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Appendix A Physics-Informed Neural Networks

With the rise of deep learning, many researchers focus on using deep neural networks to
solve various dlffereﬁm]_aq_\mmj Bﬂle notable achievement is the Physics-Informed Neural
Networks (PINN) (Raissi et all, 2019). In this approach, a key step is to incorporate the
governing dlﬁerentlal equations into the loss function. This greatly reduces the requirement

for high-quality data for training, making it suitable for solving high-dimensional forward
problems.

In PINN, the unknown solution wu(t,z,p) is represented by a deep neural network
ug(t,x, u), where p represents the parameters in the differential equations and € denotes
all trainable parameters of the network, including both weights and biases. To be concrete,
let NQ : RI*7+™m 5 R” be a feed-forward neural network with @Q layers, where the k-th
layer contains Ny neurons (Ng = 1+ n+m and N, = n). The weight matrix and bias vector
in the k-th layer (1 < k < Q) are denoted by W* € RVNeXNe-1 and b* € RN* respectively.
Denote the input vector as z = (t,ug, ) € R 7™ then the output vector at k-th layer
is given by N*(z). In particular, we have A'°(z) = z. Consequently, the operation in the
(@ — 1)-hidden layers is given through

NF(2) = WFra(NFH(2)) + bF e RM: ) 2 <k < Q, (1)
and N'(z) = W'z + b', where o denotes the activation function. In the last hidden layer,

the identity function is taken as the activation function. Letting 8 = {W’“7bk} be the

collection of all weights and biases in the feed-forward neural network, we can write the
output of the neural network as

w(z) = de(t, ug, p) = N9(2;6), (2)
where N'?(z; 0) emphasizes the dependence of the neural network output N'?(z) on 8.

The mapping between points in the spatiotemporal domain and the solution of the differ-
ential equations are optimized by minimizing the following composite loss function

[:(0) = /\dataf'data + )\TES‘C’I‘esa (3)

where L4t represents the loss at those training data points, while L,..s denotes the residual
loss incorporating physical information about the differential equations. Agutq and Ayes are
weights assigned to each loss component.

In this study, we make adaptation of the PINN model, so that it accepts not only the
space-time coordinates x,t as input, but also the parameters and initial values of the equa-
tions. Such changes enable the PINN model to have a certain generalization ability on new
configurations.
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Appendix B Additional Results on Numerical Experiments

B.1 The Logistic model

The distinction between PINN and cd-PINN is further revealed by an analysis of their
respective loss functions. we compare each component of the loss function of cd-
PINN. As shown in Figureﬁ(a), although the data loss of PINN is slightly lower, cd-
PINN achieves a better residual loss during training. Most importantly, the continuity loss
of c¢d-PINN is about two orders of magnitude lower than that of PINN, which provides
a clear demonstration on why cd-PINN owns such an outstanding generalization ability.
Furthermore, the loss landscape of PINN with respect to two principal components of the
deep neural network appears to be quite rugged an s plenty of local minimums, in great
contrast to the smooth one of ¢d-PINN (see Figuredﬁ(b)).
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Figure B1: Loss function and loss landscape of cd-PINN v.s. PINN. (a) Trajectories of each
component of the loss function and MSE for ¢d-PINN and PINN. (b) The loss landscape
with respect to two principal components of the deep neural network after training.
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B.2 The Lotka-Volterra Model

The LV system has four equilibrium points (0,0), (f%,()), (0,722—1) and
13 23

C12€21 — C11€23 C11C22 — C13C21 s
- ,— ) under the condition c19 X coa # c12 X ca3,¢13 # 0
C12C21 — C13C23  C12C22 — C13C23 ) ) — )
and ce3 # 0. And the dynamical behaviors of the LV system around its equilibrium points

(X*,Y™*) are fully characterized by the following Jacobian matrix:

J _ C11 + 2613X =+ 612Y 612X (4)
c22Y Co1 + 2093Y + 99 X ey .
Specifically, when ¢;; > 0 and ¢p; < 0, the fixed point (72,0) is stable. When ¢1; <
C13
0, co1 > 0, the fixed point (O,—%) is stable. When both ¢;; < 0 and c9; < 0, the

€23
fixed point (0,0) is stable. Finally, the fixed point

(— C12€21 — C11€23  C11C22 — C13C21

b
) ) ) | C12C21 —C13C23  C12C22 — C13C23
a central point, which means that the orbits near it are periodic. Table [BI summarizes
the parameter settings, stable points, and their respective attraction domains for the three
scenarios considered in the numerical experiment.

Table B1: Parameters setup, fixed points, and attraction domain for stable fixed points in
the LV model. For simplicity, we set = [0, 00) x [0, 00)\{0} x {0}, and (0, 0) is an unstable
point.

Scenario c¢11  ci2 c13 Co1  Cog (a3 Fixed points Attraction domain
1 1.0 -0.1 -0.08 -1.0 0.1 0.0 (0,0),(12.5,0), (10,2) (0,00) x {0},Q\(0,00) x {0}
2 1.0 00 -05 -0.1 -0.1 0.0 (0, 0), (2, 0) Q
3 1.0 -0.1 00 -1.0 0.1 0.0 (0, 0), (10, 10) central point
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In experiments, we typically conduct trials with few groups of initial values, or even just
a single group of initial values. However, it is essential to understand the solutions corre-
sponding to a broader range of initial values surrounding this group. In scenario two, we test
the generalization ability of ¢d-PINN to arbitrary initial values (X, Yy) in a wide range with

only one group of initial values for training (as marked by the red five-pointed star). Specifi-
C11

C_’ 0) = (27 0) is [Oa OO) X [0’ OO)\{O} X {0}7
13

as shown in the phase trajectory in Figure @ (a). For practice, we select the test interval
as [0.1,10.0] x [0.1,10.0], from which 1600 groups of initial values is uniformly sampled to
generate the test data set. The training data consists of 20 real data points corresponding
to the solution for X = 5.0, Yy = 5.0, and 2'* residual data points to calculate lossy and
losscddetails of the neural network architecture and training method are presented in
Table C§.
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Figure B2: Results for LV equations under scenario two. (a) The phase plane of LV equa-
tions. (b) The MSE of test data for both PINN and cd-PINN during training iterations. (c)
The predicted solutions of cd-PINNs are compared with their exact solutions with respect
to different initial conditions (left panel), alongside comparisons on the absolute errors of
¢d-PINN and PINN (right panel). (d) The logarithm of absolute errors between the pre-
dicted solutions X (upper row) and Y (lower row) of ¢cd-PINN and their respective true
values. (e) Comparison on each component of the loss function for cd-PINN and PINN.
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Scenario three is mainly intended to test whether cd-PINN can learn the correct solution
when the system contains a central point and exhibits periodic orbits. The central point in
€12C21 — C11C
(=222 7 T8y — (10,0, 10.0).
C12C22=C13C23
The corresponding phase trajectory diagram is shown in Figure @ For practice, we
uniformly sample 1600 groups of initial values from the domain [5.0, 15. O] [5.0,15.0] as the
test set. Meanwhile, the training data set consists of 20 real data points corresponding to

the solution with initial values Xy = 5.0,Yy = 5.0, along with 2'4 residual data points for
calculating lossy and loss.q.
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Figure B3: Result for LV equations under scenario three. (a) The phase plane of LV
equations. (b) The MSE of test data for both PINN and c¢d-PINN during training iterations.
(¢) The predicted solutions of cd-PINNs are compared with their exact solutions with respect
to different initial conditions (left panel), alongside comparisons on the absolute errors of
c¢d-PINN and PINN (right panel). (d) Differences in the logarithm of absolute errors of
¢d-PINN and PINN for X (upper row) and Y (lower row).
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B.3 Damped Harmonic Oscillator

The harmonic oscillator is a system that moves back and forth around its equilibrium po-
sition. In the ideal case, without energy loss, the harmonic oscillator would maintain its
motion eternally. However, the real-world system always experiences energy loss. Damping
forces gradually reduce the amplitude of oscillations, eventually bringing the system back to
its equilibrium state. Based on the damping ratio, we can distinguish three scenarios. The
detailed setting of these three scenarios can be found in Table B2. In addition, the parame-
ter setup@r our numerical experiments on the damped harmonic oscillators is summarized
in Table B3.

Table B2: Characteristics and solutions of damped harmonic oscillators under different con-
ditions. Note in all three cases, A and B are constants determined by the initial conditions
of the system.

Cases Characteristic Roots Solutions
Underdamped —Cwo Fiwg/1 — 2 x(t) = e S0t (A cos(wqat) + Bsin(wat))
0<¢<1 where wg = woy/1 — (2
Critically Damped —wp z(t) = (A + Bt)e ot
=1
Overdamped —Cwo Fwo/C2 -1 x(t) = Ael=P+at 4 Bel-P—a)t
(¢>1) where p = (wp and ¢ = wo\/ﬁi—l

Table B3: Parameter setup for the damped harmonic oscillator.

Parameters Underdamped Critically Damped Overdamped
Training Set
Damping ratio (¢) 0.2 (fixed) 1.0 (fixed) 2.0 (fixed)
Wy 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)
Time range 0~20 0~ 20 0~ 20
Number of time points 100 100 100
Test Set
Damping ratio (¢) 0.1~0.9 1.0 (fixed) 1.1~5.0
wo 0.5~5.0
Time range 0~ 20 0~ 20 0~ 20
Number of time points 20 20 20
Total configurations 1600 (40 x 40) 40 1600 (40 x 40)

Total data points 32,000 (1600 x 20) 800 (40 x 20) 32,000 (1600 x 20)
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Figure B4: Absolute error distribution and energy evolution of ¢d-PINN for the damped
harmonic oscillator. (a,b) show the distribution of the logarithm of absolute errors over
the parameter space for the underdamped and overdamped systems, respectively, at various
time points. The green five-pointed star indicates the training point. (c¢) The time evolution
of total, kinetic and potential energies for the test data in the system of under-, critically,
and over-damped oscillators separately.
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Figure B5: The loss landscape and energy evolution of cd-PINN for the damped harmonic
oscillator. (a) displays the loss landscapes of PINN and c¢d-PINN for the overdamped oscil-
lator. (b) shows the time evolution of total, kinetic and potential energies for the training
data in the system of under-, critically, and over-damped oscillators separately.

During the study of underdamped and overdamped systems, we further analyze th rfor-
mance of ¢cd-PINN with respect to different model parameters ¢ and wy. Figuree@e(a—b)
illustrate the ahsglute error distributions of cd-PINN for both systems at four typical time
points. Figure 1@(c) and Figure E(b) compare the time evolution of total energy, kinetic
energy, and potential energy for the underdamped, critically damped, and overdamped
systems. As can be seen, the cd-PINN model aligns more closely with the true energy,
particularly in the underdamped and critically damped cases, where the model accurately
tracks the true physical energy. In contrast, the PINN model shows significant deviations
in energy prediction, especially in the evolution of kinetic and potential energies. A further
calculation shows that the loss landscape of ¢cd-PINN is relatively smoother and deeper than
that of PINN, which in some way gives an explanation to the outstanding performance of
cd-PINN.
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B.4 A Multiscale Model for P53 Activation

The p53-model considered in the main text is directly borrowed from the paper of [Tian
et al) (2017), which consists of seven coupled ordinary differential functions representing the
expression levels of seven corresponding genes. It reads

d[MDMQ} kMDs [S] kMp [p53}n1 ]{,‘Dp4[MDM2p]
- Duya[MA
dt Kups +[S] " Kif + [pp3]™ + DualMA]+ Knp + [MDM2,)]

kipy, [Akt][M DM2)

— kara[MDM[ARF] — ;22 == DI
M

— dmam2[M DM2],

d[MDM2,] koo [AR[MDM2]
0 = DapalMpA] + Koaro + [MDM2] knrpa[MDM2,][ARF)
_ k‘Dp4[MDM2p} _
Koty + [MDM2,] 7 [MDM2,,
d“; Al jr AIMDM[AFR)] — DaralMA] — dysa[MA], (5)
d[M,A
oAl — sty AMDM2,][ARF) — Dasya[My 4] — daspa(My 4],
d[p53} _ k’ 3 — kA453[MDM2][p53] _ kjup53 [MDMQPMP53] _ d 53[]?53]
dt P Karss + [ph3] Karpss + [p53] v ’
d[PTEN] _ kp, [p53]"
g - kpren + W dpren|[PTEN],
dlAk]  kag[S]  [Aktl—[Akt]  kpps[Akt]  ka,[PTEN][Aki]
dt  Kag +[S] Ko + [Akt]: — [Akt]  Kape + [Akt] Kap + [Akt]

The initial conditions are set as (M DM?2], [MDM?2,], [MA],[MyA], [p53], [PTEN], [Akt]) =
(0.2,4.76,0.038,0.058,0.006, 0.1, 0.78) uM, while the reaction rate constants used for calcu-

lation are summarized as follows.
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Table B4: Standard parameter values for the p53 activation model.

Parameter Value Interpretation
kvMbDg 0.66 uM/h Rate constant of M DM?2 expression induced by serum; it is nearly twice
the degradation of M DM?2
k, 0.33 uM/h Rate constant of p53-activation expression of M DM?2
kppa 12 uM/h Rate constant for M DM2, dephosphorylation
kava 43 /(uM - h) Rate constant for MDM2/ARF association
kpag 56 /h Rate constant for M DM2 phosphorylation mediated by Akt
kvpa 10 /(puM - h) Rate constant for M DM2,/ARF association
kps3 4.8 uM/h Basal rate constant of p53 expression, estimated at 0.005 ~ 0.2puM /min
karss 5 /h Rate constant for M DM2—mediated p53 degradation, assumed to be
slower than that mediated by phosphorylated MDM2
knrrps3 18 /h Rate constant for M DM2,— mediated p53 degradation, assumed to be
5— fold dps3
kprEN 0.05 uM/h Basal expression rate of PTTEN
kp, 0.7 uM/h Rate constant of p53—dependent synthesis of PT'TEN
kag 12.9 uM/h Rate constant for Akt phosphorylation induced by growth factors
kppa 9.6 uM/h Rate constant for Akt dephosphorylation
kap 30 /h Rate constant for PTEN— induced Akt dephosphorylation; referring to
the dephosphorylation of PIP3 by PTEN
Kakty, 0.5 uM Michaelis constant for Akt-mediated phosphorylation of M DM?2
Knmpg 0.45% Michaelis constant for M DM?2 expression triggered by growth factors
KMp 0.5 uM Hill constant for p53— induced expression of M DM?2
Knp 0.081 puM Michaelis constant for M DM?2,, dephosphorylation
Krss 0.5 uM Assumed to be 5— fold that mediated by M DM2,
Krpss 0.1 uM Michaelis constant for M DM2— mediated p53 degradation
Kp, 1 M Hill constant for p53— induced expression of M DM?2
Kap 0.6 uM Michaelis constant for PT'EN —induced Akt dephosphorylation; referring
to the Michaelis constant for PT'EN — mediated PIP3 dephosphorylation,
0.1 ~ 0.5uM
Kag 1.47 % Michaelis constant for Akt activation triggered by growth factors
Ko 0.35 uM Threshold of the total enzyme amount for Akt activation
KAkt 0.2 uM Michaelis constant for Akt dephosphorylation
dardm2 0.5 /h Half-life of MDM?2 is about 90 min
dyp 0.1 /h Degradation rate of M DM2, is about 5—fold slower than that of M DM2
dara 0.6 /h Degradation rate of the MDM2 — ARF complex
dyrpa 0.6 /h Assumed to be the same as dy;a
dps3 3.6 /h Half-life of p53 is 5 — 20 min
dpTEN 0.5 /h Half-life of PTEN is longer than 8 h, but PTEN normally undergoes
posttranslational modification, which keeps it in an inactive form.
Dyp 6 /h Rate constant for M DM2 — ARF disassociation
Dpyrpa 24 /h Rate constant for MDM2, — ARF disassociation
ni 4 Hill coefficient of p53— dependent expression of M DM?2
na 3 Hill coefficient of p53—dependent synthesis of PTEN

10



Under review as a conference paper at ICLR 2025

B.5 Comparison of cd-PINN and PINN under Fixed Initial Values or Parameters

In the main text, we highlights the outstanding performance of c¢d-PINN on generaliza-
tion. When confined to tasks with fixed initial values or parameters, does the inclusion of
continuous dependence into the loss help to improve either the prediction accuracy or the
convergence rate of PINN?

For this purpose, we conduct experiments on the LV system — Scenery 1 discussed in the main
text. Here we train the PINN model with fixed initial values Ry = 8.0 and Ay = 1.0. The
training data set includes 20 real data points and 2'4 residual data points. The same setup
is adopted for the cd-PINN. During the training procedure, we first use the Adam optimizer
to train for 10000 epochs and then call the LBFGS optimizer for further optimization.
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Figure B6: Comparison on the convergence rate and accuracy of cd-PINN, PINN with
fixed initial value and a data-regression MLP model. (a) and (b) illustrate the results for
Ry =8.0,4¢ = 1.0 and Ry = 5.0, Ag = 0.0 respectively.

The results presented in Figure [BQ clearly demonstrate that the cd-PINN has a better
convergence rate and accuracy than those of PINN. Most astonishingly, in the current case,
the convergence rate of cd-PINN is even comparable to a pure data-regression model by MLP.
And we believe this is a general feature of c¢d-PINN, which from the other side highlights

the significance of inclusion of continuous dependence.

11
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B.6  Comparison with Neural ODEs

Neural ODEs(bhen et all (lZOld)) are another prominent approach for learning solutions
to ordinary differential equations. As a comparison, here we implement the Neural ODE
model for the Lotka-Volterra system under Scenery 1 with respect to the same data set
and evaluation metrics. The Neural ODE model is numerically integrated by using the
4-order Runge-Kutta method. The model architecture takes the current state (X (t), Y (¢))
and initial conditions (X, Yy) as inputs, and predicts the state derivatives (dX/dt,dY/dt)
as outputs.

From Fig.@, we can see that the Neural ODE model could effectively capture the system
dynamics at the training data points, but shows a much poorer generalization ability than
cd-PINN under the testing scenarios (MSE = 1.37 x 1072 v.s. 4.48 x 107° for cd-PINN).
In addition, the Neural ODE model takes a much longer training time (25, 535s for 50,000
epochs) due to the explicit implementation of RK4 integration steps, whereas PINN and
c¢d-PINN are more computationally efficient.

—_— "l-—-N_—--——-
12 -~ — 1024 /0%
/ :‘, N
1.5 \, __;
\ / § 10-3. U W\ ”l \‘ PO
10 T True Y (IC1) | X5 NS
1
1.0 -=- PredY(IC1) | @ i v [h
= > — Truev(ic2) | 5 104 |4 H
8 ~—- PredY(IC2) | § i i
—— True X (IC1) 0.5 2 ! —— Error X (IC1)
--- Pred X (IC1) ) < 10-5 — Error Y (IC1)
6 —— True X (IC2) | —=- Error X (IC2)
~=- Pred X (1C2) === ErrorY (IC2)
: ! 0.0 : ;
0 5 10 1] 5 10 1] 5 10
Time Time Time
Error X at t=3.0 Error X at t=6.0 Error X at t=9.0 Error X at t=12.0

10
1.2

1.2
0.6 06
0.0 0.0
-0.6 ¥ ~0.6
-1.2 -1.2
-1.8 -1.8
-2.4 -2.4

10

2 a4 6
Xo

10

8 X
6
2

4

2

2 4 6 8 10
Xo

Error Y at t=3.0

10
0.0
-0.6
-1.2
-1.8
-2.4
-3.0 ’ 4
-3.6
2 4 6 8 10 4 6 8
Xo Xo

Figure B7: Results of Neural ODEs for the LV model on the training (upper) and test
(bottom) data sets separately.
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Appendix C Implementation Details
We implement cd-PINN using Python 3.6.13 and PyTorch 1.10.1 with CUDA 11.1. Our

evaluations are conducted on a machine equipped with Intel(R) Xeon(R) Gold 6132 CPUs
and NVIDIA Tesla V100. The source code for this project code is available.

Table C5: Setup of ¢cd-PINN for models tested in this study.

Problem Depth Width Optimizer Learning rate # Iterations Collocation Points
Logistic equation 6 128 Adam + L-BFGS 1 x 107* 50,000 32,768
LV scenario 1 6 128 Adam + L-BFGS 1x 1073 500 32,768
LV scenario 2 6 128 Adam + L-BFGS 1x 107* 100,000 32,768
LV scenario 3 6 128 Adam + L-BFGS 1x 1073 500 32,768
Underdamped oscillator 6 128 Adam 1x1073 50,000 32,768
Critically damped oscillator 6 128 Adam 1x1073 20,000 32,768
Overdamped oscillator 6 128 Adam 1x1073 50,000 32,768
P53 activation 6 128 Adam + L-BFGS 1x107* 10,000 16,384
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