective in
terms of the z∗x,k (or z′x,k), using the definition z∗x,0 := z′x,0 := 0:

∑
x

n∑
k=1

p∗x,k · Ev∼Γ [vx] · wk =
∑
x

Ev∼Γ [vx] ·
n∑
k=1

(z∗x,k − z∗x,k−1) · wk

=
∑
x

Ev∼Γ [vx] ·
(

n∑
k=1

z∗x,k · wk −
n−1∑
k=0

z∗x,k · wk+1

)

=
∑
x

Ev∼Γ [vx] ·
(
wn +

n−1∑
k=1

z∗x,k · (wk − wk+1)

)
. (5)

Because z′x,k ≤ z∗x,k+1 for all x, k, writing p′x,k := z′x,k − z′x,k−1, we can also express the
principal’s utility under (z′x,k)x,k in the same way, simply replacing the terms z∗x,k with z′x,k
in (5). Note that the p′x,k do not form a valid solution to the LP, because the “probabilities”
do not necessarily sum up to 1 each across agents or across positions. However, we are only
using this “solution” to help with our bounds, and feasibility is not required.

We can write the principal’s loss in utility going from z∗x,k to z′x,k as follows:

∑
x

Ev∼Γ [vx] ·
(
wn +

n−1∑
k=1

z∗x,k · (wk − wk+1)

)

−
∑
x

Ev∼Γ [vx] ·
(
wn +

n−1∑
k=1

z′x,k · (wk − wk+1)

)

=
∑
x

Ev∼Γ [vx] ·
n−1∑
k=1

(z∗x,k − z′x,k) · (wk − wk+1)

=

n−1∑
k=1

(wk − wk+1) ·
∑
x

Ev∼Γ [vx] · (z∗x,k − z′x,k). (6)

Notice that wk − wk+1 ≥ 0 for all k, and Ev∼Γ [vx] ≥ 0 for all x. To upper-bound the loss
in utility, we therefore can apply bounds for each of the terms z∗x,k − z′x,k. Focus on one
particular pair x, k. Notice that the LP constraints (specifically, the third constraint and the
first constraint) imply that

z∗x,k = k −
∑
x′ 6=x

z∗x′,k ≤ k − φ ·
∑
x′ 6=x

Pv∼Γ

[
M(v)

x′,k

]
= k − φ · (k − Pv∼Γ

[
M(v)

x,k

]
).
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If z′x,k < z∗x,k, then

z′x,k = k−φ·
∑
x′ 6=x

q′x′,k = k−φ·
∑
x′ 6=x

k(qx,k + ε)

k + nε
= k− kφ

k + nε
·(k−qx,k+(n−1)ε).

Therefore, the difference is at most

z∗x,k − z′x,k ≤
kφ

k + nε
· (k − qx,k + (n− 1)ε)− φ · (k − Pv∼Γ

[
M(v)

x,k

]
)

=
φ

k + nε
·
(

(k2 − kqx,k + k(n− 1)ε)

− (k2 + knε− (k + nε) · Pv∼Γ

[
M(v)

x,k

]
)

)
(∗)
≤ φ

k + nε
·
(

(−k(Pv∼Γ

[
M(v)

x,k

]
− ε)− kε) + (k + nε) · Pv∼Γ

[
M(v)

x,k

]
)
)

=
φnε

k + nε
· Pv∼Γ

[
M(v)

x,k

]
(∗∗)
≤ nε

k + nε
· z∗x,k.

Here, the line labeled (*) used that the qx,k approximate the true probabilities Pv∼Γ

[
M(v)

x,k

]
to within additive error at most ε, and the line labeled (**) used that the z∗x,k formed a φ-fair
solution.6

We now substitute this bound (for each k, x) into (6), obtaining that the principal’s loss in
utility is at most

n−1∑
k=1

(wk − wk+1) ·
∑
x

Ev∼Γ [vx] · nε

k + nε
· z∗x,k

≤ nε

1 + nε

n−1∑
k=1

(wk − wk+1) ·
∑
x

Ev∼Γ [vx] · z∗x,k,

which is exactly nε
1+nε times the principal’s utility under the solution z∗x,k, i.e., the optimal

utility. Thus, the utility obtained from using the approximate values is within at least a factor
1− nε

1+nε = 1
1+nε of optimal.

2. Next, we show that every feasible solution (px,k)x,k to the LP with fairness parameter φ
and q′x,k satisfies

∑
k′≤k px,k′ ≥ z′x,k for all x, k. In fact, we show that

∑
k′≤k px,k′ ≥

k − φ ·∑x′ 6=x q
′
x′,k, which in turn is at least z′x,k by definition of z′x,k.

To see this, note that for any feasible solution and for all x, k, the fairness constraint implies
that

∑k
k′=1 px,k′ ≥ φ · q′x,k and furthermore,

∑
x px,k′ = 1 for all k′. Therefore, for any

fixed x, k,

k =
∑
x′

k∑
k′=1

px′,k′ =

k∑
k′=1

px,k′ +
∑
x′ 6=x

k∑
k′=1

px′,k′ ≥
k∑

k′=1

px,k′ +
∑
x′ 6=x

φ · q′x′,k.

Rearranging this inequality gives us the claimed bound.

Now consider the optimal solution px,k (maximizing the principal’s utility) with fairness parameter φ
and estimated probabilities q′x,k. For each x, k, define zx,k =

∑k
k′=1 px,k′ . Then, zx,k ≥ z′x,k for all

x, k, and the utility under (px,k)x,k is given by (5) (with zx,k in place of z∗x,k). In particular, it is at
least as large as under (z′x,k)x,k, and thus within a factor of 1

1+nε of the optimum.

6For φ = 0, the calculations do not apply, but in that case, the algorithm can completely ignore the estimated
probabilities, and will obtain the optimum solution.
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By Proposition C.2, if the principal wants to approximate fairness and utility to within a factor 1− ε,
it suffices to approximate the Pv∼Γ

[
M(v)

x,k

]
to within an additive error of at most ε

n(1−ε) . In turn, by

Proposition C.1, it is sufficient to draw O(κn
2 logn
2ε2 ) samples from Γ to achieve this approximation

with probability at least 1− n−κ; in particular, the number is polynomial in n and 1/ε.

D Example for Suboptimality of πMix,φ

Here, we give an example showing that the policy πMix,φ may not yield optimal utility for the
principal among φ-fair policies. The example illustrates the types of tradeoffs to be considered for
approximately fair solutions, and motivates the LP-based efficient algorithm in § 3.2.

Example 2. Consider n = 3 agents, namely a, b, and c. Under Γ, their merits va = 1, vb ∼
Bernoulli(1/2), and vc ∼ Bernoulli(1/2) are drawn independently.7 The position weights are w1 =
1, w2 = 1, and w3 = 0.

Now, since w1 = w2 = 1 and agents b and c are i.i.d., any policy that always places agent a in
positions 1 or 2 is optimal. In particular, this is true for the policy π∗ which chooses uniformly at
random from among σ∗1 = 〈a, b, c〉, σ∗2 = 〈a, c, b〉, σ∗3 = 〈b, a, c〉, and σ∗4 = 〈c, a, b〉.
For the specific distribution Γ, assuming uniformly random tie breaking, we can calculate the
probabilities Pv∼Γ

[
M(v)

x,k

]
in closed form:

(
Pv∼Γ

[
M(v)

x,k

])
x,k

= 1/24 ·
(

14 22 24
5 13 24
5 13 24

)
.

The probability of a, b, c being placed in the top k positions by π∗ can be calculated as follows:

P(π∗) = 1/24 ·
(

12 24 24
6 12 24
6 12 24

)
.

In particular, this implies that π∗ is φ-fair for every φ ≤ 12/14 = 6/7. This bound can be pushed up
by slightly increasing the probability of ranking agent a at position 1 (hence increasing fairness to
agent a in position 1 at the expense of agents b and c in positions 1–2). Figure 3 shows the principal’s
optimal utility for different fairness parameters φ, derived from the LP (3). This optimal utility is
contrasted with the utility of πMix,φ, which is the convex combination of the utilities of π∗ and πTS,
by Lemma 3.1.
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Figure 3: Utility of πMix,φ and πLP,φ for Example 2 as one varies φ.

7Technically, this distribution violates the assumption of non-identical merit of agents under Γ. This is easily
remedied by adding — say — i.i.d.N (0, ε) Gaussian noise to all vi, with very small ε. We omit this detail since
it is immaterial and would unnecessarily overload notation.
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E Details on the MovieLens Dataset Experiment

The MovieLens-100k dataset contains 100,000 ratings, by 600 users, on 9,000 movies belonging to
18 genres (Harper and Konstan, 2015). In our setup, for each user, the principal is a recommender
system that has to generate a ranking of movies for one of the genres g (e.g., Horror, Romance,
Comedy, etc.), according to a notion of merit of the movies we define as follows.

E.1 Experimental Setup

We assume that each rating of a movie m ∈ Sg is drawn from a multinomial distribution over
{1, 2, 3, 4, 5} with (unknown) parameters θm = (θm,1, . . . , θm,5).

Prior: These parameters themselves follow a Dirichlet prior θm ∼ Dir(α) with known parameters
α = (α1, α2, α3, α4, α5). We assume that the parameters of the Dirichlet prior are of the form
αr = s · pr where s is a scaling factor and pr = P[Rating = r | D] denotes the marginal probability
of observing the rating r in the full MovieLens dataset.
The scaling factor s determines the weight of the prior compared to the observed data, since it acts as
a pseudo-count in α′ below. For the sake of simplicity, we use s = 1 in the following for all movies
and genres.

Posterior: Since the Dirichlet distribution is the conjugate prior of the multinomial distribution, the
posterior distribution based on the ratings observed in the dataset D is also a Dirichlet distribution,
but with parameters α′ = (α+Nm) = (α1 +Nm,1, . . . , α5 +Nm,5) where Nm,r is the number
of ratings of r for the movie m in the dataset D.

E.2 Expected Merit

The optimal ranking policy π∗ sorts the movies (for the particular query) by decreasing expected
merit, which is the expected average rating vm under the posterior Dirichlet distribution, and can be
computed in closed form as follows:

vm , Eθ∼P[θm | D] [vm(θ)] =

5∑
r=1

r · αr +Nm,r∑
r′ αr′ +Nm,r′

. (7)

E.3 Ranking Distribution Visualization
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Figure 4: Comparison of marginal rank distribution matrices for πMix,φ and πLP,φ on “Comedy”
movies.

To provide intuition about the difference between the solutions of the LP and OPT/TS-Mixing for
different values of φ, we visualize πMix,φ and πLP,φ in Figure 4. The plotted matrices are the marginal
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rank distributions: pm,k represents the probability that movie m is ranked at position k. Note that the
distribution at φ = 0 and φ = 1 is identical for the two methods, as shown in our lemmas. The key
distinction between the rank distributions for φ ∈ (0, 1) is that πLP,φ finds non-linear structure for
intermediate values of φ, while πMix,φ merely interpolates linearly between the solutions for φ = 0
and φ = 1.

F Details on the Real-World Experiment

As described in § 5, we designed a real-world experiment through a paper recommendation system
where the users were the participants at the 2020 ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. Signup and usage of the system was voluntary.

Each user was recommended a personalized ranking of the papers published at the conference. This
ranking was produced either by σ∗ or by πTS, and the assignment of users to treatment (πTS) or
control (σ∗) was randomized.

F.1 Users of the Paper Recommendation System

A total of 923 users signed up for the system ahead of the conference (and were randomized into
treatment and control groups). Out of these 923 users, 462 did not use the system after all. Of the
users that logged in at least once, 213 users were in Uπ∗ , and 248 users were in UπTS . Note that
this difference is not caused by the treatment assignment, since users had no information about their
assignment before entering the system. Users could either navigate through their recommendations
by clicking next or previous buttons on their recommendation page, or had other options to engage
with each paper such as reading the abstract, reading the PDF, adding the paper to their calendar, and
adding a bookmark to the paper.

F.2 Modeling the Merit Distribution

The merit of a paper for a particular user is based on a relevance score µu,i that relates features
of the user (e.g., bag-of-words representation of recent publications, co-authorship) to features of
each conference paper (e.g., bag-of-words representation of paper, citations). Most prominently,
the relevance score µu,i contains the TFIDF-weighted cosine similarity between the bag-of-words
representations.

We model the uncertainty in µu,i with regard to the true relevance as follows. First, we observe
that all papers were accepted to the conference and thus must have been deemed relevant to at least
some fraction of the audience by the peer reviewers. This implies that papers with uniformly low
µu,i across all/most participants are not irrelevant; we merely have high uncertainty as to which
participants the papers are relevant to. For example, papers introducing new research directions or
bringing in novel techniques may have uniformly low scores µu,i under the bag-of-words model that
is less certain about who wants to read these papers compared to papers in established areas. To
formalize uncertainty, we make the assumption that a paper’s relevance to a user follows a normal
distribution centered at µu,i, and with standard deviation equal to δi (dependent only on the paper,
not the user) such that maxu µu,i + γ · δi = 1 + ε. (For our experiments, we chose ε = 0.1 and
γ = 2.) This choice of δi ensures that there exists at least one user u such that the (sampled) relevance
score µ̂u,i is greater than 1 with some significant probability; more specifically, we ensure that the
probability of having relevance 1 + ε is at least as large as that of exceeding the mean by two standard
deviations. Furthermore, ε > 0 ensures that all papers have a non-deterministic relevance distribution,
even papers with maxu µu,i = 1.
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