
Under review as a conference paper at ICLR 2022

A NETWORK ARCHITECTURES

Each experiment in this paper used four different types of architectures split among the different clients
plus an additional small architecture for the stress test. There are ten different types of nodes (layers) in
each architecture. Figure 5 shows the architectures used in the CIFAR-10/100 experiments. The types
of convolutional layers are denoted by “ c<channels_in>_<channels_ out>_<kernel_size>_<stride>”.
In the chest x-ray experiment, where the input images are grayscale and of size 224⇥ 224 the first
convolutional layer type is “c1_64_k7_s2” type.

CIFAR-10, CIFAR-100, and Chest X-rays, respectively, use different types of linear layers with 10,
100, and 14 output dimensions.

Figure 5: The four client architectures used in CIFAR-10/100 experiments.

B NON PARAMETRIC LAYERS

Since our main architectures all use residual connections and same activation type, the graph con-
nectivity suffices to express the architecture. However, in general, different non-parametric layers
might be desired. For that, we implemented three versions of ResNet in which several different
residual layers were replaced by concatenation, resulting in a hybrid addition-concatenation. To
that end, we included two new non-parametric types of nodes in our layer type set: “add” and
“concat”. Participating in message passing, these nodes produce latent embedding, depending on
where they reside in the graph. No additional parameters are required for them. We trained these
3 architectures together with the vanilla ResNet with four and eight clients with the CIFAR10 and
CIFAR100 datasets. On CIFAR10, the average results by architecture type are: 88.96, 89, 89, 89.2
for 4 clients and 88.6, 88.1, 88.3, 86.8 for 8 clients. On CIFAR100, the results are: 56, 56.2, 56.5,
48.200 for 4 clients and 50.6, 50.4, 47.7, 46.0 for 8 clients. The results are on par with those shown in
Table 1. In particular, the performance obtained by the vanilla ResNet architecture on CIFAR10/100
with 4 and 8 clients respectively is: 88.96, 88.6, 56 and 50.6, whereas its performance under the
FLHA-distillation baseline is 90, 85.7, 51.1, 44.2. In this example, FLHA-GHN shows success in
training with two commonly used non-parametric layers.

13



Under review as a conference paper at ICLR 2022

C HYPERNETWORK INITIALIZATION

As described in Section 4.2 of the main paper, a proper initialization of the hypernetwork weights is
instrumental to a successful training of the client networks. In figure 6 this is shown on an example
convolutional layer with dimensions: 3⇥3⇥64⇥128. In both plots, the blue colored histogram shows
the distribution of the desired Kaiming weight initialization He et al. (2015b). When the weights are
generated by a hypernetwork, a standard initialization of the hypernetwork would generate the orange
histogram shown on the left. We show what that histogram looks like after our initialization scheme
on the right.

Figure 6: Hypernetwork weight initialization. We compare (blue:) a direct Kaiming weight initializa-
tion He et al. (2015b) of a convolutional layer with (orange:) the resulting weight initialization by the
hypernetwork, without (left) and with (right) our initialization scheme.

D HYPERARAMETER SEARCH FOR OUR FLHA

We ran an extensive hyperparameter search using Biewald (2020) for a 4 architecture setup using
a fixed number of 500 epochs , with 3 different GNN types: GraphConv(Morris et al., 2019),
GatedGraphConv(Li et al., 2017), and GraphSAGE(Hamilton et al., 2018); number of GNN layers
T from 1 to 8 with latent dimensions between 16 and 128; hypernetwork Hl bottleneck dimension
between 16 and 64; learning rates between 1e-4 and 0.1; SGD (with and without cosine scheduler)
and Adam(Kingma & Ba, 2014) optimizers with weight decay values between 5e-4 and 5e-6.

E IMPLEMENTATION DETAILS: LOCAL DISTILLATION

Baseline distillation from a teacher model trained via standard (same-architecture) FL is done using
a distillation loss Hinton et al. (2015): (1 � ↵)CE(ypred, y) + ↵KL(ypred, yteacher) ⇥ 2T 2 where
CE and KL denote Cross-Entropy and Kullback Leibler, respectively. The softmax in the KL loss
is taken with respect to a temperature T = 20.0 and ↵ = 0.7. We trained distillation as well as the
main FL models for 200 epochs with SGD. The learning rate for training the teacher network (with
same-architecture FL) is set to 0.1 with cosine scheduling. When distilling from the teacher network
to the student, we use a learning rate to 0.01.

F IMPLEMENTATION DETAILS: PFEDHN

We found this architecture to be quite sensitive to hyperparameters, hence unlike our method which
uses the same set of parameters in all experiments, here we chose the best performing parameters per
setting. Hyperparameters sweep on the following parameters: learning rate, number of hidden layers
in shared mlp, latent dimension size, optimizer (adam and sgd), and weight decay.

14



Under review as a conference paper at ICLR 2022

Table 4: Each row in the table shows the unbalanced class distribution for 4 clients, with the original
balanced distribution of the left. Three different ↵ values are shown: (top) ↵ = 100, (mid) ↵ = 1,
(bottom) ↵ = 0.1

G UNBALANCED DISTRIBUTION

In collaborative training between different entities, clients’ data may be distributed unevenly. In
medical data, for example, this may occur when clinics specialize in certain diseases or use different
sensors. Thus, in addition to architectural differences, FLHA can also have data imbalance. Here we
study the behavior of FLHA under such unbalanced data distributions.

We follow Yurochkin et al. (2019); Hsu et al. (2019); Lin et al. (2020) and use the (symmetric)
Dirichlet distribution, parameterized by a concentration parameter ↵ to split the CIFAR-10 training
and test sets between the different clients. Table 4 shows the resulting per-client class distributions.
As can be seen, the smaller alpha is, the less balanced the distribution is.

Table 5 shows the performance on CIFAR-10 under 3 different ↵ values: 0.1, 1, 100. The smaller ↵
is the more unbalanced the distribution is. Class distribution under the different ↵ values are shown
in Table 4.

When the training data is unevenly distributed, performance can either be measured in a similar
distributed test set or a balanced test set. In the former case, a client would like high performance on
local, biased samples. Suppose a hospital specializes in a specific disease and hopes to improve model
performance related to that disease through FL. We refer to that a “unbalanced” metric. Alternatively,
a client might be interested in balancing its model bias, in which case the performance on the full
(“balanced”) test set is of interest. We compare our FLHA-GHN against a local training. We also
include the usual upper bound performance of standard FL with all clients using the same architecture.
Table 5 shows that FLHA-GHN outperforms local training in both “unbalanced” and “balanced” tasks
and across all alpha values. Specifically, it can be seen that local training achieves high performance
only on test sets of similar distribution, but severely sacrifices performance on sets of balanced

15



Under review as a conference paper at ICLR 2022

Client 0 Client 1 Client 2 Client 3

↵ method unbal. bal. unbal. bal. unbal. bal. unbal. bal.

100
FLHA-GHN 89.7 89.5 87.6 87.6 87.0 86.2 88.3 88.1
Local 81.8 82.4 75.1 74.2 80.5 80.5 81.1 80.3
Standard FL 92.9 93.7 93.2 93.7 94.1 93.7 94.5 93.7

1
FLHA-GHN 91.1 87.1 87.4 85.5 84.9 84.6 85.0 85.5
Local 87.8 75.8 87.3 83.5 84.4 84.0 84.4 83.5
Standard FL 93.8 93.0 92.9 93.0 92.6 93.0 92.9 93.0

0.1
FLHA-GHN 94.6 62.2 98.3 28.7 92.3 34.0 92.4 61.0
Local 93.6 51.1 96.6 27.8 90.9 25.2 90.7 54.1
Standard FL 69.3 53.8 58.2 53.8 42.3 53.8 49.6 53.8

Table 5: FLHA with unbalanced distribution. In the table, ↵ corresponds to the level of unbalanced,e.g.
↵=100 (almost uniform), ↵=0.1 (extremelly unbalanced). unbal. and bal. are short for unbalanced
and balanced and correspond to the distribution of the test set with unbalanced being the same
distribution of each client’s training set.

GHN Init From scratch

Arch 1 (original) 86.1 83.9
Arch 2 (No skip) 84.2 81.3
Arch 3 (Skip first) 84.3 83.7
Arch 4 (Skip last) 85.6 83.6

Table 6: Generalization to unseen architectures: leave-one-architecture-out experiment on CIFAR-10.
Each row is the accuracy on a held-out architecture while training on the other architectures.

distributions. The same architecture FL also shows a trade-off. Despite being the most performant
on the balanced test set, it sacrifices accuracy on local distributions. FLHA-GHN’s capability to
improve on local training in both tasks can be attributed to the inherent personalization of the network.
That is, beyond its ability to adapt to new architectures, FLHA-GHN can also learn a personalized
weight prediction according to the client distributions. This result aligns well with the observation of
Shamsian et al. (2021).

H GENERALIZATION – ADDITIONAL RESULTS

Table 7 shows the performance of the 4 architectures used in our experiments, and how they are
influenced when each is replaced by a smaller architecture. The average drop in performance of
2.2± 1.4 keep the performance well above the local-training alternative.

Replaced Arch 1 Arch 2 Arch 3 Arch 4

None 90.4 89.0 87.3 88.5
Arch 4 88.2 86.9 86.4 80.3
Arch 3 88.8 87.1 79.6 88.2
Arch 2 88.6 81.6 85.4 86.2
Arch 1 77.5 83.8 85.4 83.6

Table 7: Training with a much smaller architecture shows an average performance drop by 2.2± 1.4
pts. However, this is well above the local training alternative.

16



Under review as a conference paper at ICLR 2022

Figure 7: Generalization to a smaller 4 layer CNN architecture. Our method (light blue) quickly
ramps up to high performance and maintains a considerable gap compared to training from scratch
until convergence(dark blue).

17


	Introduction
	Previous work
	Problem Definition
	Approach
	Overview
	Method
	Implementation details

	Experiments
	Methods in comparison
	Results on CIFAR
	Results on Chest X-ray
	Generalization to unseen architectures
	Communication rate
	GNN importance

	Conclusion and limitations
	Network architectures
	Non parametric layers
	Hypernetwork initialization
	hyperarameter search for our FLHA
	Implementation details: Local Distillation
	Implementation details: pFedHN
	Unbalanced distribution
	Generalization – additional results

