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Appendix:
Incorportating continuous dependence implies better gen-
eralization ability
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Appendix A Physics-Informed Neural Networks

With the rise of deep learning, many researchers focus on using deep neural networks to
solve various differential equations. One notable achievement is the Physics-Informed Neural
Networks (PINN) (Raissi et al., 2019). In this approach, a key step is to incorporate the
governing differential equations into the loss function. This greatly reduces the requirement
for high-quality data for training, making it suitable for solving high-dimensional forward
problems.
In PINN, the unknown solution u(t,x,µ) is represented by a deep neural network
ûθ(t,x,µ), where µ represents the parameters in the differential equations and θ denotes
all trainable parameters of the network, including both weights and biases. To be concrete,
let NQ : R1+n+m → Rn be a feed-forward neural network with Q layers, where the k-th
layer contains Nk neurons (N0 = 1+n+m and NL = n). The weight matrix and bias vector
in the k-th layer (1 ≤ k ≤ Q) are denoted by W k ∈ RNk×Nk−1 and bk ∈ RNk respectively.
Denote the input vector as z = (t,u0,µ) ∈ R1+n+m, then the output vector at k-th layer
is given by N k(z). In particular, we have N 0(z) = z. Consequently, the operation in the
(Q− 1)-hidden layers is given through

N k(z) = W kσ(N k−1(z)) + bk ∈ RNk , 2 ≤ k ≤ Q, (1)

and N 1(z) = W 1z + b1, where σ denotes the activation function. In the last hidden layer,
the identity function is taken as the activation function. Letting θ =

{
W k, bk

}
be the

collection of all weights and biases in the feed-forward neural network, we can write the
output of the neural network as

û(z) = ûθ(t,u0,µ) = NQ(z;θ), (2)

where NQ(z;θ) emphasizes the dependence of the neural network output NQ(z) on θ.
The mapping between points in the spatiotemporal domain and the solution of the differ-
ential equations are optimized by minimizing the following composite loss function

L(θ) = λdataLdata + λresLres, (3)

where Ldata represents the loss at those training data points, while Lres denotes the residual
loss incorporating physical information about the differential equations. λdata and λres are
weights assigned to each loss component.
In this study, we make adaptation of the PINN model, so that it accepts not only the
space-time coordinates x, t as input, but also the parameters and initial values of the equa-
tions. Such changes enable the PINN model to have a certain generalization ability on new
configurations.
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Appendix B Additional Results on Numerical Experiments

B.1 The Logistic model

The distinction between PINN and cd-PINN is further revealed by an analysis of their
respective loss functions. Here we compare each component of the loss function of cd-
PINN. As shown in Figure B1(a), although the data loss of PINN is slightly lower, cd-
PINN achieves a better residual loss during training. Most importantly, the continuity loss
of cd-PINN is about two orders of magnitude lower than that of PINN, which provides
a clear demonstration on why cd-PINN owns such an outstanding generalization ability.
Furthermore, the loss landscape of PINN with respect to two principal components of the
deep neural network appears to be quite rugged and has plenty of local minimums, in great
contrast to the smooth one of cd-PINN (see Figure B1(b)).

Figure B1: Loss function and loss landscape of cd-PINN v.s. PINN. (a) Trajectories of each
component of the loss function and MSE for cd-PINN and PINN. (b) The loss landscape
with respect to two principal components of the deep neural network after training.
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B.2 The Lotka-Volterra Model

The LV system has four equilibrium points (0, 0), (−c11
c13

, 0), (0,−c21
c23

) and

(−c12c21 − c11c23
c12c21 − c13c23

,−c11c22 − c13c21
c12c22 − c13c23

) under the condition c12 × c22 ̸= c12 × c23, c13 ̸= 0

and c23 ̸= 0. And the dynamical behaviors of the LV system around its equilibrium points
(X∗, Y ∗) are fully characterized by the following Jacobian matrix:

J =

[
c11 + 2c13X + c12Y c12X

c22Y c21 + 2c23Y + c22X

]
(X∗,Y ∗)

. (4)

Specifically, when c11 > 0 and c21 < 0, the fixed point (−c11
c13

, 0) is stable. When c11 <

0, c21 > 0, the fixed point (0,−c21
c23

) is stable. When both c11 < 0 and c21 < 0, the

fixed point (0, 0) is stable. Finally, the fixed point (−c12c21 − c11c23
c12c21 − c13c23

,−c11c22 − c13c21
c12c22 − c13c23

) is
a central point, which means that the orbits near it are periodic. Table B1 summarizes
the parameter settings, stable points, and their respective attraction domains for the three
scenarios considered in the numerical experiment.

Table B1: Parameters setup, fixed points, and attraction domain for stable fixed points in
the LV model. For simplicity, we set Ω = [0,∞)× [0,∞)\{0}×{0}, and (0, 0) is an unstable
point.
Scenario c11 c12 c13 c21 c22 c23 Fixed points Attraction domain

1 1.0 -0.1 -0.08 -1.0 0.1 0.0 (0, 0), (12.5, 0), (10, 2) (0,∞)× {0},Ω\(0,∞)× {0}
2 1.0 0.0 -0.5 -0.1 -0.1 0.0 (0, 0), (2, 0) Ω

3 1.0 -0.1 0.0 -1.0 0.1 0.0 (0, 0), (10, 10) central point

3
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In experiments, we typically conduct trials with few groups of initial values, or even just
a single group of initial values. However, it is essential to understand the solutions corre-
sponding to a broader range of initial values surrounding this group. In scenario two, we test
the generalization ability of cd-PINN to arbitrary initial values (X0, Y0) in a wide range with
only one group of initial values for training (as marked by the red five-pointed star). Specifi-
cally, the attraction domain of the stable point (−c11

c13
, 0) = (2, 0) is [0,∞)×[0,∞)\{0}×{0},

as shown in the phase trajectory in Figure B2 (a). For practice, we select the test interval
as [0.1, 10.0] × [0.1, 10.0], from which 1600 groups of initial values is uniformly sampled to
generate the test data set. The training data consists of 20 real data points corresponding
to the solution for X0 = 5.0, Y0 = 5.0, and 214 residual data points to calculate lossf and
losscd. Details of the neural network architecture and training method are presented in
Table C5.

Figure B2: Results for LV equations under scenario two. (a) The phase plane of LV equa-
tions. (b) The MSE of test data for both PINN and cd-PINN during training iterations. (c)
The predicted solutions of cd-PINNs are compared with their exact solutions with respect
to different initial conditions (left panel), alongside comparisons on the absolute errors of
cd-PINN and PINN (right panel). (d) The logarithm of absolute errors between the pre-
dicted solutions X (upper row) and Y (lower row) of cd-PINN and their respective true
values. (e) Comparison on each component of the loss function for cd-PINN and PINN.
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Scenario three is mainly intended to test whether cd-PINN can learn the correct solution
when the system contains a central point and exhibits periodic orbits. The central point in
this system, given the specified parameter set, is located at (−c12c21 − c11c23

c12c22 − c13c23
) = (10.0, 10.0).

The corresponding phase trajectory diagram is shown in Figure B3(a). For practice, we
uniformly sample 1600 groups of initial values from the domain [5.0, 15.0]× [5.0, 15.0] as the
test set. Meanwhile, the training data set consists of 20 real data points corresponding to
the solution with initial values X0 = 5.0, Y0 = 5.0, along with 214 residual data points for
calculating lossf and losscd.

Figure B3: Result for LV equations under scenario three. (a) The phase plane of LV
equations. (b) The MSE of test data for both PINN and cd-PINN during training iterations.
(c) The predicted solutions of cd-PINNs are compared with their exact solutions with respect
to different initial conditions (left panel), alongside comparisons on the absolute errors of
cd-PINN and PINN (right panel). (d) Differences in the logarithm of absolute errors of
cd-PINN and PINN for X (upper row) and Y (lower row).
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B.3 Damped Harmonic Oscillator

The harmonic oscillator is a system that moves back and forth around its equilibrium po-
sition. In the ideal case, without energy loss, the harmonic oscillator would maintain its
motion eternally. However, the real-world system always experiences energy loss. Damping
forces gradually reduce the amplitude of oscillations, eventually bringing the system back to
its equilibrium state. Based on the damping ratio, we can distinguish three scenarios. The
detailed setting of these three scenarios can be found in Table B2. In addition, the parame-
ter setup for our numerical experiments on the damped harmonic oscillators is summarized
in Table B3.

Table B2: Characteristics and solutions of damped harmonic oscillators under different con-
ditions. Note in all three cases, A and B are constants determined by the initial conditions
of the system.

Cases Characteristic Roots Solutions
Underdamped −ζω0 ± iω0

√
1− ζ2 x(t) = e−ζω0t(A cos(ωdt) +B sin(ωdt))

(0 < ζ < 1) where ωd = ω0

√
1− ζ2

Critically Damped −ω0 x(t) = (A+Bt)e−ω0t

(ζ = 1)
Overdamped −ζω0 ± ω0

√
ζ2 − 1 x(t) = Ae(−p+q)t +Be(−p−q)t

(ζ > 1) where p = ζω0 and q = ω0

√
ζ2 − 1

Table B3: Parameter setup for the damped harmonic oscillator.
Parameters Underdamped Critically Damped Overdamped

Training Set
Damping ratio (ζ) 0.2 (fixed) 1.0 (fixed) 2.0 (fixed)

ω0 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)
Time range 0 ∼ 20 0 ∼ 20 0 ∼ 20

Number of time points 100 100 100
Test Set

Damping ratio (ζ) 0.1 ∼ 0.9 1.0 (fixed) 1.1 ∼ 5.0

ω0 0.5 ∼ 5.0

Time range 0 ∼ 20 0 ∼ 20 0 ∼ 20

Number of time points 20 20 20
Total configurations 1600 (40 × 40) 40 1600 (40 × 40)

Total data points 32,000 (1600 × 20) 800 (40 × 20) 32,000 (1600 × 20)
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Figure B4: Absolute error distribution and energy evolution of cd-PINN for the damped
harmonic oscillator. (a,b) show the distribution of the logarithm of absolute errors over
the parameter space for the underdamped and overdamped systems, respectively, at various
time points. The green five-pointed star indicates the training point. (c) The time evolution
of total, kinetic and potential energies for the test data in the system of under-, critically,
and over-damped oscillators separately.
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Figure B5: The loss landscape and energy evolution of cd-PINN for the damped harmonic
oscillator. (a) displays the loss landscapes of PINN and cd-PINN for the overdamped oscil-
lator. (b) shows the time evolution of total, kinetic and potential energies for the training
data in the system of under-, critically, and over-damped oscillators separately.

During the study of underdamped and overdamped systems, we further analyze the perfor-
mance of cd-PINN with respect to different model parameters ζ and ω0. Figure B4(a-b)
illustrate the absolute error distributions of cd-PINN for both systems at four typical time
points. Figure B4(c) and Figure B5(b) compare the time evolution of total energy, kinetic
energy, and potential energy for the underdamped, critically damped, and overdamped
systems. As can be seen, the cd-PINN model aligns more closely with the true energy,
particularly in the underdamped and critically damped cases, where the model accurately
tracks the true physical energy. In contrast, the PINN model shows significant deviations
in energy prediction, especially in the evolution of kinetic and potential energies. A further
calculation shows that the loss landscape of cd-PINN is relatively smoother and deeper than
that of PINN, which in some way gives an explanation to the outstanding performance of
cd-PINN.
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B.4 A Multiscale Model for P53 Activation

The p53 model considered in the main text is directly borrowed from the paper of Tian
et al. (2017), which consists of seven coupled ordinary differential functions representing the
expression levels of seven corresponding genes. It reads

d[MDM2]

dt
=

kMDS [S]

KMDS + [S]
+

kMp [p53]
n1

Kn1
Mp

+ [p53]n1
+DMA[MA] +

kDp4[MDM2p]

KMp + [MDM2p]

− kMA[MDM2][ARF ]− kpM [Akt][MDM2]

KAktM + [MDM2]
− dMdm2[MDM2],

d[MDM2p]

dt
= DMpA[MpA] +

kpM [Akt][MDM2]

KAktM + [MDM2]
− kMpA[MDM2p][ARF ]

− kDp4[MDM2p]

KMp + [MDM2p]
− dMp[MDM2p],

d[MA]

dt
= kMA[MDM2][AFR]−DMA[MA]− dMA[MA],

d[MpA]

dt
= kMpA[MDM2p][ARF ]−DMpA[MpA]− dMpA[MpA],

d[p53]

dt
= kp53 −

kM53[MDM2][p53]

KM53 + [p53]
− kMp53[MDM2p][p53]

KMp53 + [p53]
− dp53[p53],

d[PTEN ]

dt
= kPTEN +

kPp [p53]
n2

Kn2
Pp

+ [p53]n2
− dPTEN [PTEN ],

d[Akt]

dt
=

kAS [S]

KAS + [S]

[Akt]t − [Akt]

K0 + [Akt]t − [Akt]
− kDP3[Akt]

KAkt + [Akt]
−

kAp [PTEN ][Akt]

KAP + [Akt]
.

(5)

The initial conditions are set as ([MDM2], [MDM2p], [MA], [MpA], [p53], [PTEN ], [Akt]) =
(0.2, 4.76, 0.038, 0.058, 0.006, 0.1, 0.78)µM , while the reaction rate constants used for calcu-
lation are summarized as follows.
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Table B4: Standard parameter values for the p53 activation model.
Parameter Value Interpretation

kMDS
0.66 µM/h Rate constant of MDM2 expression induced by serum; it is nearly twice

the degradation of MDM2

kMp 0.33 µM/h Rate constant of p53-activation expression of MDM2

kDP4 12 µM/h Rate constant for MDM2p dephosphorylation

kMA 43 /(µM · h) Rate constant for MDM2/ARF association

kpM
56 /h Rate constant for MDM2 phosphorylation mediated by Akt

kMpA 10 /(µM · h) Rate constant for MDM2p/ARF association

kp53 4.8 µM/h Basal rate constant of p53 expression, estimated at 0.005 ∼ 0.2µM/min

kM53 5 /h Rate constant for MDM2−mediated p53 degradation, assumed to be
slower than that mediated by phosphorylated MDM2

kMp53 18 /h Rate constant for MDM2p− mediated p53 degradation, assumed to be
5− fold dp53

kPTEN 0.05 µM/h Basal expression rate of PTEN

kPp 0.7 µM/h Rate constant of p53−dependent synthesis of PTEN

kAS
12.9 µM/h Rate constant for Akt phosphorylation induced by growth factors

kDP4 9.6 µM/h Rate constant for Akt dephosphorylation

kAP
30 /h Rate constant for PTEN− induced Akt dephosphorylation; referring to

the dephosphorylation of PIP3 by PTEN

KAktM
0.5 µM Michaelis constant for Akt-mediated phosphorylation of MDM2

KMDS
0.45% Michaelis constant for MDM2 expression triggered by growth factors

KMp 0.5 µM Hill constant for p53− induced expression of MDM2

KMp 0.081 µM Michaelis constant for MDM2p dephosphorylation

KM53 0.5 µM Assumed to be 5− fold that mediated by MDM2p

KMp53 0.1 µM Michaelis constant for MDM2− mediated p53 degradation

KPp 1 µM Hill constant for p53− induced expression of MDM2

KAP 0.6 µM Michaelis constant for PTEN−induced Akt dephosphorylation; referring
to the Michaelis constant for PTEN− mediated PIP3 dephosphorylation,
0.1 ∼ 0.5µM

KAS
1.47 % Michaelis constant for Akt activation triggered by growth factors

K0 0.35 µM Threshold of the total enzyme amount for Akt activation

KAkt 0.2 µM Michaelis constant for Akt dephosphorylation

dMdm2 0.5 /h Half-life of MDM2 is about 90 min

dMP 0.1 /h Degradation rate of MDM2p is about 5−fold slower than that of MDM2

dMA 0.6 /h Degradation rate of the MDM2 − ARF complex

dMpA 0.6 /h Assumed to be the same as dMA

dp53 3.6 /h Half-life of p53 is 5 − 20 min

dPTEN 0.5 /h Half-life of PTEN is longer than 8 h, but PTEN normally undergoes
posttranslational modification, which keeps it in an inactive form.

DMD 6 /h Rate constant for MDM2 − ARF disassociation

DMpA 24 /h Rate constant for MDM2p − ARF disassociation

n1 4 Hill coefficient of p53− dependent expression of MDM2

n2 3 Hill coefficient of p53−dependent synthesis of PTEN
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B.5 Comparison of cd-PINN and PINN under Fixed Initial Values or Parameters

In the main text, we highlights the outstanding performance of cd-PINN on generaliza-
tion. When confined to tasks with fixed initial values or parameters, does the inclusion of
continuous dependence into the loss help to improve either the prediction accuracy or the
convergence rate of PINN?
For this purpose, we conduct experiments on the LV system – Scenery 1 discussed in the main
text. Here we train the PINN model with fixed initial values R0 = 8.0 and A0 = 1.0. The
training data set includes 20 real data points and 214 residual data points. The same setup
is adopted for the cd-PINN. During the training procedure, we first use the Adam optimizer
to train for 10000 epochs and then call the LBFGS optimizer for further optimization.

Figure B6: Comparison on the convergence rate and accuracy of cd-PINN, PINN with
fixed initial value and a data-regression MLP model. (a) and (b) illustrate the results for
R0 = 8.0, A0 = 1.0 and R0 = 5.0, A0 = 0.0 respectively.

The results presented in Figure B6 clearly demonstrate that the cd-PINN has a better
convergence rate and accuracy than those of PINN. Most astonishingly, in the current case,
the convergence rate of cd-PINN is even comparable to a pure data-regression model by MLP.
And we believe this is a general feature of cd-PINN, which from the other side highlights
the significance of inclusion of continuous dependence.
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B.6 Comparison with Neural ODEs

Neural ODEs(Chen et al. (2018)) are another prominent approach for learning solutions
to ordinary differential equations. As a comparison, here we implement the Neural ODE
model for the Lotka-Volterra system under Scenery 1 with respect to the same data set
and evaluation metrics. The Neural ODE model is numerically integrated by using the
4-order Runge-Kutta method. The model architecture takes the current state (X(t), Y (t))
and initial conditions (X0, Y0) as inputs, and predicts the state derivatives (dX/dt, dY/dt)
as outputs.
From Fig.B7, we can see that the Neural ODE model could effectively capture the system
dynamics at the training data points, but shows a much poorer generalization ability than
cd-PINN under the testing scenarios (MSE = 1.37 × 10−2 v.s. 4.48 × 10−5 for cd-PINN).
In addition, the Neural ODE model takes a much longer training time (25, 535s for 50,000
epochs) due to the explicit implementation of RK4 integration steps, whereas PINN and
cd-PINN are more computationally efficient.

Figure B7: Results of Neural ODEs for the LV model on the training (upper) and test
(bottom) data sets separately.
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Appendix C Implementation Details

We implement cd-PINN using Python 3.6.13 and PyTorch 1.10.1 with CUDA 11.1. Our
evaluations are conducted on a machine equipped with Intel(R) Xeon(R) Gold 6132 CPUs
and NVIDIA Tesla V100. The source code for this project code is available.

Table C5: Setup of cd-PINN for models tested in this study.
Problem Depth Width Optimizer Learning rate # Iterations Collocation Points

Logistic equation 6 128 Adam + L-BFGS 1× 10−4 50,000 32,768
LV scenario 1 6 128 Adam + L-BFGS 1× 10−3 500 32,768
LV scenario 2 6 128 Adam + L-BFGS 1× 10−4 100,000 32,768
LV scenario 3 6 128 Adam + L-BFGS 1× 10−3 500 32,768

Underdamped oscillator 6 128 Adam 1× 10−3 50,000 32,768
Critically damped oscillator 6 128 Adam 1× 10−3 20,000 32,768

Overdamped oscillator 6 128 Adam 1× 10−3 50,000 32,768
P53 activation 6 128 Adam + L-BFGS 1× 10−4 10,000 16,384
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