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A Preliminaries

The theoretical analyses developed in this appendix focuses on the learning scenario where single
data-points are presented to an MLP each training iteration, similar to online learning scenarios.
We focus on this scenario in large part because it is more biologically realistic than training with
large mini-batches, and a central goal of the paper is to analyze IL in order to better understand how
optimization and credit assignment may work in the brain. Other analyses of learning algorithms
make similar simplifying assumptions (e.g., see [24]). We discuss the case of mini-batches briefly in
section B.5, and our empirical simulations in this paper and previous works in the literature show
that IL algorithms are able to perform competitively with BP when trained on mini-batches (e.g., see
[43, 2, 35] as well as in the scenario where single data-points are presented. This suggests using IL
with large mini-batches is approximated by the case of training with single data points. We leave it to
future work to analyze differences in the behavior of IL in the case of small versus large mini-batches
in more detail.

Our analyses considers the version of IL that uses local predictions computed pn+1 = Wnf(ĥn)

at hidden layers and p1 = W0ĥ0 at the input layer. This kind of prediction can be interpreted as a
prediction of neuron pre-activations. This is slightly different from predictions of neuron activations:
pn+1 = f(Wnĥn). Although we only analyse the pre-activation version of the prediction, we find
the two behave very similarly in practice (e.g., our IL-SGD model uses prediction of activations,
while our IL-prox models use predictions of pre-activations and both achieve similar performance on
a variety of tasks). Thus, our analyses here should apply approximately to IL models that use the
activation prediction equation.

Finally, we will sometimes use two slightly different expressions to describe the loss produced by
MLP parameter θ. First, L(θ(b), x(b), y(b)) = L(h

(b)
N , y(b)) refers to the loss produced by MLP

parameters θ(b) at training iteration b, given data point x(b) and prediction target y(b) during the
feedforward pass. This is distinct from L(ĥN , y(b)), which refers to the loss between the output layer
optimized activities ĥN and target y(b). Note that both hN and ĥN are initialized to WN−1f(hN−1).
Importantly, assume in MLPs with non-linearities some non-linearity is applied to the activities at
the output layer before being inputted into loss. For example, in the case where cross entropy loss is
used, one would compute L(σ(h

(b)
N ), y(b)), where σ may be sigmoid in the case binary cross entropy

or softmax in the case a categorical cross entropy loss. To simplify notation, we do not write this σ
below, but assume it is ’built’ into the loss as needed. None of the proofs below are affected by this
assumption.

B G-IL and Implicit SGD

B.1 A Brief Introduction to Implicit SGD

Let θ(b) be a set of parameters, x(b) input data, and global output target is y(b), where b is the current
training iteration. The explicit SGD update uses the loss gradient produced by the current parameters:

θ(b+1) = θ(b) − α
∂L(θ(b), x(b), y(b))

∂θb
, (10)

where α is step size and L is the function being minimized. This update is explicit because the
gradient can be readily computed given θ(b), x(b), y(b). The implicit SGD update uses the loss gradient
of the parameters at the next training iteration:

θ(b+1) = θ(b) − α
∂L(θ(b+1), x(b), y(b))

∂θ(b+1)
. (11)

This is an implicit update because θ(b+1) shows up on both sides of the equation. Unlike explicit
SGD, θ(b+1) cannot be readily computed using available quantities. One can still perform an implicit
gradient update, however, by computing the solution of the following optimization problem:

θ(b+1) = argminθ(L(θ, x
(b), y(b)) +

1

2α
∥θ − θ(b)∥2). (12)
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This update is known as the proximal algorithm or proximal point method [30] and is equivalent to
performing an implicit SGD update in the stochastic setting (see below). This algorithm is a specific
application of the more general proximal operator:

proxαf (z) = argminθ(f(θ) +
1

2α
∥θ − z∥2), (13)

where f is a function with scalar output. We can see the proximal algorithm changes parameters θ(b)

in a way that minimizes the loss L and the magnitude of the update, which helps keep θ(b+1) in the
proximity of θ(b). We can also see the proximal algorithm only requires using the known quantities
θ(b), x(b), y(b).

The equivalence of the proximal algorithm in the stochastic setting to the implicit SGD update
(equation 11) can be shown easily using the fact that at the minimum of the proximal objective
θ = θ(b+1) and the gradient of 12 is zero:

0 =
∂L

∂θ(b+1)
+

1

α
(θ(b+1) − θ(b))

θ(b+1) = θ(b) − α
∂L

∂θ(b+1)
,

(14)

where L = L(θ(b+1), x(b), y(b)).

Explicit and implicit SGD have similar convergence guarantees. Analysis of the convergence
properties of implicit SGD in linear regression models was done by [41, 42], in generalized linear
models by [40]. However, explicit and implicit SGD have importantly distinct stability properties. It
is well-known that explicit SGD is highly sensitive to learning rate. Implicit SGD, on the other hand,
is unconditionally stable in the sense that equation 12 monotonically decreases the loss function
L for 0 < α, as it is implied by equation 12 that L(θ(b+1)) + 1

α2∥θ
(b+1) − θ(b)∥2 ≤ L(θ(b)). One

can also gain an intuition for the unconditional stability of implicit SGD by noting the differences
in the way the learning rate α is used in the explicit SGD update (equation 10) versus the proximal
algorithm/implicit update (equation 12). In the explicit SGD update α is used to scale the gradient,
which clearly implies that as α → ∞ so does the magnitude of the update. However, with the
proximal algorithm α only controls the relative weighting of the two terms in equation 12. As
α→∞ we see the regularization term 1

2α∥θ−θ(b)∥2 is down-weighted to 0. In this case, the updated
parameters are simply those that best minimize the loss function L, which lead to an update that
reduces the loss given x(b). For further details on the stability of explicit and implicit SGD in linear
models see [41, 40, 42].

B.2 G-IL Local Targets as Target FF Activities

In this section, we show that when a single datapoint is presented each training iteration, there are
two interesting properties concerning the local targets computed by IL and the NLMS rule used by
IL. We express these properties in lemma B.1 and proposition B.1. This lemma and proposition are
used in proofs below.

First, we show that IL local targets ĥ(b)
n , at training iteration b, become the FF activities h(b+1)

n at the
next training iteration given the same data point when weights are updated to fully minimize local
prediction errors. In this sense, IL local targets are target FF activities.

Let θ(b) be the set of MLP weight matrices θ(b) = [W
(b)
0 , ...,W

(b)
N−1]. Let the solution parameters

at iteration b be θ∗ = argminθ F , where F is the energy function defined in equation 4. In the IL
algorithm, minimizing F w.r.t. weight Wn equates to updating weights in a way that minimizes
the local prediction error en+1 = 1

2∥ĥn+1 − pn+1∥2 (see section 3.3). In the case where the MLP
is only presented with a single data-point each iteration, this local learning problem can be solved
such that there is zero error. More specifically, let W ∗

n be the weight matrix at layer n of θ∗. When
training with single data-points, this solution weight matrix has the property ĥ

(b)
n+1 = W ∗

nf(ĥ
(b)
n ) (for

an example of one solution with this property see proposition B.1). It follows trivially that ĥn are
equivalent to the FF activities of θ∗ when given the same data-point x(b) as input:
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Lemma B.1. Consider a non-linear MLP trained with G-IL at iteration b with mini-batch size 1. Let
h∗
n be the FF activities of solution parameters θ∗ at layer n given data-point x(b). It is the case that

h∗
n = ĥ

(b)
n .

Proof. At initialization, ĥ(b)
0 = x(b) and h∗

0 = x(b). Thus, ĥ(b)
0 = h∗

0. Next, by definition at the input
layer ĥ(b)

1 = W ∗
0 ĥ

(b)
0 . This implies that ĥ(b)

1 = W ∗
0 ĥ

(b)
0 = W ∗

0 ĥ
∗
0 = h∗

1. This property holds for
remaining layers because by definition ĥ

(b)
n+1 = W ∗

nf(ĥ
(b)
n ), which implies ĥ

(b)
2 = W ∗

1 f(ĥ
(b)
1 ) =

W ∗
1 f(h

∗
1) = h∗

2. This same procedure can then be repeatedly applied to show the same is true of all
remaining layers n.

The solution matrices W ∗
n are non-unique in the case where single-data points are used. However,

there are unique minimum-norm solution matrices, which can be computed using the NLMS rule
(equation 6) as we now show.
Proposition B.1. Consider an non-linear MLP trained with G-IL under the NLMS rule (equation
16) at iteration b mini-batch size 1. For all n, the updated matrix W

(b+1)
n is the minimum norm

solution matrix, i.e. W (b+1)
n = argmin

W
(b+1)
n

1
2∥W

(b+1)
n −W

(b)
n ∥2, subject to the constraint that

ĥ
(b)
n = W b+1

n f(ĥ
(b)
n ).

Proof. Here we follow the proof of [8], which proved a similar result concerning linear regression
models trained with a variant of NLMS.

Using the method of Lagrangian multipliers we can rewrite argminWn

1
2∥W

(b+1)
n −W

(b)
n ∥2, subject

to ĥ
(b)
n = W b+1

n f(ĥ
(b)
n ) as as follows

P =
1

2
∥W (b+1)

n −W (b)
n ∥2 + λe

(b+1)
n+1 , (15)

where λ is the Lagrangian multiplier and e
(b+1)
n+1 = ĥ

(b)
n+1 −W

(b+1)
n f(ĥ

(b)
n ). First we compute the

gradient of P w.r.t. the weights and set to 0,

∂P

∂W
(b+1)
n

= W (b+1)
n −W (b)

n + λf(ĥ(b)
n )T = 0. (16)

The partial w.r.t. the Lagrangian is then

∂P

∂λ
= ĥ

(b)
n+1 −W (b+1)

n f(ĥ(b)
n ) = 0. (17)

Rearranging 16 we get
W (b+1)

n = W (b)
n − λf(ĥ(b)

n )T . (18)
Substituting 18 into 17 we get

0 = ĥ
(b)
n+1 − (W (b)

n − λf(ĥ(b)
n )T )f(ĥ(b)

n )

λ = −∥f(ĥ(b)
n )∥−2e

(b)
n+1

.

(19)

Finally, substituting the value for λ into 18 we get

W (b+1)
n = W (b)

n + ∥f(ĥ(b)
n )∥−2e

(b)
n+1f(ĥ

(b)
n )T , (20)

which is exactly equal to the NLMS rule used in the IL algorithm (equation 6).

In sum, when training with single data-points, activities ĥ optimized by IL are target FF activities in
the sense that they become FF activities after F is minimized completely w.r.t. weights and local
errors go to zero. The NLMS rule yields such a solution. One important implication of this is that
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the LMS update (equation 5), which is commonly used in practice, is a good approximation of the
NLMS solution since the two are proportional.

This lemma and proposition allow us to do something important, which lays the basis for the
connection between implicit SGD and G-IL. In particular, this lemma and proposition show us that
the network solution θ∗, its FF activities h∗

n, and ∆θ can be expressed implicitly in terms of ĥ. For
example, lemma B.1 shows that h∗

n = ĥn. This implies that we know what the loss produced by θ∗:

L(θ∗, x(b), y(b)) = L(ĥ
(b)
N , y(b)), (21)

where L(ĥN , y(b)) is the loss measure, which in the case of MLPs is some measure of the difference
between prediction target y(b) and FF output layer value, which for θ∗ is equivalent to ĥN (as implied
by lemma B.1).

Additionally, proposition B.1 shows that each ∆Wn can be expressed as ∥f(ĥ(b)
n )∥−2e

(b)
n+1f(ĥ

(b)
n )T ,

where en+1 again is can be expressed in terms of optimized activities: en+1 = ĥ
(b)
n+1 −W

(b)
n f(ĥ

(b)
n ).

This means

1

2
∥θ∗ − θ(b)∥2 =

1

2

N∑
n

∥∆Wn∥2 =
1

2

N∑
n

∥∥f(ĥ(b)
n )∥−2(ĥ

(b)
n+1 −W (b)

n f(ĥ(b)
n ))f(ĥn)

T ∥2. (22)

This allows for the possibility to minimize the proximal quantity w.r.t. ĥn. That is, it allows for an IL
algorithm, where during the inference phase the algorithm approximates argminĥ(L(θ

∗) + 1
2α∥θ

∗ −
θ(b)∥2), where L(θ∗) and ∥θ∗ − θ(b)∥2 are defined implicitly in terms of ĥ using equations 21 and
22. At each step in the inference phase ĥ are updated to minimize the proximal loss, which results
in a change in θ∗, since θ∗ is defined in terms of the ĥ. After a minimum is reached weights are
updated with the NLMS rule such that ĥ values become the FF values given the same data point. The
inference phase, in other words, finds the FF values of a θ∗ that best minimizes the proximal loss,
then uses those FF values to update the actual parameters θ(b) such that θ(b+1) = θ∗ (see figure 4.1
for visualization).

Let’s define such an algorithm as proximal inference learning (IL-prox), since it, like G-IL, computes
ĥn by minimizing an objective w.r.t. activities, then updates weights afterward:
Definition B.1. Proximal Inference Learning (IL-prox). An algorithm identical to G-IL (algorithm
2), except activities are optimized to approximate argminĥn

(L(θ∗) + 1
2α∥θ

∗ − θ(b)∥2) and weights
are updated using the NLMS rule.

Again, the θ∗ here is defined implicitly in terms of the ĥ values using equations 21 and 22. In
the next, section we show that under certain variable settings it is the case that argminĥ F =

argminĥ(L(θ
∗) + 1

2α∥θ
∗ − θ(b)∥2).

B.3 Generalized Inference Learning Approximates Proximal Inference Learning

Let α be a ’global’ learning rate hyper-parameter for θ, and αn be the layer-wise learning rate used
in the weight update ∆Wn. Finally, let θ∗ be defined as the parameters after the NLMS update is
applied to each weight matrix, as in the last section.

Theorem B.1. Let αn = ∥f(ĥn)∥−2. In the limit where γdecay
n → ∥en+1∥2(1− 2

α6
n
), γN → αN−1

α ,

and γn → α−1
n−1 for all n < N , it is the case that argminĥ F = argminĥ L(θ

∗) + 1
2α∥θ

∗ − θ(b)∥2.
Hence, in these limits, G-IL is equivalent to IL-prox.

Proof. To prove this statement, we show that ∂F
∂ĥn

= 0⇐⇒ ∂Prox
∂ĥn

= 0, which implies argminĥ F =

argminĥ L(θ
∗) + 1

2α∥θ
∗ − θ(b)∥2. We first compute the gradients of the IL energy function F w.r.t.

activities ĥ, then the gradient of the proximal loss, which is defined in terms of equation 21 and 22.

Gradient of F In IL networks, activities are updated with local gradients of F , as follows:

At the output layer,
∂F (ĥN )

∂ĥN

=
∂L(y, ĥN )

∂ĥN

+ γNeN . (23)
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and at hidden layers:

∂F (ĥn)

∂ĥn

= −γn+1f
′(ĥn)W

T
n en+1 + γnen + γdecay

n f ′(ĥn)ĥn, (24)

where f ′(ĥn) =
∂f

∂ĥn
. We see the gradient of the loss L term is only taken w.r.t. the local output layer

activity ĥN , and the gradient of prediction error at layers n and n+ 1 are taken w.r.t. to local layer n.
We assume whatever process is used to minimize F similarly only uses local information such that
its minima are described by the above gradients when they equal zero.

Gradient of Prox w.r.t. Output Layer We first compute gradients for the output layer. As with G-IL,
we assume only local gradients of the proximal loss are used to update the activities. The gradients of
the proximal loss w.r.t. output layer activity ĥN is

Prox(ĥN ) = L(ĥN , y)︸ ︷︷ ︸
prox1

+
1

2α
∥∆WN−1∥2︸ ︷︷ ︸

prox2

, (25)

since ĥN is local to L and since WN−1 are the only weights local to ĥN .

The gradient ∂Prox(ĥN )

∂ĥN
, can be expressed in terms of prox1 and prox2 as follows: ∂Prox(ĥN )

∂ĥN
=

∂prox1(ĥN )

∂ĥN
+ ∂prox2(ĥN )

∂ĥN
. Clearly, ∂prox1(ĥN )

∂ĥN
= ∂L(ĥN ,y)

∂ĥN
. The second term ∂prox2(ĥN )

∂ĥN
can be

computed using the chain rule. First,

prox2(ĥN ) =
1

2α
∥∆WN−1∥2 =

1

2α
∥αN−1eNf(ĥN−1)

T ∥2. (26)

where pN = WN−1f(ĥN−1), f is an element-wise non-linearity, and eN = ĥN − pN . Then using
the chain rule we have

∂prox2

∂ĥN

=
∂prox2

∂∆WN−1

∂∆WN−1

∂eN

∂eN

∂ĥN

, (27)

where ∂prox2

∂∆WN−1
= αN−1

α enf(ĥN−1)
T and ∂∆WN−1

∂eN
∂eN
∂ĥN

= αN−1f(ĥN−1). Together we get

∂Prox(ĥN )

∂ĥN

=
∂L(ĥN , y)

∂ĥN

+
α2
N−1

α
∥f(ĥN−1)∥2eN

=
∂L(ĥN , y)

∂ĥN

+
αN−1

α
eN .

(28)

Note that here αN−1 = ∥f(ĥN−1)∥−2 as noted in the theorem. In the limit where γN → αN−1

α , this

gradient comes to ∂L(ĥN ,y)

∂ĥN
+ γNeN , which is equivalent to the gradient ∂F

∂ĥN
(see equation 23).

Gradient w.r.t. Hidden Layers Next, we compute ∂Prox(ĥn)

∂ĥn
for hidden layers. The components of

Prox local to hidden layer ĥn are

Prox(ĥn) =
1

2α
∥∆Wn∥2︸ ︷︷ ︸
prox1

+
1

2α
∥∆Wn−1∥2︸ ︷︷ ︸
prox2

. (29)

whose gradient can be expressed in terms of prox1 and prox2: ∂Prox(ĥn)

∂ĥn
= ∂prox1(ĥn)

∂ĥn
+ ∂prox2(ĥn)

∂ĥn
.

As above, the gradient ∂prox2(ĥn)

∂ĥn
is computed using the chain rule.

prox2 =
1

2α
∥∆Wn−1∥2 =

1

2α
∥αn−1enf(ĥn−1)

T ∥2, (30)

where pn = Wn−1f(ĥn−1) and en = ĥn − pn. Using the chain rule

∂prox2(ĥn)

∂ĥn

=
∂prox2

∂∆Wn−1

∂∆Wn−1

∂en

∂en

∂ĥn

, (31)
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where ∂prox2

∂∆Wn−1
= αn−1

α enf(ĥn−1)
T and ∂∆Wn−1

∂en
∂en
∂ĥn

= αn−1f(ĥn−1). Multiplying together we
get

∂prox2(ĥn)

∂ĥn

=
α2
n−1

α
∥f(ĥn−1)∥2en. (32)

Now we derive prox1(ĥn)

ĥn
:

prox1 =
1

2α
∥∆Wn∥2 =

1

2α
∥αn−1en+1f(ĥn)

T ∥2, (33)

where pn+1 = Wnf(ĥn) and en+1 = ĥn+1 − pn+1. Using the chain rule

∂prox1

∂ĥn

=
∂prox1

∂∆Wn

∂∆Wn

∂en+1

∂en+1

∂pn+1

∂pn

∂ĥn

+
∂prox1

∂∆Wn

∂∆Wn

∂f(ĥn)T
∂f(ĥn)

T

∂ĥn

+
∂prox1

∂∆Wn

∂∆Wn

∂∥f(ĥn)∥−2

∂∥f(ĥn)∥−2

∂ĥn

.

(34)

Unlike the previous gradients, we now need propagate the gradient through the learning rate, which
is what is done by the term ∂prox1

∂∆Wn

∂∆Wn

∂∥f(ĥn)∥−2

∂∥f(ĥn)∥−2

∂ĥn
above.

First, ∂prox1

∂∆Wn

∂∆Wn

∂en+1

∂en+1

∂pn+1

∂pn

∂ĥn
= −α2

n

α ∥f(ĥn)∥2f ′(ĥn)W
T
n en+1. Next, ∂prox1

∂∆Wn

∂∆Wn

∂f(ĥn)T
∂f(ĥn)

T

∂ĥn
=

α2
n

α ∥en+1∥2f ′(ĥn)ĥn. Finally, ∂prox1

∂∆Wn

∂∆Wn

∂∥f(ĥn)∥−2

∂∥f(ĥn)∥−2

∂ĥn
=

α2
n

α (−2∥en∥2

α6
n

)f ′(ĥn)ĥn, which re-
sults in

∂prox1

∂ĥn

= −α2
n

α
∥f(ĥn)∥2f ′(ĥn)W

T
n en+1 +

α2
n

α
∥en+1∥2f ′(ĥn)ĥn +

α2
n

α
(
−2∥en+1∥2

α6
n

)f ′(ĥn)ĥn

=
α2
n

α
(−∥f(ĥn)∥2f ′(ĥn)W

T
n en+1 + ∥en+1∥2f ′(ĥn)ĥn +

−2∥en+1∥2

α6
n

f ′(ĥn)ĥn)

=
α2
n

α
(−α−1

n f ′(ĥn)W
T
n en+1 + ∥en+1∥2(1 +

−2
α6
n

)f ′(ĥn)ĥn)

(35)

Now we substitute our ∂prox1

∂ĥn
and ∂prox2

∂ĥn
terms back into the gradient of Prox(ĥn):

∂Prox(ĥn)

∂ĥn

=
α2
n

α
(−α−1

n f ′(ĥn)W
T
n en+1 + α−1

n−1en + ∥en+1∥2(1 +
−2
α6
n

)f ′(ĥn)ĥn) (36)

Finally, we set this gradient equal to 0 (i.e. at a minimum of Prox) and in the limit where γdecay
n →

∥en+1∥2(1+ −2
α6

n
) and γn → α−1

n−1 for all n < N . To simplify notation, we just label this limit as lim

0 = lim
α2
n

α
(−α−1

n f ′(ĥn)W
T
n en+1 + α−1

n−1en + ∥en+1∥2(1 +
−2
α6
n

)f ′(ĥn)ĥn)

= −γn+1f
′(ĥn)W

T
n en+1 + γnen + γdecay

n f ′(ĥn)ĥn.

(37)

When set to zero, α2
n

α cancels. The result is exactly equal to ∂F
∂ĥn

(equation 24). It follows that, in

these limits, for any hidden layer n it is the case that ∂F
∂ĥn

= 0⇐⇒ ∂Prox
∂ĥn

= 0. Since the same result

holds at the output layer, it follows that argminĥ F = argminĥ L(θ
∗) + 1

2α∥∆θ∥2. Hence, under
these γ settings G-IL is equivalent to IL-prox.
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B.4 G-IL Approximates Implicit SGD

Here we present the theorem showing the IL-prox, and G-IL with the γ setting noted in the above
theorem, are equivalent to the proximal algorithm and thus implicit SGD. An intuitive way to think
about the relation between the typical proximal algorithm and IL-prox is that IL-prox does what
the typical proximal algorithm would do, but in reverse order. The standard proximal algorithm
argminθL(θ)+

1
2α∥θ−θ

(b)∥2 minimizes the proximal loss w.r.t. parameters, then the new parameters
can be used to compute new FF values given the data-point x(b). IL prox, on the other hand, first
computes the new FF values of the parameters that best minimize the proximal loss given x(b) during
the inference phase. Then it updates weights so they become the parameters that best minimize the
proximal loss. Since both optimization problems are unconstrained (and thus optimize over the same
space of possible parameter values), they yield the same parameter updates in the end.

Theorem B.2. Let θ(b) be a set of MLP parameters at training iteration b. Let θ
(b+1)
prox =

argminθ L(θ) +
1
2α∥θ − θ(b)∥2. Let θ(b+1)

IL−prox be the parameters updated by IL-prox (see 4.1)

and θ
(b+1)
IL the parameters updated by G-IL under parameter setting in theorem 4.1. Assume mini-

batch size 1. Under these assumptions, it is the case θ
(b+1)
prox = θ

(b+1)
IL−prox = θ

(b+1)
IL .

Proof. The weight update procedure performed by IL-prox can be described as follows:

θ
(b+1)
IL−prox = argminθ F (argminĥL(θ

∗) + ∥θ∗ − θ(b)∥2), (38)

where argminθ F is computed using the NLMS rule and θ∗ are the parameters updated with
the NLMS rule (equation 16). Lemma B.1 and proposition B.1 imply that the ĥ produced by
argminĥL(θ

∗) + 1
2α∥θ

∗ − θ(b)∥2) are the FF activities of θ∗. The fact that argminθF is computed
using the NLMS rule implies that the resulting parameters are the θ∗ of the optimized activities. ĥ are
unbounded, real-valued vectors, which implies that argminĥL(θ

∗) + ∥θ∗ − θ(b)∥2 is an unbounded
optimization problem and also implies that the possible θ∗ values are also unbounded (because
they can vary over a set of FF values that have unbounded possible values). This implies that
argminĥL(θ

∗) + ∥θ∗ − θ(b)∥2 outputs the FF values of the parameters θ∗ that best minimize the
proximal loss. Then argminθF uses those FF activities to update θ(b) such that it become equal to
the θ∗ that best minimize the proximal loss. This implies θ(b+1)

IL−prox = argminθL(θ) + ∥θ − θ(b)∥2

and thus θ(b+1)
prox = θ

(b+1)
IL−prox.

Further, this conclusion implies that under the γ parameter settings and learning rates noted in
theorem 4.1, the parameter update produced by G-IL, θ(b+1)

IL also equals θ
(b+1)
prox , since θ

(b+1)
prox =

θ
(b+1)
IL−prox = θ

(b+1)
IL , given the proof above and theorem 4.1.

B.5 A Note about Mini-batches

Our analysis above focuses on the more biologically realistic scenario where a single data-point is
presented each training iteration. In this case, the NLMS rule provides the minimum-norm solution
to argminθF and the LMS update approximates this solution in the sense it is proportional to the
NLMS update. However, in the case where mini-batches of size > 1 are used, the NLMS rule is not a
solution to argminθF . The gradient update of F w.r.t. Wn is

W b+1
n = W (b)

n − αn
∂F

∂Wn
= W (b)

n + αn(H
T (b)
n+1 −W (b)

n f(HT (b)
n ))f(H(b)

n ), (39)

where f is an element-wise non-linearity and Hn is the mini-batch matrix of neurons activities. Each
row of Hn is a ĥn for one data-point in the mini-batch.

The solution to the local error minimization problem is found by setting the gradient equal to zero
and solving for Wn:

0 = (H
T (b)
n+1 −Wnf(H

T (b)
n ))f(H(b)

n )

Wn = H
T (b)
n+1 f(H

(b)
n )(f(HT (b)

n )f(H(b)
n ))−1,

(40)
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This update is generally not equal or proportional to the gradient update. Gradient updates are
thus poorer approximations of the solution(s) to local least mean squared problem in the case of
mini-batches size > 1 than they are in the case with mini-batches size equal to one. This may provide
some insight into why the IL models we tested do not show performance advantages over BP-SGD
when mini-batches are used as opposed to when single datapoints are used to update weights. Future
research could explore alternative learning rules that better approximate the solution above in the
mini-batch case.

C A Closed Form Description of G-IL Local Targets

In this section, we derive a closed form description of argminĥF for linear MLPs. In addition to
simplifying notation, we focus on linear networks because we aim to use this closed form description
to analyze the stability properties of linear networks trained with IL in the next section.

C.1 A Brief Intro to Gauss-Newton Optimization and Ridge Regression

Let θ be a vector of parameters, y a vector of prediction targets, X a data matrix. The linear least
squares problem is defined as

argminθ ∥y −Xθ∥2. (41)

Its closed form solution is (XXT )−1XT y which equals X+y when X has linearly independent
columns. X+ is the left pseudo-inverse of X . For matrix M the left pseudo-inverse has the property
I = M+M . When the regularization term λ∥θ∥2 is added to 41 we get ridge regression whose
closed form solution is (XXT + λI)−1XT y, where I is the identity matrix and λ is a scalar.

The Gauss-Newton method is an iterative method used to solve non-linear least squares problems,
which has some similarities to the solutions to linear least squares problem just mentioned. Let e(b)

be the residuals of the model at b, i.e. e(b) = y(b) − f(x(b); θ(b)), where f is the non-linear model
function. The Gauss-Newton (GN) update for θ(b) is

θ(b+1) = θ(b) + (JJT )−1JT e(b)

= θ(b) + J+e(b),
(42)

where J is the Jacobian of f w.r.t. θ(b) and J+ is the left pseudo-inverse of J . Note the similarity
to the closed form solution to the linear least squares. The parameters are iteratively updated until
convergence or a near convergent state is reached.

It is also common to add a regularization term to the Gauss-Newton update as follows

θ(b+1) = θ(b) + (JJT + λI)−1JT e(b), (43)

where I is the identity matrix and λ is some scalar. Notice the similarity to the ridge regression
solution. The regularization term helps prevent the change to θ from growing too large. Note that as
λ→∞ the update approaches gradient descent: θ(b+1) = θ(b) + JT e(b).

C.2 A Closed form Description of G-IL Local Targets

Consider a linear MLP trained with G-IL using a squared error global loss. Local targets at hidden
layers of such networks are the result of the optimization process that attempts to find

ĥ(b)
n = argminĥn

(
1

2
∥ĥ(b)

n+1 −Wnĥn∥2 +
λ

2
∥ĥn − p(b)n ∥2), (44)

where λ = γn

γn+1
which represents the relative weighting of the two terms (see equation 4). Here we

ignore the optional decay term in equation 4.
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The ĥ
(b)
n can be expressed in closed form by noting that at the minimum of the expression above

hn = ĥ
(b)
n , and the gradient of the expression equals 0. One can thus compute the gradient, set it

equal to zero, and solve for ĥ(b)
n :

0 = −WT
n (ĥ

(b)
n+1 −Wnĥ

(b)
n ) + λĥ(b)

n − λp(b)n

0 = −WT
n ĥ

(b)
n+1 + (WT

n Wn + λI)ĥ(b)
n − λp(b)n

ĥ(b)
n = (WT

n Wn + λI)−1WT
n ĥ

(b)
n+1 + λ(WT

n Wn + λI)−1p(b)n

(45)

Notice the term on the left (WT
n Wn + λI)−1WT

n ĥ
(b)
n+1 is identical to the closed form solution for

ridge regression (see previous section), which is a regularized version of a simple target propagation
W+

n ĥ
(b)
n+1. The term on the right (WT

n Wn + λI)−1pn ≈ ϵpn, where ϵ is a scalar, since (WT
n Wn +

λI)−1 is positive definite and approaches a scalar multiple of I as λ→∞. Thus, at the minimum
ĥ
(b)
n closely approximates a weighted average between pn and the solution to the regularized squared

error at layer n+ 1.

C.3 Relation to Gauss-Newton Updates

Proposition C.1. In the limit where λ→ 0 ( in equation 45), ĥn = h
(b)
n +W+

n ∆h
(b)
n+1, which is a

Gauss-Newton update on initial activities h(b)
n with residual ∆h

(b)
n+1 and Jacobian J = Wn.

Proof.

lim
λ→0

ĥ(b)
n = (WT

n Wn)
−1WT

n ĥ
(b)
n+1 = W+

n ĥ
(b)
n+1 = h(b)

n +W+
n ĥ

(b)
n+1 −W+

n h
(b)
n+1

= h(b)
n +W+

n (ĥ
(b)
n+1 − h

(b)
n+1) = h(b)

n +W+
n ∆h

(b)
n+1,

(46)

More generally, in the case where the influence of the top down error term ∥ĥn − p
(b)
n ∥2 is negligible,

G-IL targets converge to Gauss-Newton targets.

C.4 Gauss-Newton G-IL as a Closed Form Approximation of G-IL

In practice, one approximates argminĥn
F by initializing hn = ĥn = pn then minimizes F using

some optimization process. At the beginning of this optimization process the top down error
∥ĥn − p

(b)
n ∥2 is small since it is initialized to zero and grows slowly afterward. Additionally, if

optimization is stopped early (which is typically done in practice) this error’s effect on activities will
remain negligible compared to the larger bottom-up error term. This fact along with proposition C.1
suggest Gauss-Newton updated activities are a good approximation of G-IL local targets. Let’s define
a network that computes ĥn using Gauss-Newton updates as follows
Definition C.1. Gauss-Newton G-IL (IL-GN). IL-GN is a closed-form approximation of G-IL for
training MLPs which uses the same weight update as G-IL and computes local targets using a
Gauss-Newton update. In linear networks the update is ĥn = h

(b)
n + γW+

n ∆h
(b)
n+1, where 0 < γ ≤ 1.

IL-GN approximates G-IL when γ = 1 as shown by proposition 46. A γ < 1, however, better
captures the fact that in the true closed form solution (see equation 45), ĥn is a value in between a
regularized GN-target and top-down prediction. Simulations below provide further justification that
IL-GN with 0 < γ < 1 is a good approximation of G-IL (see figure 7.

C.5 Some Properties of IL-GN

There are several lemmas concerning IL-GN that will either be used in subsequent proofs or are
relevant for understanding IL generally.

The first lemma says that predictions pn in IL-GN networks are a weighted average of hn and ĥn.
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Lemma C.1. After all ĥn are computed, local predictions will lie between local sub-targets and FF
activity: pn = (1− γ)hn + γĥn.

Proof. First, prediction pn can be described as follows: pn = Wn−1(ĥn−1 + ∆ĥn−1) =
Wn−1(hn−1 + γW+

n−1∆hn), which implies

pn = Wn−1(hn−1 + γW+
n−1∆hn)

= hn + γ(ĥn − hn)

= (1− γ)hn + γĥn.

(47)

It then follows that the error after the targets and predictions are updated, en, is smaller but propor-
tional to the initial error:
Lemma C.2. After all ĥn are computed, local errors en = (1− γ)∆hn.

Proof.

en = ĥn − pn

= ĥn − ((1− γ)hn + γĥn)

= (1− γ)(ĥn − hn)

= (1− γ)∆hn,

(48)

where the second line is computed using 47.

Lemma C.3. After all ĥn are computed, local errors en = (1− γ)γW+
n ∆hn+1.

Proof.

en = (1− γ)∆hn

= γ(1− γ)W+∆hn+1

= γW+en+1,

(49)

where the first and third lines are computed using lemma C.2 and the second line using definition
C.1.

These lemmas can be used to show local errors are smaller than but proportional to the global loss
GN update w.r.t. hidden layer activities. For example, en can be expressed as follows:
Proposition C.2. Consider a linear MLP trained with IL-GN. Assume (W+

n ...W+
N−1) =

(WN−1...Wn)
+ for all n. In this case, en = γ′

n(WN−1...Wn)
+−∂L

∂hN
, where γ′

n = γ(N−n)(1− γ).

Proof. According to definition C.1, ĥn = hn + γW+
n ∆hn+1, which implies ∆hn = γW+

n ∆hn+1.
Applying this same operation recursively from the output layer backward we get ∆hn =
γN−n(W+

n ...W+
N−1)∆hN .

Now we substitute γN−n(W+
n ...W+

N−1)∆hN for ĥn in lemma C.2, which results in en =

γN−n(1− γ)(WN−1...Wn)
+∆hN . Finally, we note that ∆hN = −∂L

∂hN
, and thus en = γ(N−n)(1−

γ)(WN−1...Wn)
+−∂L

∂hN
.

Thus, local errors en can be seen as scaled down version of the global GN update, which is
∆hn(WN−1...Wn)

+−∂L
∂hN

= J+
n,N

−∂L
∂hN

. The scaling is such that the nearer en is to the input layer
the more scaled down the error is.
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D Stability of IL versus BP

In this section, we analyze certain stability properties of IL and BP algorithms. We begin by briefly
discussing the unconditional stability of IL-prox, and equivalent G-IL algorithms. These algorithms
use the NLMS update rule, so we next analyze the case where the LMS rule is used in an IL algorithm
to update weights, as this case is more easily compared to G-BP algorithms which perform and
LMS update over weights. In particular, we analyze how the FF output layer values hN change
after weight updates are applied to a linear network using IL-GN with the LMS rule and using an
analogous BP algorithm, which we call BP-GN. We show IL-GN, trained with the LMS rule, pushes
output layer activities ĥN toward the target y (down it loss gradient) for any positive learning rate,
while BP-GN only does this for a small finite range of learning rates. We focus on linear networks
because constraining neuron activities with non-linearites may improve the stability of an algorithm
by limiting the possible values a neuron may take or, e.g., by decreasing the magnitude of weight
updates. We want to separate the effects of learning rules/algorithms on stability from those imposed
by architectural constraints, so we focus on linear networks.

These theorems show that the way IL-GN computes and uses targets in its weight updates is a
key mechanism that aids stability. In particular, IL-GN computes weight gradients for Wn using
pre-synaptic target ĥn, while BP-GN uses pre-synaptic FF activities hn. This is the main difference
between the two algorithms. The LMS update in the IL algorithm in linear networks is en+1ĥ

T
n =

(ĥn+1 −Wnĥ
T
n )ĥ

T
n , while the BP update is en+1h

T
n = (ĥn+1 −Wnhn)h

T
n . IL updates thus ’chain

together’ the local learning problems such that the local prediction target at one layer, is the input
to the next local prediction problem. G-BP updates do not have this property. The input to one
local prediction problem is the FF activity, which is computed independently from local prediction
targets. These results show that the way IL chains together the local prediction problems plays an
important role in its stability. In particular, it shows it plays an important role in ensuring that output
layer FF activities hN change in the desired direction across a large range of learning rates. If we
update weights like BP and do not chain the local learning problems together in this way, we lose this
stability guarantee.

Ensuring hN changes in the desired direction for any learning does not guarantee the loss will be
minimized, since, e.g., hN may overshoot the global target significantly. As we explain next, however,
one can ensure minimization across any positive learning rate using the strategy of IL-prox, which
uses the NLMS rule and uses the learning rate to control the output layer target rather than to scale
the weight updates.

D.1 The Unconditional Stability of IL-prox

Implicit SGD is unconditionally stable in the sense that the proximal algorithm (equation 12), which
is equivalent to performing an implicit SGD update, monotonically decreases the loss function L
for 0 < α. This can be seen from the proximal update, equation 12, from which it trivially follows
L(θ(b+1)) + 1

α2∥θ
(b+1) − θ(b)∥2 ≤ L(θ(b)). Theorem B.2 shows that IL-prox and G-IL, under

the γ settings specified in theorem 4.1, are equivalent to an implicit SGD update, and thus are
unconditionally stable. Our simulations find that our implementation of IL-prox indeed displays
this property of unconditional stability (tables 5 and 4). It is worth, however, briefly discussing the
mechanics of how this unconditional stability comes about in the IL-prox algorithm (and equivalent
G-IL algorithms). First, theorem 4.1, tells us that the learning rate α of IL-prox (and G-IL under
certain γ settings), is only used to determine how much ĥN is pushed toward global target y during
the inference phase. More specifically the gradient of the proximal update w.r.t. ĥN is

∂Prox

∂ĥN

=
∂L

∂ĥN

+
1

∥ĥN−1∥2α
eN , (50)

where eN = ĥN − pN and pN = WN−1f(ĥN−1). Let’s assume a linear network and L =
1
2∥y − ĥN∥2. One way to compute the update of ĥN would be to take the negative of the gradient,
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set equal to zero and solve for ĥN :

0 = −(y − ĥN )− 1

∥ĥN−1∥2α
eN ,

ĥN =
∥ĥN−1∥2α

1 + ∥ĥN−1∥2α
y +

1

1 + ∥ĥN−1∥2α
pN .

(51)

Thus, each iteration of the inference phase we update ĥN to a weighted average between pN and
y. The learning rate is only used to determine the weighting between these two terms. As α→∞,
ĥN → y and as α→ 0, ĥN → pN . According to lemma B.1, ĥN becomes the FF output layer value
after the weights are updated (since the NLMS rule is used by IL-prox). Thus, when α→∞, IL-prox
finds a set of weights that best minimize the loss and as α → 0, weight are unchanged, which is
the exact same property the proximal algorithm has (equation 12). Intuitively, we see that in any
case the loss is either minimized or remains unchanged (when α = 0). IL-prox, and the proximal
algorithm, thus gain their stability from the fact they do not use the learning rate to scale weight
updates (as explicit SGD does) but rather uses it to determine the relative weighting of the loss term
and regularization term in the proximal operator.

D.2 Gauss-Newton IL Updates are Minimum-Norm and Stable

Here we show that the IL-GN weight updates collectively minimizes global loss along its minimum
norm path for any positive learning rate in linear networks. This theorem is proven true under
the conditions where ĥT

npn > 0, hT
n ĥn > 0, and ĥT

n ĥn > ĥT
npn for all n. This means local

predictions, pn, and initial activities, hn must be within 90 degrees of sub-targets. This is an easily
satisfied condition as long as targets are not moved far from initial activities. Also, the inequality
ĥT
n ĥn > ĥT

npn is generally true since the magnitudes of ĥn and pn will be similar and ĥn is always
more similar to itself than pn. Thus, these conditions generally hold in practice.

Theorem D.1. Assume ĥT
npn > 0, ĥT

nhn > 0, and ĥT
n ĥn > ĥT

npn for all n. For a mini-batch of size
1, the IL-GN weight updates applied to a linear MLP at iteration b collectively push hN down its
global loss gradient toward the target for any positive learning rate α: h(b+1)

N = h
(b)
N − j(b) ∂L

(b)

∂h
(b)
N

where j(b) is a positive scalar.

Proof. We define the linear network after weight updates are applied using a recursive formulation.
Let Ŵ ∗

n = Ŵ ∗
n+1(Wn −∆Wn) for all n < N − 1, and let Ŵ ∗

N−1 = WN−1 −∆WN−1. We can
now express the output of this updated network given input h0 as Ŵ ∗

0 h0. We assume a linear gradient
update ∆Wn = −αen+1ĥ

T
n , where α is the learning rate and en+1 = ĥn+1 − pn+1.

The feedforward pass of the updated MLP at iteration b+ 1 is described as follows:

h
(b+1)
N = Ŵ ∗

0 h
(b)
0 = Ŵ ∗

1 (W0 −∆W0)h
(b)
0

= Ŵ ∗
1 h

(b)
1 + αŴ ∗

1 e
(b)
1 ĥ

T (b)
0 h

(b)
0

(52)

Note that ĥ0 = h0 and is the same across all training iterations, but ĥn ̸= hn for n > 0.

Let cn = αĥT
n−1hn−1 such that αŴ ∗

1 e1ĥ
T
0 h0 = c1Ŵ

∗
1 e1. Because α > 0 and because ĥT

nhn > 0
for all n, cn > 0.

Notice that the first term Ŵ ∗
1 h1 can be expanded recursively using the same expansion of Ŵ ∗

0 h0 in
equation 52:

h
(b+1)
N = Ŵ ∗

1 h
(b)
1 + c1Ŵ

∗
1 e

(b)
1

= Ŵ ∗
2 h

(b)
2 + c1Ŵ

∗
2 e

(b)
2 + c1Ŵ

∗
1 e

(b)
1

...

= hN + cNe
(b)
N + cN−1Ŵ

∗
N−1e

(b)
N−1 + ...+ c2Ŵ

∗
2 e

(b)
2 + c1Ŵ

∗
1 e

(b)
1

(53)
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The leftmost terms hN + cNeN was computed as follows: (WN−1 − ∆WN−1)hN−1 = hN +

αeN ĥT
N−1hN−1 = hN + cNeN .

Now we need to expand Ŵ ∗
n for all n in equation 53.

Ŵ ∗
ne

(b)
n = Ŵ ∗

n+1(Wn −∆Wn)en

= Ŵ ∗
n+1(Wnen − (∆Wnĥn −∆Wnpn))

= Ŵ ∗
n+1(Wnen + α(en+1ĥ

T
n ĥn − en+1ĥ

T
npn))

= Ŵ ∗
n+1(Wnen + en+1α(ĥ

T
n ĥn − ĥT

npn))

= Ŵ ∗
n+1(Wnen + knen+1),

(54)

Where kn = α(ĥT
n ĥn − ĥT

npn) and is a positive scalar, since we assume ĥT
n ĥn > ĥT

npn.

We now simplify using lemma C.3, which states en = γW+en+1:

Ŵ ∗
ne

(b)
n = Ŵ ∗

n+1(γWnW
+
n e

(b)
n+1 + kne

(b)
n+1)

= dnŴ
∗
n+1e

(b)
n+1,

(55)

where dn = kn + γ and clearly dn > 0.

We now apply the same derivation of Ŵ ∗
ne

(b)
n to all Ŵ in equation 53 to yield the following:

Ŵ ∗
ne

(b)
n = (dndn+1...dN−2)Ŵ

∗
N−1e

(b)
N−1

= (

N−2∏
i=n

di)(WN−1 −∆WN−1)e
(b)
N−1

= (

N−2∏
i=n

di)(WN−1e
(b)
N−1 + αeN ĥ

T (b)
N−1e

(b)
N−1)

= (

N−2∏
i=n

di)(WN−1e
(b)
N−1 + αeN (ĥ

T (b)
N−1ĥ

(b)
N−1 − ĥ

T (b)
N−1p

(b)
N−1)

= (

N−2∏
i=n

di)((1− γ)WN−1W
+
N−1e

(b)
N + kN−1e

(b)
N )

= (

N−1∏
i=n

di)e
(b)
N

(56)

Note that (
∏N−1

i=n di) is a positive scalar since it is the product of positive scalars.

According to lemma C.2 eN = (1 − γ)∆hN where we assume ∆hN = − ∂L
∂hN

. Let gn = (1 −
γ)(

∏N−1
i=n di), and notice gn > 0. We can now rewrite equation 53 in terms of L

hN
:

h
(b+1)
N = hN + cNe

(b)
N + cN−1gN−1e

(b)
N + ...+ c2g2e

(b)
N + c1g1e

(b)
N

= hN − j
∂L

∂hN

(b)

,
(57)

where j = cN +
∑N−1

i=n cigi and j > 0 is both c > 0 and g > 0. Hence, the weight updates applied
at iteration b will collectively move the FF output layer values hN down its loss gradient hN − je

(b)
N

for any positive value of α.

It should be noted that moving hN down its loss gradient will not necessarily minimize the loss eN ,
given that j may be large and could cause hN to significantly overshoot ĥN preventing convergence.
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D.3 Gauss-Newton Back Propagation is Minimum-Norm but Only Conditionally Stable

In this section, we show that, unlike IL-GN, weight updates performed by an analogous BP based
network, we call BP-GN, are not guaranteed to collectively move the global prediction down its loss
gradient each training iteration. Meulemans et al. [24] showed that each individual weight update in
a BP-GN network will push the global prediction hN down its loss gradient when its effects on hN

are considered independently of other weight updates in the network. Here we show this property
does not hold for any learning rate when the weight updates are considered collectively.

Definition D.1. Gauss-Newton backpropagation (BP-GN). Assume en = ĥn − hn. The weight
update of BP-GN is the general BP weight update: ∆Wn = −en+1h

T
n . Local targets are computed

at each hidden layer are computed using the following equation: ĥn = hn + W+
n en+1 = hn +

W+
n ĥn+1 −W+

n hn+1.

We can now apply the same analysis we did for IL-GN to BP-GN, which proves the following.
Theorem D.2. Consider a linear MLP trained with BP-GN. For a mini-batch of size 1, the BP-GN
weight updates applied at iteration b only push the global prediction down its global loss gradient
h
(b+1)
N = h

(b)
N − j(b) ∂L(b)

∂h
∗(b)
N

for a finite range of α.

Proof. Here we follow the same notation and analysis as the proof for theorem D.1. Let Ŵ ∗
n =

Ŵ ∗
n+1(Wn −∆Wn) for all n < N − 1, and let Ŵ ∗

N−1 = WN−1 −∆WN−1. We assume a linear
gradient update ∆Wn = −αen+1h

T (as in definition ??), where α is the learning rate.

First, we can describe the FF pass of the updated MLP trained with GN-TP at iteration b+ 1 as we
did above for IL-GN (see equation 52):

h
(b+1)
N = Ŵ ∗

1 h
(b)
1 + αŴ ∗

1 e
(b)
1 h

T (b)
0 h

(b)
0

(58)

Let cn = αhT
n−1hn−1 such that αŴ ∗

1 e1h
T
0 h0 = c1Ŵ

∗
1 e1. Because 1 > α > 0 and because

hT
nhn > 0 for all n, cn > 0. We can see this equation is the same as equation 52, except e1 and ∆W0

were defined according to GN-TP rather than IL-GN.

As above, the first term Ŵ ∗
1 h1 can be expanded recursively:

h
(b+1)
N = Ŵ ∗

1 h
(b)
1 + c1Ŵ

∗
1 e

(b)
1

= Ŵ ∗
2 h

(b)
2 + c1Ŵ

∗
2 e

(b)
2 + c1Ŵ

∗
1 e

(b)
1

...

= hN − cNe
(b)
N + cN−1Ŵ

∗
N−1e

(b)
N−1 + ...+ c2Ŵ

∗
2 e

(b)
2 + c1Ŵ

∗
1 e

(b)
1

(59)

Equation 53 shows that for IL-GN, each of these recursively computed terms push the initial prediction
down the global loss gradient. However, the same is not true here of GN-TP:

Ŵ ∗
ne

(b)
n = Ŵ ∗

n+1(Wn −∆Wn)en

= Ŵ ∗
n+1(Wnen − (∆Wnĥn −∆Wnhn))

= Ŵ ∗
n+1(Wnen + α(en+1h

T
n ĥn − en+1h

T
nhn))

= Ŵ ∗
n+1(Wnen + α(hT

n ĥn − hT
nhn)en+1).

(60)

Wnen can be rewritten in terms of en+1 as follows: Wnen = WnW
+
n en+1. Notice that it will often

be the case that hT
n ĥn < hT

nhn, since generally hn ̸= hn. Thus, α(hT
n ĥn − hT

nhn) will often be a
negative scalar. This is distinct from the corresponding term in equation for IL-GN α(hT

nhn− ĥT
nhn),

which will generally be a positive scalar. The difference is due to the IL-GN update being conditioned
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on the presynaptic sub-target ĥn rather than presynaptic FF activity hn. Also notice there is no further
dampening term γ(1− γ) as there is with IL-GN.

Let kn = α(hT
n ĥn − hT

nhn) and dn = (1 + kn). For reasons just noted, dn is not guaranteed to be
positive for all 1 > α > 0. Continuing the derivation above:

Ŵ ∗
ne

(b)
n = Ŵ ∗

n+1(WnW
+
n en+1 + knen+1)

= Ŵ ∗
n+1(1 + kn)en+1

= dnŴ
∗
n+1e

(b)
n+1

= (dndn+1...dN−2)Ŵ
∗
N−1e

(b)
N−1

= (

N−1∏
i=n

di)e
(b)
N .

(61)

Because dn is not guaranteed to be positive, then (
∏N−1

i=n di) is not guaranteed to be a positive scalar.
Thus, the product of all dn may or may not be positive for a given 1 > α > 0. Let gn = (

∏N−1
i=n di).

Also, note that eN = − ∂L
∂hN

. We can now rewrite equation 58 in terms of eN :

h
(b+1)
N = hN + cNe

(b)
N + cN−1gN−1e

(b)
N + ...+ c2g2e

(b)
N + c1g1e

(b)
N

= hN − j
∂L

∂hN

(b)

,
(62)

We can see that if enough gn are negative it is possible that j is also negative, especially given that
gn are scaled by cn, which will always be positive and may be larger than 1. Thus, GN-TP, unlike
IL-GN, does not guarantee that for any positive value of α, the weight updates at iteration b will
collectively move hN down it loss gradient at b+ 1: GN-TP does not guarantee j > 0 for any α > 0
or even any 1 > α > 0.

In order for j > 0, a large number of gn must be positive to offset any negative gn. In order for
gn > 0, an even number of dn in gn = (

∏N−1
i=n di) must be negative. The simplest way to guarantee

this is the case is to ensure dn > 0 for all n. In order for all dn to be positive in each gn we can see
that alpha must be small since dn = 1 + kn = 1 + α(hT

n ĥn − hT
nhn), and α must be small enough

such that kn > −1 for all n. This implies learning rate must be small: α < −1
(hT

n ĥn−hT
nhn)

.

E G-IL Avoids Interference Effects

The last section showed the IL-GN will push output layer values toward the global target for any
positive learning rate, while BP-GN will only do so for a finite range of learning rates. Here we
provide mathematical intuition for why this occurs. Specifically, we describe how BP weight updates
necessarily interfere with each other’s ability to minimize the global loss and this interference
generally grows with learning rate, whereas IL weight updates do not necessarily interference and
may actually improve each other’s ability to minimize loss. In this sense, IL updates are more
compatible with each other than BP updates. In line with this intuitive description, we show that
under certain assumptions IL-GN updates (at hidden layers) are often most effective at pushing the
output layer values toward the target when applied in conjunction with other updates than when
applied alone, while the opposite is true of BP-GN. Figure 8 provides evidence these theoretical
results hold true in practice for IL-SGD and BP-SGD networks when small learning rates are used.

E.1 A Mathematical Intuition for Interference Effects

Consider the BP weight update: ∆Wn = αne
(b)
n+1f(hn)

T (b), where hn = Wn−1f(hn−1) and n > 0.
Now, consider the effect of this weight update on the FF values at hidden layer n+ 1 given the same
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input x(b+1) = x(b)

h
(b+1)
n+1 = W (b+1)

n f(h(b+1)
n ) = (∆W (b)

n +W (b)
n )f(h(b+1)

n )

= ∆W (b)
n f(h(b+1)

n ) +W (b)
n f(h(b+1)

n )

= αn(f(h
(b)
n )T f(h(b+1))n))e

(b)
n+1 + h

(b)
n+1.

(63)

We can see that the ability of the weight update to drive its output down the error gradient (where
e
(b)
n+1 = −∂L

∂h
(b)
n+1

, see section 3.2) depends directly on the similarity between pre-synaptic activities be-

fore and after the weight update. In particular, if the two are similar, i.e. f(h(b)
n )T f(h

(b+1)
n ) > 0, then

the weight update will affect FF values in the desired direction. However, if the two are orthogonal,
i.e. f(h(b)

n )T f(h
(b+1)
n ) = 0, there will be no effect, and if dissimilar, i.e. f(h(b)

n )T f(h
(b+1)
n ) < 0,

they will affect FF values in an undesired direction (up rather down the loss gradient).

The challenge for the BP update is that if all weights are updated at iteration b then FF activities
will change, which will generally make f(h(b)

n ) and f(h
(b+1)
n ) less similar. Additionally, presynaptic

activities will generally become less similar as αn is increased because changes to weights, and
thus changes to FF activities, at previous layers will increase. Only when learning rates at previous
layers→ 0 does f(hn)

(b) = f(hn)
(b+1) because an α of zero means no change in weights or FF

activities. We can describe this as a sort of interference effect: non-zero weight updates elsewhere in
the network reduce the ability of ∆Wn to drive FF activities at layer n+ 1 in the desired direction.2

Now, consider the G-IL weight update: ∆Wn = αne
(b)
n+1f(ĥ

T (b)
n ), where n > 0. The effect of this

weight update on the FF values at hidden layer n + 1 given the same input, x(b+1) = x(b), can be
described as follows:

h
(b+1)
n+1 = W (b+1)

n f(h(b+1)
n ) = (∆W (b)

n +W (b)
n )f(h(b+1)

n )

= ∆W (b)
n f(h(b+1)

n ) +W (b)
n f(h(b+1)

n )

= αn(f(ĥn)
T (b)f(h(b+1)

n ))e
(b)
n+1 + h

(b)
n+1.

(64)

Unlike with G-BP we can see that the ability of the weight update to drive its output down the error
gradient e(b)n+1 depends directly on the similarity between pre-synaptic optimized activities and the FF
activities after the weight update. If the two are similar, i.e. f(ĥT (b)

n )f(h
(b+1)
n ) > 0, then the weight

update will affect FF values in the desired direction. If the two are orthogonal there will be no effect,
and if they are dissimilar they will affect FF values in an undesired direction.

What’s interesting about the G-IL update is that with a properly tuned αn, f(ĥn)
(b) and f(hn)

(b+1)

will get more similar when weights prior to layer n are updated. As lemma B.1 shows, under a
specific (typically) non-zero value of αn it is actually the case that f(ĥ(b)

n ) = f(h
(b+1)
n ). This value

of αn is the true solution to G-IL update argminW F that the LMS learning rule above attempts to
approximate. Intuitively, G-IL largely avoids interference because f(ĥ

(b)
n ) accurately anticipates the

value of f(h(b+1)
n ) and by doing so helps to ensure f(ĥn)

T (b)f(hn)
(b+1) > 0.

E.2 G-IL Weight Updates are Most Effective when Applied Together

In previous sections we compared the direction of the effects of weight updates on a linear MLP
output layer in an IL and BP network. We now assess the magnitude of the affects of IL and BP
weight updates on the output layer of a linear MLP with a single hidden layer. In sum, we show that
under certain assumptions, updates in IL-GN should have greater effects on the output layer when
applied together than when applied alone, while the opposite is true for BP-GN. This shows that
interference effects not only can alter the direction the output layer changes with weight updates but
also the magnitude of the change in output layer activities.

2Interference might be reduced by using non-linearities that keep activities positive, e.g., ReLU, which
guarantees f(hT (b)

n )f(h
(b+1)
n ) ≥ 0. However, for non-zero learning rates it would still be the case that updates

to weights at layers before n would reduce similarity, i.e., generally f(h
T (b)
n )f(h

(b)
n ) > f(h

T (b)
n )f(h

(b+1)
n ),

and thus reduce the magnitude change to post-synaptic FF values.
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We analyze a linear MLP with a single hidden layer. Let h(b)
2 be the output layer values at iteration

b, h(b+1/2),0
2 be the output layer values after W0 is updated alone, h(b+1/2),1

2 be the output layer
values after W1 is updated alone, and h

(b+1)
2 be the output layer values after both weight matrices

are updated. Let cn and gn be defined as above in the proof of theorem D.1. We assume that gn > 1
which will often (though not always) be true in practice for reasons noted above (see theorem D.1).
We also assume c1 = c2 as it significantly simplifies the calculations. We test how well these
theoretical results hold in practice and find they hold approximately for small learning rates (see
figures 8 for details).
Proposition E.1. Consider a linear MLP with a single hidden layer trained with IL-GN, mini-batch
size 1, at iteration b. Assume g1 > 1, c1 = c2. Under these assumptions, and those in theorem
D.1, each weight update, ∆W0 and ∆W1 has a larger effect on the output layer when applied in
conjunction with each other than when applied alone: ∥h(b+1)

2 − h
(b+1/2),0
2 ∥ > ∥h(b+1/2),1

2 − h
(b)
2 ∥

and ∥h(b+1)
2 − h

(b+1/2),1
2 ∥ > ∥h(b+1/2),0

2 − h
(b)
2 ∥

Proof. The effect of ∆W0 on the output layer hN = h2 when applied alone is

h
(b+1/2),0
2 = W

(b)
1 (W

(b)
0 +∆W

(b)
0 )h

(b)
0 = h

(b)
2 +W

(b)
1 αe

(b)
1 h

(b)T
0 h

(b)
0

= h
(b)
2 + αγW

(b)
1 W

(b)+
1 e

(b)
2 h

(b)T
0 h

(b)
0

= h
(b)
2 + αγh

(b)T
0 h

(b)
0 e

(b)
2

= h
(b)
2 + γc1e

(b)
2 ,

(65)

where the second line is computed using C.3, which says en = γW+
n en+1. Here c1 = αh

(b)T
0 h

(b)
0

and is clearly a positive scalar.

The effect of ∆W1 on the output layer, h2, when applied alone is

h
(b+1/2),1
2 = (W

(b)
1 +∆W

(b)
1 )W

(b)
0 h

(b)
0 = h

(b)
2 +∆W

(b)
1 h

(b)
1

= h
(b)
2 + αĥ

(b)T
1 h

(b)
1 e

(b)
2 = h

(b)
2 + c2e

(b)
2 ,

(66)

where c2 = αĥ
(b)T
1 h

(b)
1 and is a scalar.

Finally, when both updates are applied we get the same expression as that in equation 57

h
(b+1)
2 = h

(b)
2 + c2e

(b)
2 + g1c1e

(b)
2 . (67)

See theorem D.1 for details. Here c1 and c2 are defined as above. Since we make the same assumptions
as theorem D.1, g1 is a positive scalar: g1 = γ + α(ĥ

(b)T
1 ĥ

(b)
1 − ĥ

(b)T
1 p

(b)
1 ).

Now we have
∥h(b+1)

2 − h
(b+1/2),0
2 ∥ = ∥c2e(b)2 + g1c1e

(b)
2 − γc1e

(b)
2 ∥ = ∥(1 + g1 − γ)c1e

(b)
2 ∥, (68)

which is simplifying using the assumption c1 = c2. Second, ∥h(b+1/2),1
2 − h

(b)
2 ∥ = ∥c2e(b)2 ∥.

Under our assumptions that g1 > 1 and c1 = c2, it clearly follows that ∥h(b+1)
2 − h

(b+1/2),0
2 ∥ >

∥h(b+1/2),1
2 − h

(b)
2 ∥.

Next, we can see that ∥h(b+1)
2 − h

(b+1/2),1
2 ∥ = ∥g1c1e(b)2 ∥ and ∥h(b+1/2),0

2 − h
(b)
2 ∥ = ∥γc1e(b)2 ∥.

Since we assume g1 > 1 and c1 = c2 and γ < 1, it clearly follows that ∥h(b+1)
2 − h

(b+1/2),1
2 ∥ >

∥h(b+1/2),0
2 − h

(b)
2 ∥.

E.3 BP-GN Updates are Most Effective When Applied Alone

Next, we perform the same analysis on BP-GN and find the opposite is true: BP-GN updates are
most effective when applied alone. We assume gn < 1, which is plausible given that gn is typically a
negative scalar for reasons noted in the proof for theorem D.2. We also make the same assumption as
we did for IL-GN that c1 = c2.
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Proposition E.2. Consider a linear MLP with a single hidden layer trained with BP-GN, mini-batch
size 1, at iteration b. Assume generally gn < 1 and c1 = c2. The weight update to ∆W0 and
∆W1 either have a larger effect on the output layer when applied alone: ∥h(b+1)

2 − h
(b+1/2),0
2 ∥ <

∥h(b+1/2),1
2 − h

(b)
2 ∥ and ∥h(b+1)

2 − h
(b+1/2),1
2 ∥ < ∥h(b+1/2),0

2 − h
(b)
2 ∥ or they push the output layer

activities up the loss gradient (i.e., away from global target).

Proof. Following equation 65 above, the effect of ∆W0 on the output layer is h(b)
2 + c1e

(b)
2 , except

c1 is now computed c1 = h
T (b)
0 h

(b)
0 .

The effect of ∆W1 on the output layer, h2, when the update is applied alone is

h
(b+1/2),1
2 = (W

(b)
1 +∆W

(b)
1 )W

(b)
0 h

(b)
0 = h

(b)
2 +∆W

(b)
1 h

(b)
1

= h
(b)
2 + αh

(b)T
1 h

(b)
1 e

(b)
2 = h

(b)
2 + c2e

(b)
2 ,

(69)

where c2 = αh
(b)T
1 h

(b)
1 and is generally a large positive scalar.

Finally, using the derivation from theorem D.2, when both updates are applied we get

h
(b+1)
2 = h

(b)
2 + c2e

(b)
2 + c1g1e

(b)
2 (70)

where g1 = 1+α(h
(b)T
1 ĥ

(b)
1 −h

(b)T
1 h

(b)
1 ) (see theorem D.2 for details). As explained in theorem D.2,

we can see that g1 will often be negative since it will often be the case that (h(b)T
1 ĥ

(b)
1 −h

(b)T
1 h

(b)
1 ) < 0.

It follows from the assumption c1 = c2 that ∥h(b+1)
2 − h

(b+1/2),0
2 ∥ = ∥g1c1e(b)2 ∥. Second,

∥h(b+1/2),1
2 − h

(b)
2 ∥ = ∥c2e(b)2 ∥. Under our assumptions g1 < 1 and c0 = c1, in the case where

−1 < g1 < 1, it follows ∥h(b+1)
2 − h

(b+1/2),0
2 ∥ < ∥h(b+1/2),1

2 − h
(b)
2 ∥ and generally when g1 < −1,

and under assumption c1 = c2, we see from equation 70 the output layer activities away from the
target (i.e. up rather than down the loss gradient).

Similarly, ∥h(b+1)
2 − h

(b+1/2),0
2 ∥2 = ∥g1c1e(b)2 ∥ and ∥h(b+1/2),0

2 − h
(b)
2 ∥ = ∥c1e(b)2 ∥. Under our

assumptions g1 < 1 and c1 = c2, in the case where −1 < g1 < 1 it follows ∥h(b+1)
2 − h

(b+1/2),0
2 ∥ <

∥h(b+1/2),1
2 − h

(b)
2 ∥ and again when g1 < −1 it is the case the the output layer activities are pushed

away from the target (i.e. up rather than down the loss gradient).

Under the above assumptions, IL-GN weight updates do not interfere with one another, and in fact
are more effective when applied together than alone. BP-GN weight updates, on the other hand, tend
to be most effective when applied alone. We test how well these theoretical results are approximated
by IL-SGD and BP-SGD through simulations on linear networks trained on regression tasks. Indeed,
IL-SGD networks tend to have larger effects on the output layer when applied together than along,
more often than their BP counterparts when small learning rates are used (see figure 8).

F Supplementary Results and Experiments

F.1 Cifar-10 Mini-batch Classification

In figure 5, are training runs for Cifar-10 mini-batch size 64. We see that IL prox algorithms tend to
discount the loss faster than BP-SGD and are comparable to BP-Adam in the first 2000 iterations.
However, BP-SGD and BP-Adam converge to better accuracies. This suggests that IL algorithms
tend to converge to shallower local minima that are nearer by the initial parameters than those minima
reached by BP algorithms.

F.2 Further Stability Analysis Results and Discussion

We run the same stability analysis as in table 4 for MNIST. BP-prox is unable to train in a stable
manner for learning rates in the range of 2.5-100, and there is a clear decrease in accuracy as learning
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Figure 5: Cifar-10 classification test accuracies during training with mini-batch size 64. Left, full
training run. Right, a zoomed in look at test accuracies from the first 2000 training iterations.

rate increases from .01 to 1. IL-prox’s trains across all learning rates and even improves as learning
rate increase from .01 to 1. As with the Cifar-10 results we again see IL-SGD is more stable than
BP-SGD, and prox models are more stable than SGD models.

BP-prox uses the NLMS version of its update (equation 3) and uses the learning rate to adjust the
output layer target. Like IL-prox, as α→∞ then ĥN → y and as α→ 0 then ĥN → hN . This use
of the NLMS rule and learning rate improve stability. However, clearly these factors do not give
BP-prox unconditional stability. The main difference between IL-prox and BP-prox is the way local
targets are computed and used in the weight update. For example, while BP-prox uses presynaptic
FF activity hn in its update of Wn, IL-prox uses presynaptic target value ĥn in its update of Wn

(compare equations 75 and 77). Clearly, these differences have a significant effect on stability.

Stability Test: MNIST Test Accuracy
Model lr=.01 lr=.1 lr=1 lr=2.5 lr=10 lr=100

BP-SGD 94.05(±.53) − − − − −
IL-SGD 90.06(±.25) 94.49(±.21) 42.42(±44.67) − − −
BP-prox 93.028(±.77) 90.86(±1.62) 55.87(±42.076) − − −
IL-prox 89.30(±.32) 93.058(±.56) 93.57(±.32) 93.49(±.61) 93.49(±.94) 93.85(±.38)

Table 5: Accuracy after 20,000 training iterations on MNIST mini-batch size 1. Fully connected
networks with layer sizes 784-2x500-10. ReLU activations were used at hidden layers while softmax
was used at output layer

F.3 MNIST Training with Mini-batch Size 1

Test Accuracy (mean±std.) w/ Best Learning Rate
Model MNIST Fashion-MNIST

BP-SGD 97.096(±.131) 85.384(±.120)
BP-Adam 97.294(±.116) 85.896(±.081)
IL-SGD 96.938(±.102) 84.972(±.211)
IL-prox 96.650(±.091) 83.636(±.091)

IL-prox Fast 96.466(±.128) 83.402(±.169)
Table 6: Test accuracies after 1 epoch of training with mini-batch size 1 (60,000 training iterations).
Fully connected networks were used with dimensions 784-2x500-10.

The training runs for are plotted in figure 6 below. Differences in performance between IL and BP
algorithms are smaller with these data-sets than they are with CIFAR-10. IL-prox improved accuracy
slightly faster in the first few hundred or thousand iterations on both MNIST and Fashion-MNIST,
but BP algorithms soon caught up.
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Figure 6: Training runs for MNIST and Fashion-MNIST. Networks were fully connected dimensions
784-2x500-10. Models were trained mini-batch size 1 for one epoch (60,000 iterations). Top Left
Full training run for MNIST. Bottom Left A zoomed in look at the first 2000 training iterations of
MNIST. IL-prox algorithm improve accuracy slightly faster than other algorithms in the first 500
iterations. Top Left Full training run for Fashion-MNIST. Bottom Left A zoomed in look at the first
2000 training iterations of Fashion-MNIST. IL-prox algorithms improve accuracy faster than other
algorithms for first 2000 training iterations.

F.4 Convolutional Networks

We also trained a small convolutional networks on CIFAR-10. Large mini-batches (size 64) were
used and the Adam based algorithms were used for training (see 2), since IL algorithms worked best
with Adam optimizers when large mini-batches were used. IL-prox Adam achieved essentially the
same accuracy as BP-Adam, though IL-SGD did not achieve comparable accuracy.

CIFAR-10 Test Accuracy (mean±std.) w/ Best Learning Rate
BP-Adam IL-Adam IL-prox Adam

66.850(±.591) 54.802(±1.031) 66.704(±1.725)
Table 7: Here we train on CIFAR-10 with mini-batches of size 64 for 77,000 iteration (≈ 100 epochs).
Runs were averaged over five seeds and the best score is shown. There were three convolutional
layers followed by one fully connected layer. We used a similar architecture as [3]. Convolutions
were (5x5, 64, 2), (5x5, 128, 2), (3x3, 256, 2). Fully connected layer was 1024x10. ReLU activations
were used at hidden layers, and softmax at the output layer.

F.5 Data Constrained Tests

We test classification on F-MNIST and CIFAR-10 in the case where only 10, 100, or 500 data points
are used from each category in the data set. Models are trained with mini-batch size 100. Grid search
is used to find best learning rate. All models are trained to convergence and best accuracies, averaged
across 5 seeds, are shown table 8. Training runs can be seen in figure 4 and best accuracies.
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Data Constrained Test
F-MNIST CIFAR-10

Model n=10 n=100 n=500 n=10 n=100 n=500
BP-SGD 70.72(±.44) 79.41(±19) 84.00(±.10) 23.58(±.58) 33.18(±15) 44.54(±.08)
IL-SGD 72.94(±.19) 79.69(±.11) 83.63(±.24) 24.67(±.65) 34.63(±.18) 42.80(±24)
IL-prox 71.64(±.19) 78.90(±.24) 82.12(±.16) 24.00(±.56) 34.17(±.20) 39.80(±.45)

BP-Adam 70.99(±.16) 78.60(±.19) 84.09(±.11) 23.93(±.24) 34.11(±.18) 44.13(±.25)
IL-Adam 71.20(±.29) 80.52(±.16) 84.32(±.11) 24.07(±.13) 34.91(±.23) 44.41(±.13)

IL-prox Adam 70.96(±.47) 80.27(±.083) 84.16(±.10) 24.17(±.29) 34.58(±.22) 44.15(±.17)
Table 8: Top test accuracies in constrained memory scenario. Networks were trained on subsets of
F-MNIST and CIFAR-10 data sets, i.e., where only 10, 100, or 500 data-points were used from each
category. Mini-batch size 100 was used. 5 seeds were trained to convergence for each model and the
best score from each seed were averaged.

F.6 Output Layer Analysis

Theorem D.1 states that IL-GN, the closed form approximation of IL, updates parameters of linear
MLPs in a way that changes FF output layer values (h(b+1)

N − h
(b)
N ) in the direction of the minimum-

norm path of loss minimization for any positive learning rate. Theorem D.2 states that BP-GN updates
parameters in a way that yields change in FF output layer values (h(b+1)

N − h
(b)
N ) in the direction of

the minimum-norm path of loss minimization, but only for a finite range of positive learning rates.
Here we test how well this result holds in practice in a network trained with IL-SGD. In particular,
we test how closely change in FF output layer values ∆hN = h

(b+1)
N − h

(b)
N align with the minimum

norm path to the target ∆hmin
N = y − h

(b)
N using cosine similarity. For small linear networks trained

on a regression task with, IL-SGD does indeed produce changes in the output (see 7 left) very close
in angle to the minimum norm path. This supports the claim that IL-GN is a useful approximation
of G-IL. MLPs trained with BP-SGD produce changes in the output layer that are significantly less
close to the minimum norm path. This suggests IL-SGD takes a shorter, more direct path toward
local minimum than that of steepest descent. Similar results were found when ReLU activations were
applied at hidden layers (see 7 middle). Finally, we directly test theorem D.1 and theorem D.2 by
exactly implementing IL-GN and BP-GN in a toy linear network. We measure the cosine similarity
between the change in output FF values and the minimum norm change, as with the previous tests,
and we do this over a range of learning rates. As predicted by theorem D.1 and D.2, IL-GN and
BP-GN affect output layer values along minimum norm path toward the target. However, as predicted
by theorem D.1 and D.2, we find BP-GN is significantly less stable than IL-GN (see 7 right).

Figure 7: (Left) Cosine similarity was measured between ∆hN and ∆hMin
N each training iteration

across a range of learning rates in linear networks trained on a regression task. 95% confidence
intervals are shown but are too small to be visible. (Middle) The same test was performed on
non-linear networks that use ReLU at hidden layers. (Right) We run the same test for an actual IL-GN
algorithm and BP-GN. As predicted by theorem D.1 and D.2 the IL-GN and BP-GN both push the
output layer down its minimum-norm path, but BP-GN produces a minimum-norm ∆hN only for a
tiny range of learning rates (see black dot upper left), while IL-GN is stable over a much larger range.
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Propositions E.1 and E.2 show that under certain assumptions IL-GN weight updates should have a
larger effect on hN when applied together than when applied alone, and the opposite is generally true
of BP-GN. We test how well this result holds in practice in IL-SGD and BP-SGD networks trained on
a regression tasks. We compute the effect each individual ∆W

(b)
n has on the output layer FF values

when applied in conjunction with other weights: ∥h(b+1)
N − h

(b+1/2,¬n)
N ∥, where h

(b+1)
N are the FF

output values after updates are applied to all weights, and h
(b+1/2,¬n)
N are the output layer values and

when all updates except ∆Wn are applied. We then compute ∥h(b+1/2,n)
N − h

(b)
N ∥ , where hb

N are the
FF output values before any updates are applied at the current training iteration, and h

(b+1/2,n)
N are

the output layer values after only ∆Wn is applied.

When ∥hb+1
N − h

(b+1/2,¬n)
N ∥2 ≥ ∥h(b+1/2,n)

N − h
(b)
N ∥, we know ∆Wn had a larger affect on the

output layer when applied in conjunction with other weights than when applied alone. When ∆Wn

meets this condition we count it as compatible with the other weight updates. We then compute a
compatibility score which stores a count of all compatible weight updates and uses it to compute the
proportion of updates that were compatible.

CompatibilityScore =
#Compatible ∆Wn

Total #∆Wn
(71)

We find that less than 50% of weight updates in IL-SGD and BP-SGD networks are compatible
though for smaller learning rates a greater proportion of IL updates are compatible than BP updates
(see figure 8). This supports the claim that IL updates interfere with one another less than do BP
updates, both in their ability to minimize loss and in their ability to change the FF output layer values.

Figure 8: (Left) In linear networks with small learning rates (αn < .1) IL weight updates have
significantly larger compatibility scores (according to 2-sample T-test, 95% confidence intervals
shown but are too small to see) than BP-SGD updates. (Right) The same trend exists in non-linear
networks with ReLU at hidden layers for αn < .4.

F.7 Weight Norm Analysis

Here we report the mean and standard deviation of the parameter updates ∥∆θ∥ from the training
runs reported in 6. We can see that generally IL updates are on average smaller than BP-SGD updates
and have smaller standard deviations. IL algorithms tended to improve accuracy faster than BP-SGD.
This suggests that IL did not improve accuracy faster because the overall changes in parameters were
larger. One possibility is that IL improved accuracy faster because it updated parameters along a
more direct path toward local minima. This suggestion is consistent with the findings above, that IL
updates push FF output layer activities along a more direct path toward global target activities y.

37



∥∆θ∥ (mean±std.) for Supervised Classification Tasks
Model MNIST Fashion-MNIST CIFAR-10

BP-SGD .0871(±.0194) .0680(±.087) .0807(±.0284)
BP-Adam .0109(±.0082) .0060(±.0019) .0090(±.0014)
IL-SGD .0074(±.0165) .0092(±.0124) .0036(±.0018)
IL-prox .0059(±.0132) .0361(±.012) .0149(±.004)

IL-prox Fast .0075(±.0167) .1215(±.1102) .0203(±.0161)
Table 9: Average weight update norms for classification tasks.

G Methods

In this section, we provide a more detailed description of the algorithms used in our simulation, as
well as a more detailed description of the experiments, so that they may be replicated in the future.
We begin by describing the algorithms in more detail then discuss experiment details.3

G.1 Algorithms

BP-SGD This algorithm performed explicit SGD over weights computed by BP. Pytorch auto-
differentiation was used to compute the gradients and update the weights. BP-Adam This algorithm
computes (explicit) gradients using BP, which are then used by Adam optimizers to update parameters.
We used the standard/default hyperparameters settings in the pytorch Adam optimizer: β1 = .9,
β2 = .999, ϵ = 1 ∗ 10−8.

IL-SGD This algorithm uses SGD during the inference phase and updates weights with a simple
gradient/LMS step. The inference phase runs for 25 time/gradient steps over neuron activities.
Consistent with previous work (e.g. [43, 2], we fully clamp the output layer, i.e., ĥN = y.

Algorithm 3: IL-SGD
begin

// Feedforward Pass
ĥ0 ← x(b)

for n = 0 to N − 1 do
pn+1, ĥn+1 ←Wnf(hn)

end
ĥN ← y(b)

// Inference Phase (Compute Local Targets)
ĥn ← y(b) for i = 0 to 25 do

for n = 1 to N do
ĥn ← ĥn − β ∂F

∂ĥn

pn+1 ← f(Wnĥn)
end

end
// Update Weight Matrices
Eqn. 4

end

Note that the predictions are computed f(Wnĥn), which is similar to previous implementations.

IL-Adam computes approximate implicit gradients of the weights using the IL-SGD algorithm
(algorithm 3). These gradients are then used by Adam optimizers which actually perform the update.
An Adam optimizer is assigned to each weight matrix. We used the standard/default hyper-parameters
settings in the pytorch Adam optimizer: β1 = .9, β2 = .999, ϵ = 1 ∗ 10−8.

3Code for simulations described below can be found at https://github.com/nalonso2/ILTheory
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IL-prox This algorithm is our novel variant of IL that is made to more closely match the algorithm
described in definition 4.1. Theorem 4.1 shows that minimizing the proximal loss w.r.t. hidden layer
activities and output layer activities is equivalent to minimizing F under certain settings of the γ
terms 4.1. The most important difference between these γ settings and the ones of IL-SGD is the way
the learning rate is used. In particular, IL-SGD scales weight updates using the learning rate, whereas
IL-prox scales weight updates by the norm of presynaptic activities using the NLMS rule (equation
16) instead of learning rate. Then, following theorem 4.1, IL-prox uses the learning rate α only to
determine the degree to which hN is pushed toward global target y versus output layer prediction pN .
In particular, following theorem 4.1, γN = αN−1

α = 1
∥ĥN−1∥2α

, then the gradient update at the output
layer is

∆ĥN =
∂L

∂ĥN

− 1

∥ĥN−1∥2α
eN , (72)

where eN = ĥN − pN , pN = σ(WN−1f(ĥN−1)), and σ is the softmax in classification tasks and
the sigmoid in the autoencoder task. In practice, we use a cross-entropy loss to update weights but
find using gradients of the cross entropy loss to update output layer activities leads to some instability.
Instead, we use the gradient of the MSE to update output layer activities. In particular,

∆ĥN = −(y − ĥN )− 1

∥ĥN−1∥2α
eN , (73)

and we solve for ĥN to get

ĥN =
∥ĥN−1∥2α

1 + ∥ĥN−1∥2α
y +

1

1 + ∥ĥN−1∥2α
pN . (74)

Thus, at each iteration of the inference phase, the output layer activity ĥN is updated to a weighted
average between global target y and prediction pN . We see that as α → 0 then ĥN → pN and as
α → ∞ then ĥN → y. Interestingly, we see the inverse relation between ĥN and the normalized
learning rate. The normalized learning rate for WN−1 is ∥ĥN−1∥−2. We see that as ∥ĥN−1∥−2 → 0

then ĥN → y. This means that for very small normalized learning rates the output layer activity
will be pushed toward the global target y, which will lead to larger output layer errors eN . As
∥ĥN−1∥−2 →∞ then ĥN → pN . This means that for very large normalized learning rates the output
layer activity will be pushed increasingly fast toward the output layer prediction pN , which will lead
to smaller output layer errors. This illustrates how these activity updates manage weight update
magnitude, as the magnitude of weight updates under the NLMS rule depend on the magnitude of
post synaptic errors eN and the magnitude of the normalized learning rate. If the learning rate is
small, eN can be larger and the weight update will still be small. If the learning rate is large, the
activities are updated to keep eN small and thus the weight update small.

We find including the ∥ĥN−1∥2 term in the output layer activity update is important for the stability
and performance of IL-prox, but the weighting terms of theorem 4.1 are not particularly important
at hidden layers for performance or stability of IL-prox. To reduce computation, we just use preset
hyper-parameter γ values at hidden layers. IL-prox uses the NLMS rule (equation ??) to update
weights. In practice, we find it sometimes improves performance to add a small constant ϵ to the
NLMS rule such that it becomes

argminWn
F = Wn +∆Wn = Wn +

1

∥f(ĥn)∥2 + ϵ
en+1f(ĥn)

T . (75)

The ϵ provides a smooth upper bound on the magnitude of the normalized learning rate and prevents
division by zero errors. (When using biases, however, division by zero is generally not an issue, since
one must treat the pre-synaptic vector ĥn as having a 1 concatenated to the end of it which for most
activation functions guarantees ∥f(ĥn)∥−2 > 0.)
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In the case where mini-batches are used we first average the gradient across the batch, then mul-
tiply this averaged gradient by the average of the normalized learning rates across the mini-batch.

Algorithm 4: IL-prox
begin

// Feedforward Pass
ĥ0 ← x(b)

for n = 0 to N − 1 do
pn+1, ĥn+1 ←Wnf(hn)

end
ĥN ← Eqn. 74
// Inference phase (Compute Local Targets)
for i = 0 to 25 do

for n = 1 to N do
ĥn ← ĥn − β ∂F

∂ĥn

pn+1 ←Wnf(ĥn)
end
ĥN ← Eqn. 74

end
// Update Weight Matrices
Eqn. 75

end

IL-prox Fast is the same as algorithm 4 except it only performs 12 updates over activities. IL-prox
Adam uses IL-prox to compute (approximate implicit) gradients (i.e. uses the same inference phase
as IL-prox then equation 75 to compute weight gradients), then inputs these gradients to an Adam
optimizers, which updates the weights.

BP-prox was the algorithm we used as a control to compare against IL-prox in the stability tests.
BP-prox softly clamps the output layer similarly to IL-prox and uses the NLMS rule similarly to
IL-prox. The output layer activities are computed according to

ĥN =
∥ĥN−1∥2α

1 + ∥ĥN−1∥2α
y +

1

1 + ∥ĥN−1∥2α
hN . (76)

Notice, unlike IL-prox, the FF activity hN is used rather than pN since G-BP does not compute local
predictions. However, IL-prox initializes pN to hN so these values are the same upon initialization.
Here hN = σ(WN−1f(hN−1)) where σ is the softmax. The weights are updated as follows:

∆Wn =
1

∥f(hn)∥2 + ϵ
en+1f(hn)

T , (77)

where ϵ is a small scalar used to prevent division by zero and place upper bound on the
normalized learning rate. (As we note below, in the stability tests the same small ϵ is
used for both IL-prox and BP-prox for a fair comparison). Notice this is the same as the
NLMS rule used by IL-prox (equation 75), except, in keeping with the G-BP framework,
the pre-synaptic FF activities hn activities are used in the learning rate and gradient com-
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putation rather than target activities ĥn. A summary of the algorithm is presented below.

Algorithm 5: BP-prox
begin

// Feedforward Pass
h0 ← x(b)

for n = 0 to N − 1 do
hn+1 ←Wnf(hn)

end
ĥN ← Eqn. 76
// Compute Local Targets
for n = 1 to N do

ĥn = hn − ∂L(y,ĥN )
∂hn

end
// Update Weight Matrices
Eqn. 77

end

G.2 Experiment Details

Pytorch data-loaders were used to download and perform transformations on MNIST, Fashion-
MNIST, and CIFAR-10 datasets. All data was transformed to pytorch tensors, but no other alterations
were applied to the data (e.g., there was no normalization). All pixel values were in the range between
0 and 1. Pytorch auto-gradient library was used to compute gradients for BP models, and the local
gradients for IL-SGD models. Gradients used to update weights and activities in IL-prox models
were computed manually. Code is publicly available at ???.

Supervised Tasks For all classification tasks, ReLU activations were used at hidden layers and
softmax at the output layer. For MNIST tasks, fully connected networks size 784-2x256-10 were
used. For our main results with CIFAR-10 classification (table 2), we used fully connected networks
size 3072-3x1024-10. For the convolutional classification we used a similar architecture as [3], who
compared a wide range of local,biologically plausible learning algorithms. Convolutions were (5x5,
64, 2), (5x5, 128, 2), (3x3, 256, 2). Fully connected layer was 1024x10. (Note, these are the same
dimensions as [3], though they used locally connected layers rather than convolutions.)

A grid search was used to find the learning rates for CIFAR-10 and MNIST classification tasks shown
in tables 2, 6, and 7. We first hand tuned the learning rates to find a range over which the algorithms
performed the best, then chose 5-10 learning rates in the range and trained 2-5 seeds at each learning
learning rate. We averaged the test accuracy achieved at the end of training over the seeds, then
chose the learning rate with the highest average test accuracy at the end of training. We then reran
the training run with the best learning rate across 5 seeds to get the data shown in tables 2, 6, and 7.
Each seed was tested every 50 training iterations. Runs were averaged over the 5 seeds. The best test
accuracy achieved from the averaged training run, is shown in the tables.

Learning rates used for each algorithm are shown below. The other main hyper-parameters are the γ
terms in the energy equation (equation 4), the gradient step size used to update activities in the IL
models, and the ϵ values in the IL-prox update (equation 75). The γ terms and the step sizes over
activity updates in IL models, each scale the gradients of F. To simplify, we found it effective to just
set γdecay = 0, then use the same two hyper-parameter terms at each hidden layer to differentially
weight the two error gradient terms: γbot and γtop. First, γbot is multiplied by the ’bottom up’ error
gradient in equation 24, which comes to γbotf ′(ĥn)W

T
n en+1. Then we γtop is multiplied by the

’top-down’ error gradient in equation 24, which comes to γtopen. These same two hyper-parameters
are used at each hidden layer of IL models and can be seen as incorporating both the actual gamma
and step size hyper-parameters into a single hyper-parameter. For IL-SGD and IL-Adam, γbot = .02
and γtop = .015. For IL-prox and IL-prox Adam, γbot = .015 and γtop = .015. For IL-prox Fast,
γbot = .015 and γtop = 0. Finally, ϵ = .25 for IL-prox and IL-prox fast models.

Self-Supervised Tasks The same grid search procedure was used for the self-supervised task as for
the supervised tasks to find learning rates for each algorithm. ReLUs were used at hidden layers and
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Learning Rates - Supervised Task - Fully Connected Networks
Model MNIST Fashion-MNIST CIFAR-10 CIFAR-10 (mb=64) CIFAR-10 Conv. (mb=64)

BP-SGD .015 .01 .015 .01 -
BP-Adam .0001 .00005 .000025 .00005 .00002
IL-SGD .05 .03 .01 .01 -
IL-prox 5 2.5 100 100 -

IL-prox Fast 3 2.5 100 100 -
IL-Adam − − .00001 .000005 .000009

IL-prox Adam − − 100 100 .000008

Table 10: Learning rates for algorithms trained on supervised learning tasks with fully connected
networks, with various data sets and mini-batch sizes (mb).

sigmoid at the output layer. The autoencoder used fully connected layers dimensions 3072-1024-500-
100-500-1025-3072. Binary cross entropy (BCE) was used at the output layer. The BCE data shown
in figure 3 was averaged over pixels and averaged over the test set. The best test score from each
of these averaged training runs is shown in the table. Figure 3 shows a run with mini-batch size 1,
which were trained with 50,000 data point (1 epoch). Learning rates are shown in the table below.
The γ settings are the same as those from the previous section. For the NLMS rule in IL-prox we
used an ϵ = 20 and generally found it useful to have a larger ϵ (and thus a smaller upper bound on
the normalized learning rate) than in the supervised task.

Learning Rates - Self-Supervised Task
BP-SGD BP-Adam IL-SGD IL-prox IL-prox fast
.0001 .00005 .04 10 10

Table 11: Learning rates for self-supervised task

Stability Test Here we train models over learning rates .01, .1, 1, 2.5, 10, 100. We use the BP-SGD,
IL-SGD, BP-prox, and IL-prox algorithms to train 5 seeds of networks sized 784-2x256-10 for
MNIST and 3072-3x1024-10 for CIFAR-10, and use ReLU at hidden layers with softmax at the
output layer. We use mini-batch size 1 and train for 50,000 iterations.

Importantly, the accuracy shown in table 4 and 5 are the test accuracy, averaged over the 5 seeds, at
the end of training. We use the test accuracy at the end of training (rather than the best test accuracy
achieved during training). The purpose of this was to test which algorithms not only achieved above
chance accuracy, but also did so while converging in a stable manner. Also important, the ϵ values
used in the IL-prox and BP-prox updates were set to zero to ensure any stability these algorithms
showed in this test was not due simply to the ϵ down scaling the weight updates.

Output Layer Analysis For the output layer analyses presented in figures 7, 8 we trained small toy
models on a regression task. Models were FF networks with layer sizes, 10-5-5-5-5. Input data was
generated by sampling vectors from a standard Gaussian. A teacher network of the same size with
Tanh activations at hidden layers, was used to generate associated output target vectors associated
with each input vector.

Linear toy networks and toy networks with ReLUs at hidden layers were trained with BP-SGD
and IL-SGD across learning rates (.001, .005, .01, .05, .1, .25, .5, .75, 1, 1.5, 2, 3, 4, 5). Each
algorithm trained 50 seeds at each learning rate for 200 training iterations. Each training iteration the
compatibility score (equation 71) was computed. Additionally, each training iteration b, we computed
the minimum norm path between the output layer activities and the output target y(b) as y(b) − h

(b)
N .

We then compared this value to the actual change in the output layer values h(b+1)
N − h

(b)
N after the

update each training iteration. We then computed and stored the cosine similarity between the two.
This data was then averaged over each iteration and seed for each learning rate. The result was the
average compatibility score and minimum norm change similarity under each learning rate.
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