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Abstract

We propose the Target Charging Technique (TCT), a unified privacy analysis1

framework for interactive settings where a sensitive dataset is accessed multiple2

times using differentially private algorithms. Unlike traditional composition, where3

privacy guarantees deteriorate quickly with the number of accesses, TCT allows4

computations that don’t hit a specified target, often the vast majority, to be es-5

sentially free (while incurring instead a small overhead on those that do hit their6

targets). TCT generalizes tools such as the sparse vector technique and top-k se-7

lection from private candidates and extends their remarkable privacy enhancement8

benefits from noisy Lipschitz functions to general private algorithms.9

1 Introduction10

In many practical settings of data analysis and optimization, the dataset D is accessed multiple times11

interactively via different algorithms (Ai), so that Ai depends on the transcript of prior responses12

(Aj(D))j<i. When each Ai is privacy-preserving, we are interested in tight end-to-end privacy13

analysis. We consider the standard statistical framework of differential privacy introduced in [11].14

Composition theorems [14] are a generic way to do that and achieve overall privacy cost that scales15

linearly or (via “advanced" composition) with square-root dependence in the number of private16

computations. We aim for a broad understanding of scenarios where the overall privacy bounds17

can be lowered significantly via the following paradigm: Each computation is specified by a private18

algorithm Ai together with a target ⊤i, that is a subset of its potential outputs. The total privacy cost19

depends only on computations where the output hits its target, that is Ai(D) ∈ ⊤i. This paradigm is20

suitable and can be highly beneficial when (i) the specified targets are a good proxy for the actual21

privacy exposure and (ii) we expect the majority of computations to not hit their target, and thus22

essentially be “free” in terms of privacy cost.23

The Sparse Vector Technique (SVT) [12, 30, 18, 34] is a classic special case. SVT is designed24

for computations that have the form of approximate threshold tests applied to Lipschitz functions.25

Concretely, each such AboveThreshold test is specified by a 1-Lipschitz function f and a threshold26

value t and we wish to test whether f(D) ≳ t. The textbook SVT algorithm compares a noisy27

value with a noisy threshold (independent Laplace noise for the values and threshold noise that28

can be updated only after positive responses). Remarkably, the overall privacy cost depends only29

on positive responses: Roughly, composition is applied to twice the number of positive responses30

instead of to the total number of computations. In our terminology, the target of each test is a31

positive response. SVT privacy analysis benefits when the majority of AboveThreshold test results32

are negative (and hence “free”). This makes SVT a key ingredient in a range of methods [13]:33

private multiplicative weights [18], Propose-Test-Release [10], fine privacy analysis via distance-to-34

stability [33], model-agnostic private learning [1],and designing streaming algorithms that are robust35

to adaptive inputs [19, 6].36
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We aim to extend such target-hits privacy analysis to interactive applications of general private37

algorithms (that is, algorithms that provide privacy guarantees but have no other assumptions): private38

tests, where we would hope to incur privacy cost only for positive responses, and private algorithms39

that return more complex outputs, e.g., vector average, cluster centers, a sanitized dataset, or a40

trained ML model, where the goal is to incur privacy cost only when the output satisfies some41

criteria. Textbook SVT, however, is less amenable to such extensions: First, SVT departs from the42

natural paradigm of applying private algorithms to the dataset and reporting the output. A natural43

implementation of private AboveThreshold tests would add Laplace noise to the value and compare44

with the threshold. Instead, SVT takes as input the Lipschitz output of the non-private algorithms45

with threshold value and the privacy treatment is integrated (added noise both to values and threshold).46

The overall utility and privacy of the complete interaction are analyzed with respect to the non-private47

values, which is not suitable when the algorithms are already private. Moreover, the technique of48

using a hidden shared threshold noise across multiple AboveThreshold tests is specific for Lipschitz49

functions, introduces dependencies between responses, and more critically, results in separate privacy50

costs for reporting noisy values (that is often required by analytics tasks [22]).51

Consider private tests. The natural paradigm is to sequentially choose a test, apply it, and report the52

result. The hope is to incur privacy loss only on positive responses. Private testing was considered in53

prior works [21, 7] but in ways that departed from this paradigm: [21] processed the private tests so54

that a positive answer is returned only when the probability p of a positive response by the private55

test is very close to 1. This seems unsatisfactory: If the design goal of the private testing algorithm56

was to report only very high probabilities, then this could have been more efficiently integrated into57

the design, and if otherwise, then we miss out on acceptable positive responses with moderately high58

probabilities (e.g. 95%).59

Consider now Top-k selection, which is a basic subroutine in data analysis, where input algorithms60

(Ai)i∈[m] (aka candidates) that return results with quality scores are provided in a batch (i.e., non61

interactively). The selection returns the k candidates with highest quality scores on our dataset. The62

respective private construct, where the data is sensitive and the algorithms are private, had been63

intensely studied [23, 17, 32]. The top-k candidates can be viewed as target-hits and we might hope64

for privacy cost that is close to a composition over k private computations, instead of over m≫ k.65

The natural approach for top-k is one-shot (Algorithm 3), where each algorithm is applied once66

and the responses with top-k scores are reported. Prior works on private selection that achieve this67

analysis goal include those [9, 29] that use the natural one-shot selection but are tailored to Lipschitz68

functions (apply the Exponential Mechanism [24] or the Report-Noise-Max paradigm [13]) and69

works [21, 28, 7] that do apply with general private algorithms but significantly depart from the70

natural one-shot approach: They make a randomized number of computations that is generally much71

larger than m, with each Ai invoked multiple times or none. The interpretation of the selection72

deviates from top-1 and does not naturally extend to top-k. We seek privacy analysis that applies to73

one-shot top-k selection with candidates that are general private algorithms.74

The natural interactive paradigm and one-shot selection are simple, interpretable, and general. The75

departures made in prior works were made for a reason: Simple arguments (that apply with both top-176

one-shot private selection [21] and AboveThreshold tests) seem to preclude efficient target-charging77

privacy analysis: With pure-DP, if we perform m computations that are ε-DP (that is, m candidates78

or m tests), then the privacy parameter value for a pure DP bound is Ω(m)ε. With approximate-DP,79

and even a single “hit,” the parameter values are (Ω(ε log(1/δ)), δ). The latter suggests a daunting80

overhead of O(log(1/δ)) instead of O(1) per “hit.” We circumvent the mentioned limitations by81

taking approximate DP to be a reasonable relaxation and additionally, aim for application regimes82

where many private computations are performed on the same dataset and we expect multiple, say83

Ω(log(1/δ)), “target hits” (e.g. positive tests and sum of the k-values of selections). With these84

relaxations in place, we seek a unified target-charging analysis (e.g. privacy charge that corresponds85

to O(1) calls per “target hit”) that applies with the natural paradigm across interactive calls and top-k86

selections.87

2 Overview of Contributions88

We overview our contributions (proofs and details are provided in the Appendix). We introduce the89

Target-Charging Technique (TCT) for privacy analysis over interactive private computations (see90

Algorithm 1). Each computation performed on the sensitive dataset D is specified by a pair of private91
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algorithm Ai and target ⊤i. The interaction is halted after a pre-specified number τ of computations92

satisfy Ai(D) ∈ ⊤i. We define targets as follows:93

Definition 2.1 (q-Target). LetM : Xn → Y be a randomized algorithm. For q ∈ (0, 1] and ε > 0,94

we say that a subset ⊤ ⊆ Y of outcomes is a q-Target ofM, if the following holds: For any pair D095

and D1 of neighboring data sets, there exist p ∈ [0, 1], and three distributions C, B0 and B1 such96

that97

1. The distributionsM(D0) andM(D1) can be written as the following mixtures:98

M(D0) ≡ p ·C+ (1− p) ·B0,

M(D1) ≡ p ·C+ (1− p) ·B1.

2. B0,B1 are (ε, 0)-indistinguishable,99

3. min(Pr[B0 ∈ ⊤],Pr[B1 ∈ ⊤]) ≥ q.100

The effectiveness of a target as a proxy of the actual privacy cost is measured by its q-value where101

q ∈ (0, 1]. We interpret 1/q as the overhead factor of the actual privacy exposure per target hit, that102

is, the number of private accesses that correspond to a single target hit. Note that an algorithm with a103

q-target for ε > 0 must be (ε, 0)-DP and that any (ε, 0)-DP algorithm has a 1-target, as the set of all104

outcomes ⊤ = Y is a 1-target (and hence also a q-target for any q ≤ 1). More helpful targets are105

“smaller” (so that we are less likely to be charged) with a larger q (so that the overhead per charge is106

smaller). We establish the following privacy bounds.107

Lemma 2.2 (simplified meta privacy cost of target-charging). The privacy parameters of Algorithm 1108

(applied with ε-DP algorithms Ai and q-targets ⊤i until targets are hit τ times) is (ε′, δ) where109

ε′ ≈ τ
q ε and δ = e−Ω(τ).110

Alternatively, we obtain parameter values (ε′, δ′) = (fε(r, ε), fδ(r, ε) + e−Ω(τ)) where r ≈ τ/q111

and (fε(r, ε), fδ(r, ε)) are privacy parameter values for advanced composition [14] of r ε-DP112

computations.113

Proof details for a more general statement that also applies with approximate DP algorithms are114

provided in Section B (in which case the δ parameters of all calls simply add up). The idea is simple:115

We compare the execution of Algorithm 4 on two neighboring data sets D0, D1. Given a request116

(A,⊤), let p,C,B,B0,B1 be the decomposition of A w.r.t. D0, D1 given by Definition 2.1. Then,117

running A on D0, D1 can be implemented in the following equivalent way: we flip a p-biased coin.118

With probability p, the algorithm samples from C and returns the result, without accessing D0, D1 at119

all (!). Otherwise, the algorithm needs to sample from B0 or B1, depending on whether the private120

data is D0 or D1. However, by Property 3 in Definition 2.1, there is a probability of at least q that121

Algorithm 1 will “notice” the privacy-leaking computation by observing a result in the target set ⊤.122

If this indeed happens, the algorithm increments the counter. On average, each counter increment123

corresponds to 1
q accesses to the private data. Therefore we use the number of target hits (multiplied124

by 1/q) as a proxy for the actual privacy leak. Finally, we apply concentration inequalities to obtain125

high confidence bounds on the probability that the actual number of accesses significantly exceeds its126

expectation of τ/q. The multiplicative error decreases when the number τ of target hits is larger. In127

the regime τ > ln(1/δ), we amortize the mentioned O(log(1/δ)) overhead of the natural paradigm128

so that each target hit results in privacy cost equivalent to O(1/q) calls. In the regime of very few129

target hits (e.g., few private tests or private selections), we still have to effectively “pay” for the larger130

τ = Ω(ln(1/δ)), but TCT still has some advantages over alternative approaches, due to its use of the131

natural paradigm and its applicability with general private algorithms.132

TCT is simple but turns out to be surprisingly powerful due to natural targets with low overhead. We133

present an expansive toolkit that is built on top of TCT and describe application scenarios.134

2.1 NotPrior targets135

A NotPrior target of an ε-DP algorithm is specified by any outcome of our choice (the “prior") that136

we denote by ⊥. The NotPrior target is the set of all outcomes except ⊥. Surprisingly perhaps, this137

is an effective target (See Section C for the proof that applies also with approximate-DP):138
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Algorithm 1: Target Charging
Input: Dataset D = {x1, . . . , xn} ∈ Xn. Integer τ ≥ 1 (Upper limit on the number of target hits).

Fraction q ∈ [0, 1].
C ← 0 // Initialize target hit counter
while C < τ do // Main loop

Receive (A,⊤) where A is an ε-DP mechanism, and ⊤ is a q-target for A
r ← A(D)
Publish r
if r ∈ ⊤ then C ← C + 1 // outcome is a target hit

Lemma 2.3 (Property of a NotPrior target). Let A : X → Y ∪ {⊥}, where ⊥ ̸∈ Y , be an ε-DP139

algorithm. Then the set of outcomes Y constitutes an 1
eε+1 -target for A.140

Note that for small ε, we have q approaching 1/2 and thus the overhead factor is close to 2. The141

TCT privacy analysis is beneficial over plain composition when the majority of all outcomes in our142

interaction match their prior ⊥. We describe application scenarios for NotPrior targets. For most of143

these scenarios, TCT is the only method we are aware of that provides the stated privacy guarantees144

in the general context.145

Private testing A private test is a private algorithm with a Boolean output. By specifying our prior146

to be a negative response, we obtain (for small ε) an overhead of 2 for positive responses, which147

matches SVT. TCT is the only method we are aware of that provides SVT-like guarantees with148

general private tests.149

Pay-only-for-change When we have a prior on the result of each computation and expect the150

results of most computations to agree with their respective prior, we set ⊥ to be our prior. We report151

all results but pay only for those that disagree with the prior. We describe some use cases where152

paying only for change can be very beneficial (i) the priors are results of the same computations on an153

older dataset, so they are likely to remain the same (ii) In streaming or dynamic graph algorithms, the154

input is a sequence of updates where typically the number of changes to the output is much smaller155

than the number of updates. Differential privacy was used to obtain algorithms that are robust to156

adaptive inputs [19, 2] by private aggregation of non-robust copies. The pay-only-for-change allows157

for number of changes to output (instead of the much larger number of updates) that is quadratic in158

the number of copies. Our result enables such gain with any private aggregation algorithm (that is not159

necessarily in the form of AboveThreshold tests).160

2.2 Conditional Release161

We have a private algorithm A : X → Y but are interested in the output A(D) only when a certain162

condition holds (i.e., when the output is in ⊤ ⊆ Y). The condition may depend on the interaction163

transcript thus far (depend on prior computations and outputs). We expect most computations not164

to meet their release conditions and want to be “charged” only for the ones that do. Recall that165

with differential privacy, not reporting a result also leaks information on the dataset, so this is not166

straightforward. We define A⊤ := ConditionalRelease(A,⊤) as the operation that inputs a167

dataset D, computes y ← A(D). If y ∈ ⊤, then publish y and otherwise publish ⊥. We show that168

this operation can be analysed in TCT as a call with the algorithm and NotPrior target pair (A⊤,⊤),169

that is, a target hit occurs if and only if y ∈ ⊤:170

Lemma 2.4 (ConditionalRelease privacy analysis). A⊤ satisfies the privacy parameters of A171

and ⊤ is a NotPrior target of A⊤.172

Proof. A⊤ processes the output of the private algorithm A and thus from post processing property173

is also private with the same privacy parameter values. Now note that ⊤ is a NotPrior target of A,174

with respect to prior ⊥.175

We describe some example use-cases:176
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(i) Private learning of models from the data (clustering, regression, average, ML model) but we are177

interested in the result only when its quality is sufficient, say above a specified threshold, or when178

some other conditions hold.179

(ii) Greedy coverage or representative selection type applications, where we incur privacy cost only180

for selected items. To do so, we condition the release on the “coverage” of past responses. For181

example, when greedily selecting a subset of features that are most relevant or a subset of centers that182

bring most value.183

(iii) Approximate AboveThreshold tests on Lipschitz functions, with release of above-threshold184

noisy values: As mentioned, SVT incurs additional privacy cost for the reporting whereas TCT (using185

ConditionalRelease) does not, so TCT benefits in the regime of sufficiently many target hits.186

(iv) AboveThreshold tests with sketch-based approximate distinct counts: Distinct counting187

sketches [16, 15, 5] meet the privacy requirement by the built-in sketch randomness [31]. We188

apply ConditionalRelease and set ⊤ to be above threshold values. In comparison, despite the189

function (distinct count) being 1-Lipschitz, the use of SVT for this task incurs higher overheads in190

utility (approximation quality) and privacy: Even for the goal of just testing, a direct use of SVT191

treats the approximate value as the non-private input, which reduces accuracy due to the additional192

added noise. Treating the reported value as a noisy Lipschitz still incurs accuracy loss due to the193

threshold noise, threshold noise introduces bias, and analysis is complicated by the response not194

following a particular noise distribution. For releasing values, SVT as a separate distinct-count sketch195

is needed to obtain an independent noisy value [22], which increases both storage and privacy costs.196

2.3 Conditional Release with Revisions197

We present an extension of Conditional Release that allows for followup revisions of the target. The198

initial ConditionalRelease and the followup ReviseCR calls are described in Algorithm 2. The199

ConditionalRelease call specifies a computation identifier h for later reference, an algorithm and200

a target pair (A,⊤). It draws rh ∼ A(D) and internally stores rh and a current target ⊤h ← ⊤.201

When rh ∈ ⊤ then rh is published and a charge is made. Otherwise, ⊥ is published. Each (followup)202

ReviseCR call specifies an identifier h and a disjoint extension⊤′ to its current target⊤h. If rh ∈ ⊤′,203

then rh is published and a charge is made. Otherwise, ⊥ is published. The stored current target for204

computation h is augmented to include ⊤′. Note that a target hit occurs at most once in a sequence of205

(initial and followup revise) calls and if and only if the result of the initial computation rh is in the206

final target ⊤h.207

Algorithm 2: Conditional Release and Revise Calls
// Initial Conditional Release call: Analysed in TCT as a (ε, δ)-DP algorithm A⊤ and NotPrior target

⊤
Function ConditionalRelease(h,A,⊤): // unique identifier h, an (ε, δ)-DP algorithm A → Y,
⊤ ⊂ Y
⊤h ← ⊤ // Current target for computation h

TCT Charge for δ // If δ > 0, see Section B
rh ← A(D) // Result for computation h

if rh ∈ ⊤h then // publish and charge only if outcome is in ⊤h

Publish rh
TCT Charge for a NotPrior target hit of an ε-DP algorithm

else
Publish ⊥

// Revise call: Analysed in TCT as a 2ε-DP Algorithm (A | ¬⊤h)⊤′ and NotPrior target ⊤′

Function ReviseCR(h,⊤′): // Revise target to include ⊤′

Input: An identifier h of a prior ConditionalRelease call, target extension ⊤′ where ⊤′ ∩ ⊤h = ∅
if rh ∈ ⊤′ then // Result is in current target, publish and charge

Publish rh
TCT Charge for a NotPrior target hit of an 2ε-DP algorithm

else
Publish ⊥

⊤h ← ⊤h ∪ ⊤′ // Update the target to include extension

5



We show the following (Proof provided in Section D):208

Lemma 2.5 (Privacy analysis for Algorithm 2). Each ReviseCR call can be analysed in TCT as a209

call to a 2ε-DP algorithm with a NotPrior target ⊤′.210

Thus, the privacy cost of conditional release followed by a sequence of revise calls is within a factor211

of 2 (due to the doubled privacy parameter on revise calls) of a single ConditionalRelease call212

made with the final target. The revisions extension of conditional release facilitates our results for213

private selection, which are highlighted next.214

2.4 Private Top-k Selection215

Consider the nature one-shot top-k selection procedure as shown in Algorithm 3: We call each216

algorithm once and report the k responses with the highest quality scores. We establish the following:217

Lemma 2.6 (Privacy of One-Shot Top-k Selection). Consider one-shot top-k selection (Algorithm 3)218

on a dataset D where {Ai} are (ε, δi)-DP. This selection can be simulated exactly in TCT by a219

sequence of calls to (2ε, δ)-DP algorithms with NotPrior targets that has k target hits.220

As a corollary, assuming ε < 1, Algorithm 3 is (O(ε
√

k log(1/δ)), 2−Ω(k) + δ +
∑

i δi)-DP for221

every δ > 0.222

To the best of our knowledge, our result is the first such bound for one-shot selection from general223

private candidates. For the case when the only computation performed on D is a single top-1 selection,224

we match the “bad example” in [21] (see Theorem I.1). In the regime where k > log(1/δ) our bounds225

generalize those specific to Lipschitz functions in [9, 29] (see Section I). Moreover, Lemma 2.6226

allows for a unified privacy analysis of interactive computations that are interleaved with one-shot227

selections. We obtain O(1) overhead per target hit when there are Ω(log(1/δ)) hits in total.228

Algorithm 3: One-Shot Top-k Selection
Input: A dataset D. Candidate algorithms A1, . . . ,Am. Parameter k ≤ m.
S ← ∅
for i = 1, . . . ,m do

(yi, si)← Ai(D)
S ← S ∪ {(i, yi, si)}

return L← the top-k triplets from S, by decreasing si

The proofs of Lemma 2.6 and implications to selection tasks are provided in Section I. The proof229

utilizes Conditional Release with revisions (Section 2.3).230

2.4.1 Selection using Conditional Release231

We analyze private selection procedures using conditional release (see Section I for details). First note232

that ConditionalRelease calls (without revising) suffice for one-shot above-threshold selection233

(release all results with a quality score that exceeds a pre-specified threshold t), with target hits only234

on what was released: We simply specify the release condition to be si > t. What is missing in order235

to implement one-shot top-k selection is an ability to find the “right” threshold (a value t so that236

exactly k candidates have quality scores above t), while incurring only k target hits. The revise calls237

provide the functionality of lowering the threshold of previous conditional release calls (lowering238

the threshold amounts to augmenting the target). This functionality allows us to simulate a sweep239

of the m results of the batch in the order of decreasing quality scores. We can stop the sweep when240

a certain condition is met (the condition must be based on the prefix of the ordered sequence that241

we viewed so far) and we incur target hits only for the prefix. To simulate a sweep, we run a high242

threshold conditional release of all m candidates and then incrementally lower the threshold using243

sets of m revise calls (one call per candidate). The released results are in decreasing order of quality244

scores. To prove Lemma 2.6 we observe that the one-shot top-k selection (Algorithm 3) is simulated245

exactly by such a sweep that halts after k scores are released (the sweep is only used for analysis).246

As mentioned, with this approach we can apply any stopping condition that depends on the prefix.247

This allows us to use data-dependent selection criteria. One natural such criteria (instead of using a248

rigid value of k) is to choose k when there is a large gap in the quality scores, that the (k+1)st quality249
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score is much lower than the kth score [35]. This criterion can be implemented using a one-shot250

algorithm and analyzed in the same way using an equivalent sweep. Data-dependent criteria are also251

commonly used in applications such as clustering (choose “the right” number of clusters according to252

gap in clustering cost) and greedy selection of representatives.253

2.5 Best of multiple targets254

Multi-target charging is a simple but useful extension of Algorithm 1 (that is “single target”). With255

k-TCT, queries have the form
(
A, (⊤i)i∈[k]

)
where ⊤i for i ∈ [k] are q-targets (we allow targets to256

overlap). The algorithm maintains k counters (Ci)i∈[k]. For each query, for each i, we increment Ci257

if r ∈ ⊤i. We halt when mini Ci = τ .258

The multi-target extension allows us to flexibly reduce the total privacy cost to that of the “best”259

among k target indices in retrospect (the one that is hit the least number of times). Interestingly,260

this extension is almost free in terms of privacy cost: The number of targets k only multiplies the δ261

privacy parameter (see Section B.1 for details).262

2.6 BetweenThresholds in TCT263

The BetweenThresholds classifier is a refinement of the AboveThreshold test.264

BetweenThresholds reports if the noisy Lipschitz value is below, between, or above two265

thresholds tl < tr. BetweenThresholds was analysed in [3] in the SVT framework (using noisy266

thresholds) and it was shown that the overall privacy costs may only depend on the “between"267

outcomes. Their analysis required that tr − tl ≥ (12/ε)(log(10/ε) + log(1/δ) + 1). We consider268

the “natural” private BetweenThresholds classifier that compares the value with added Lap(1/ε)269

noise to the thresholds. We show (see Section G) that the “between” outcome is a target with270

q ≥ (1− e−(tr−tl)ε) · 1
eε+1 . Note that the q-value is smaller by a factor of (1− e−(tr−tl)ε) compared271

with NotPrior targets. Therefore, there is smooth degradation in the effectiveness of the between272

outcome as the target as the gap tr − tl decreases, and matching AboveThreshold when the gap is273

large. Also note that we require much smaller gaps tr − tl compared with [3], also asymptotically274

(O(log(1/ε)) factor improvement). This brings BetweenThresholds into the practical regime.275

We can compare an AboveThreshold test with a threshold t with a BetweenThresholds classifier276

with tl = t− 1/ε and tr = t+ 1/ε. Surprisingly perhaps, despite BetweenThresholds being more277

informative than AboveThreshold, as it provides more granular information on the value, its privacy278

cost is lower for queries where values are either well above or well below the thresholds (since target279

hits are unlikely also when queries are well above the threshold). Somehow, the addition of a third280

outcome to the test tightened the privacy analysis! A natural question is whether we can extend this281

benefit more generally – inject a “boundary outcome” when our private algorithm does not have one,282

and tighten the privacy analysis. We introduce next a method that achieves this goal.283

2.7 The Boundary Wrapper Method284

When the algorithm is a tester or a classifier, the result is most meaningful when one outcome285

dominates the distribution A(D). Moreover, when performing a sequence of tests or classification286

tasks we might expect most queries to have high confidence labels (e.g., [27, 1]). Our hope then is to287

incur privacy cost that depends only on the “uncertainty,” captured by the probability of non-dominant288

outcomes. When we have for each computation a good prior on which outcome is most likely, this289

goal can be achieved via NotPrior targets (Section 2.1). When we expect the whole sequence to290

be dominated by one type of outcome, even when we don’t know which one it is, this goal can be291

achieved via NotPrior with multiple targets (Section 2.5). But these approaches do not apply when292

a dominant outcome exists in most computations but we have no handle on it.293

For a private test A, can we choose a moving target per computation to be the value with the smaller294

probability argminb∈{0,1} Pr[A(D) = b]? More generally, with a private classifier, can we somehow295

choose the target to be all outcomes except for the most likely one? Our boundary wrapper, described296

in Algorithm 4, achieves that goal. The privacy wrapper W takes any private algorithm A, such297

as a tester or a classifier, and wraps it to obtain algorithmW(A). The wrapped algorithm has its298

outcome set augmented to include one boundary outcome ⊤ that is designed to be a q-target. The299

wrapper returns ⊤ with some probability that depends on the distribution of A(D) and otherwise300
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returns a sample from A(D) (that is, the output we would get when directly applying A to D). We301

then analyse the wrapped algorithm in TCT.302

Note that the probability of the wrapper A returning ⊤ is at most 1/3 and is roughly proportional303

to the probability of sampling an outcome other than the most likely from A(D). When there is no304

dominant outcome the ⊤ probability tops at 1/3. Also note that a dominant outcome (has probability305

p ∈ [1/2, 1] in A(D)) has probability p/(2− p) to be reported. This is at least 1/3 when p = 1/2306

and is close to 1 when p is close to 1. For the special case of A being a private test, there is always a307

dominant outcome.308

A wrapped AboveThreshold test provides the benefit of BetweenThresholds discussed in Sec-309

tion 2.6 where we do not pay privacy cost for values that are far from the threshold (on either side).310

This is achieved mechanically without the need to explicitly introduce two thresholds around the311

given one and defining a different algorithm.312

Algorithm 4: Boundary Wrapper
Input: Dataset D = {x1, . . . , xn} ∈ Xn, a private algorithm A
r∗ ← argmaxr Pr[A(D) = r] // The most likely outcome of A(D)

π(D)← 1− Pr[A(D) = r∗] // Probability that A does not return the most likely outcome

c ∼ Ber(min
{

1
3
, π
1+π

}
) // Coin toss for boundary

if c = 1 then Return ⊤ else Return A(D) // return boundary or value

We show (proofs provided in Section E) that the wrapped algorithm is nearly as private as its baseline:313

Lemma 2.7 (Privacy of a wrapped algorithm). IfA is ε-DP then Algorithm 4 applied toA is t(ε)-DP314

where t(ε) ≤ 4
3ε.315

Lemma 2.8 (q-value of the boundary target). The outcome ⊤ of a boundary wrapper (Algorithm 4)316

of an ε-DP algorithm is a et(ε)−1

2(eε+t(ε)−1)
-target.317

For small ε we obtain q ≈ t(ε)/(2(ε + t(ε)). Substituting t(ε) = 4
3ε we obtain q ≈ 2

7 . Since the318

target ⊤ has probability at most 1/3, this is a small loss of efficiency (1/6 factor overhead) compared319

with composition in the worst case when there are no dominant outcomes.320

The boundary wrapper yields light-weight privacy analysis that pays only for the “uncertainty” of the321

response distribution A(D) and can be an alternative to more complex approaches based on smooth322

sensitivity (the stability of A(D) to changes in D) [25, 10, 33]. Note that the boundary-wrapper323

method assumes availability of the probability of the most dominant outcome in the distributionA(D),324

when it is large enough. The probability can always be computed without incurring privacy costs (only325

computation cost) and is readily available with the Exponential Mechanism [24] or when applying326

known noise distributions for AboveThreshold, BetweenThresholds, and Report-Noise-Max [9].327

In Section F we propose a boundary-wrapper that only uses sampling access to A(D).328

2.7.1 Applications to Private Learning using Non-privacy-preserving Models329

Methods that achieve private learning through training non-private models include Private Aggregation330

of Teacher Ensembles (PATE) [26, 27] and Model-Agnostic private learning [1]. The private dataset331

D is partitioned into k parts D = D1 ⊔ · · · ⊔ Dk and a model is trained (non-privately) on each332

part. For multi-class classification with c labels, the trained models can be viewed as functions333

{fi : X → [c]}i∈[k]. Note that changing one sample in D can only change the training set of one334

of the models. To privately label an example x drawn from a public distribution, we compute the335

predictions of all the models {fi(x)}i∈[k] and consider the counts nj =
∑

i∈[k] 1{fi(x) = j} (the336

number of models that gave label j to example x) for j ∈ [c]. We then privately aggregate to obtain a337

private label, for example using the Exponential Mechanism [24] or Report-Noisy-Max [9, 29]. This338

setup is used to process queries (label examples) until the privacy budget is exceeded. In PATE, the339

new privately-labeled examples are used to train a new student model (and {fi} are called teacher340

models). In these applications we seek tight privacy analysis. Composition over all queries – for341

O(1) privacy, only allows for O(k2) queries. We aim to replace this with O(k2) “target hits.” These342

works used a combination of methods including SVT, smooth sensitivity, distance-to-instability, and343

propose-test-release [10, 33]. The TCT toolkit can streamline the analysis:344
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(i) It was noted in [1, 27] that when the teacher models are sufficiently accurate, we can expect that345

nj ≫ k/2 on the ground truth label j on most queries. High-agreement examples are also more346

useful for training the student model. Moreover, agreement implies stability and lower privacy cost347

(when accounted through the mentioned methods) is lower. Instead, to gain from this stability, we348

can apply the boundary wrapper (Algorithm 4) on top of the Exponential Mechanism. Then use ⊤ as349

our target. Agreement queries, where maxj nj ≫ k/2 (or more finely, when h = argmaxj nj and350

nh ≫ maxj∈[k]\{h} nj) are very unlikely to be target hits.351

(ii) If we expect most queries to be either high agreement maxj nj ≫ k/2 or no agreement352

maxj nj ≪ k/2 and would like to avoid privacy charges also with no agreement, we can ap-353

ply AboveThreshold test to maxj nj . If above, we apply the exponential mechanism. Otherwise,354

we report “Low.” The wrapper applied to the combined algorithm returns a label in [c], “Low,” or355

⊤. Note that “Low” is a dominant outcome with no-agreement queries (where the actual label is not356

useful anyway) and a class label in [c] is a dominant outcome with high agreement. We therefore357

incur privacy loss only on weak agreements.358

2.8 SVT with individual privacy charging359

Our TCT privacy analysis simplifies and improves the analysis of SVT with individual privacy360

charging, introduced by Kaplan et al [20]. The input is a dataset D ∈ Xn and an online sequence361

of linear queries that are specified by predicate and threshold value pairs (fi, Ti). For each query,362

the algorithms reports noisy AboveThreshold test results
∑

x∈D fi(x) ≳ T . Compared with363

the standard SVT, which halts after reporting τ positive responses, SVT with individual charging364

maintains a separate budget counter Cx for each item x. For each query with a positive response, the365

algorithm only charges items that contribute to this query (namely, all the x’s such that fi(x) = 1).366

Once an item x contributes to τ hits (that is, Cx = τ ), it is removed from the data set. This finer367

privacy charging facilitates better utility with the same privacy budget, as demonstrated by several368

recent works [20, 6]. Compared with prior work [20]: Our algorithm uses the “natural” approach of369

adding Laplace noise and comparing, i.e., computing f̂i =
(∑

x∈D fi(x)
)
+ Lap(1/ε) and testing370

whether f̂i ≥ T , whereas [20] adds two independent Laplace noises. We can publish the approximate371

sum f̂i for “Above-Threshold” without additional privacy loss. Moreover, our analysis is much372

simpler (few lines instead of several pages) and for the same privacy budget improves the additive373

error by a log(1/ε)
√
log(1/δ) factor. Importantly, our improvement aligns the bounds of SVT with374

individual privacy charging with those of standard SVT, bringing the former into the practical regime.375

See Section H for details.

Algorithm 5: SVT with Individual Privacy Charging
Input: Private data set D ∈ Xn; privacy budget τ > 0; Privacy parameter ε > 0.
foreach x ∈ D do Cx ← 0 // Initialize a counter for item x

for i = 1, 2, . . . , do // Receive queries
Receive a predicate fi : X → [0, 1] and threshold Ti ∈ R
f̂i ←

(∑
x∈D fi(x)

)
+ Lap(1/ε) // Add Laplace noise to count

if f̂i ≥ Ti then // Compare with threshold

Publish f̂i
foreach x ∈ D such that f(x) > 0 do

Cx ← Cx + 1
if Cx = τ then Remove x from D

else Publish ⊥

376

Conclusion We introduced the Target Charging Technique (TCT), a versatile unified privacy377

analysis framework that is particularly suitable when a sensitive dataset is accessed multiple times378

via differentially private algorithms. We provide an expansive toolkit and demonstrate significant379

improvement over prior work for basic tasks such as private testing and one-shot selection, describe380

use cases, and list challenges for followup works. TCT is simple with low overhead and we hope will381

be adopted in practice.382
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A Preliminaries493

Notation. We say that a function f over datasets is t-Lipschitz if for any two neighboring datasest494

D0, D1, it holds that |f(D1) − f(D0)| ≤ t. For two reals a, b ≥ 0 and ε > 0, we write a ≈ε b if495

e−εb ≤ a ≤ eεb.496

For two random variables X0, X1, we say that they are ε-indistinguishable, denoted X0 ≈ε X1,497

if their max-divergence and symmetric counterpart are both at most ε. That is, for b ∈ {0, 1},498

maxS⊆supp(Xb) ln
[

Pr[Xb∈S]
Pr[X1−b∈S]

]
≤ ε.499

We similarly say that for δ > 0, the random variables are (ε, δ)-indistinguishable, denoted X0 ≈ε,δ500

X1, if for b ∈ {0, 1}501

max
S⊆supp(Xb)

ln

[
Pr[Xb ∈ S]− δ

Pr[X1−b ∈ S]

]
≤ ε.

For two probability distributions, B0, B1 We extend the same notation and write B0 ≈ε B1 and502

B0 ≈ε,δ B1 when this holds for random variables drawn from the respective distributions.503

The following relates (ε, 0) and (ε, δ)-indistinguishability with δ = 0 and δ > 0.504

Lemma A.1. Let B0, B1 be two distributions. Then B0 ≈ε,δ B1 if and only if we can express them505

as mixtures506

Bb ≡ (1− δ) ·Nb + δ ·Eb ,

where N0 ≈ε N
1.507

We treat random variables interchangeably as distributions, and in particular, for a randomized508

algorithms A and input D we use A(D) to denote both the random variable and the distribution. We509

say an algorithm A is ε-DP (pure differential privacy), if for any two neighboring datasets D and510

D′, A(D) ≈ε A(D′). Similarly, we say A is (ε, δ)-DP (approximate differential privacy) if for any511

two neighboring datasets D,D′, it holds that A(D) ≈ε,δ A(D′) [11]. We refer to ε, δ as the privacy512

parameters.513

A private test is a differentially private algorithm with Boolean output (say in {0, 1}).514

Remark A.2. The literature in differential privacy uses different definitions of neighboring datasets515

but in this work the definition and properties are used in a black-box fashion. TCT, and properties in516

these preliminaries, apply with an abstraction.517

The following is immediate from Lemma A.1:518

Corollary A.3 (Decomposition of an approximate DP Algorithm). An algorithm A is (ε, δ)-DP if519

and only if for any two neighboring datasets D0 and D1 we can represent each distribution A(Db)520

(b ∈ {0, 1}) as a mixture521

A(Db) ≡ (1− δ) ·Nb + δ ·Eb ,

where N0 ≈ε N
1.522

Differential privacy satisfies the post-processing property (post-processing of the output of a private523

algorithm remains private with the same parameter values) and also has nice composition theorems:524

Lemma A.4 (DP composition [11, 14]). An interactive sequence of r executions of ε-DP algorithms525

satisfies (ε′, δ)-DP for526

• ε′ = rε and δ = 0 by basic composition [11], or527

• for any δ > 0,528

ε′ =
1

2
rε2 + ε

√
2r log(1/δ) .

by advanced composition [14].529
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A.1 Simulation-based privacy analysis530

Privacy analysis of an algorithm A via simulations is performed by simulating the original algorithm531

A on two neighboring datasets D0, D1. The simulator does not know which of the datasets is the532

actual input (but knows everything about the datasets). Another entity called the "data holder" has the533

1-bit information b ∈ {0, 1} on which dataset it is. We perform privacy analysis with respect to what534

the holder discloses to the simulator regarding the private bit b (taking the maximum over all choices535

of D0,D1). The privacy analysis is worst case over the choices of two neighboring datasets. This is536

equivalent to performing privacy analysis for A.537

Lemma A.5 (Simulation-based privacy analysis). [8] LetA be an algorithm whose input is a dataset.538

If there exist a pair of interactive algorithms S and H satisfying the following 2 properties, then539

algorithm A is (ε, δ)-DP.540

1. For every two neighboring datasets D0, D1 and for every bit b ∈ {0, 1} it holds that(
S(D0, D1)↔ H(D0, D1, b)

)
≡ A(Db).

Here
(
S(D0, D1)↔ H(D0, D1, b)

)
denotes the outcome of S after interacting with H .541

2. Algorithm H is (ε, δ)-DP w.r.t. the input bit b.542

A.2 Privacy Analysis with Failure Events543

Privacy analysis of a randomized algorithm A using designated failure events is as follows:544

1. Designate some runs of the algorithm as failure events.545

2. Compute an upper bound on the maximum probability, over datasets D, of a transcript with546

a failure designation.547

3. Analyse the privacy of the interaction transcript conditioned on no failure designation.548

Note that the failure designation is only used for the purpose of analysis. The output on failure runs549

is not restricted (e.g., could be the dataset D)550

Lemma A.6 (Privacy analysis with privacy failure events). Consider privacy analysis of A with551

failure events. If the probability of a failure event is bounded by δ∗ ∈ [0, 1] and the transcript552

conditioned on non-failure is (ε′, δ′)-DP then the algorithm A is (ε, δ + δ∗)-DP.553

Proof. Let D0 and D1 be neighboring datasets. From our assumptions, for b ∈ {0, 1}, we can554

representA(Db) as the mixtureA(Db) ≡ (1− δb) ·Zb+ δb ·Fb, where Z0 ≈ε′,δ′ Z
1, and δ(b) ≤ δ∗.555

From Lemma A.1, we have Zb ≡ (1− δ′) ·Nb + δ′ ·Eb, where N0 ≈ε′ N
1.556

Then557

A(Db) = (1− δ(b)) · Zb + δ(b) · F(b)

= (1− δ∗) · Zb + (δ∗ − δ(b)) · Zb + δ(b) · Fb

= (1− δ∗) · Zb + δ∗ ·
(
(1− δ(b)/δ∗) · Zb + δ(b) · Fb

)
= (1− δ∗)(1− δ′) ·Nb + (1− δ∗)δ′ ·Eb + δ∗ ·

(
(1− δ(b)/δ∗) · Zb + δ(b) · Fb

)
= (1− δ∗ − δ′) ·Nb + δ′δ∗ ·N+ (1− δ∗)δ′ ·Eb + δ∗ ·

(
(1− δ(b)/δ∗) · Zb + δ(b) · Fb

)
The claim follows from Corollary A.3.558

Using simulation-based privacy analysis we can treat an interactive sequence of approximate-DP559

algorithms (optionally with designated failure events) as a respective interactive sequence of pure-DP560

algorithms where the δ parameters are anlaysed through failure events. This simplifies analysis:561

We can relate the privacy of a composition of approximate-DP algorithms to that of a composition of562

corresponding pure-DP algorithms:563
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Corollary A.7 (Composition of approximate-DP algorithms). An interactive sequence of (εi, δi)-DP564

algorithms (i ∈ [k]) has privacy parameter values (ε′, δ′ +
∑k

i=1 δi), where (ε′, δ′) are privacy565

parameter values of a composition of pure (εi, 0)-DP algorithms i ∈ [k].566

Proof. We perform simulation-based analysis. Fix two neighboring datasets D0, D1. For an (εi, δi)-567

DP algorithm, we can consider the mixtures as in Corollary A.3. We draw c ∼ Ber(δi) and if c = 1568

designate the output as failure and return r ∼ E(b). Otherwise, we return r ∼ N(b). The overall569

failure probability is bounded by 1−
∏

i(1− δi) ≤
∑

i δi. The output conditioned on non-failure is570

a composition of (εi, 0)-DP algorithms (i ∈ [k]). The claim follows using Lemma A.6.571

B The Target-Charging Technique572

We extend the definition of q-targets (Definition 2.1) so that it applies with approximate DP algorithms:573

Definition B.1 (q-target with (ε, δ) of a pair of distributions). LetA → Y be a randomized algorithm.574

Let Z0 and Z1 be two distributions with support Y . We say that ⊤ ⊆ Y is a q-target of (Z0,Z1) with575

(ε, δ), where ε > 0 and δ ∈ [0, 1), if there exist p ∈ [0, 1] and five distributions C, Bb, and Eb (for576

b ∈ {0, 1}) such that Z0 and Z1 can be written as the mixtures577

Z0 ≡ (1− δ) · (p ·C+ (1− p) ·B0) + δ ·E0

Z1 ≡ (1− δ) · (p ·C+ (1− p) ·B1) + δ ·E1

where B0 ≈ε B
1, and min(Pr[B0 ∈ ⊤],Pr[B1 ∈ ⊤]) ≥ q.578

Definition B.2 (q-target with (ε, δ) of a randomized algorithm). Let A → Y be a randomized579

algorithm. We say that ⊤ ⊆ Y is a q-target of A with (ε, δ), where ε > 0 and δ ∈ [0, 1), if for any580

pair D0, D1 of neighboring datasets, ⊤ is a q-target with (ε, δ) of A(D0) and A(D1).581

We can relate privacy of an algorithms or indistinguishability of two distributions to existence of582

q-targets:583

Lemma B.3. (i) If (Z0,Z1) have a q-target with (ε, δ) then Z0 ≈ε,δ Z1. Conversely, if Z0 ≈ε,δ Z1584

then (Z0,Z1) have a 1-target with (ε, δ) (the full support is a 1-target).585

(ii) If an algorithm A has a q-target with (ε, δ) then A is (ε, δ)-DP. Conversely, if an algorithm A is586

(ε, δ)-DP then it has a 1-target (the set Y) with (ε, δ).587

Proof. If two distributions B0, B1 have a q-target with (ε, δ) than from Definition B.1 they can be588

represented as mixtures. Now observe the if B0 ≈ε B
1 then the mixtures also satisfy p ·C+ (1−589

p) ·B0 ≈ε p ·C+ (1− p) ·B0. Using Lemma A.1, we get Z0 ≈ε,δ Z1.590

For (ii) consider A and two neighboring datasets D0 and D1. Using Definition B.2 and applying the591

argument above we obtain A(D0) ≈ε,δ A(D1). The claim follows using Corollary A.3.592

Now for the converse. If Z0 ≈ε,δ Z1 then consider the decomposition as in Lemma A.1. Now we set593

p = 0 and Bb ← Nb to obtain the claim with q = 1 and the target being the full support.594

For (ii), if A → Y is (ε, δ)-DP then consider neighboring {D0, D1}. We have A(D0) ≈ε,δ A(D1).595

We proceed as with the distributions.596

Algorithm 6 is an extension of Algorithm 1 that permits calls to approximate DP algorithms. The597

extension also inputs a bound τ on the number of target hits and a bound τδ on the cummulative δ598

parameter values of the algorithms that were called. We apply adaptively a sequence of (ε, δ)-DP599

algorithms with specified q-targets to the input data set D and publish the results. We halt when the600

first of the following happens (1) the respective target sets are hit for a specified τ number of times601

(2) the accumulated δ-values exceed the specified limit τδ .602

The privacy cost of Target-Charging is as follows (This is a precise and more general statement of603

Lemma 2.2):604
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Algorithm 6: Target Charging with Approximate DP
Input: Dataset D = {x1, . . . , xn} ∈ Xn. Integer τ ≥ 1 (Upper limit on the number of target hits).

τδ ≥ 0 (upper limit on cumulative δ parameter). Fraction q ∈ [0, 1].
C ← 0, Cδ ← 0 // Initialize target hit and failure counters
for i = 1, . . . do // Main loop

Receive (Ai,⊤i) where Ai is an (ε, δi)-DP mechanism, and ⊤i is a q-target with (ε, δi) for A
r ← Ai(D)
if Cδ + δi > τδ then Halt
Cδ ← Cδ + δ // TCT charge for δi

Publish r
if r ∈ ⊤ then // TCT Charge for a q-target hit with ε

C ← C + 1
if C = τ then Halt

Algorithm 7: Simulation of Target Charging
Input: Two neighboring datasets D0, D1, private b ∈ {0, 1}, τ ∈ N, τδ ∈ R≥0, q ∈ [0, 1], α > 0.
C ← 0, Cδ ← 0, h← 0 // Initialize; h is a counter on the number of non-fail calls to data holder
for i = 1, . . . do // Main loop

Receive (Ai,⊤i) where Ai is an (ε, δi)-DP mechanism, and ⊤i is a q-target with (ε, δi) for A
if Cδ + δi > τδ then Halt
Cδ ← Cδ + δ

Let p ∈ [0, 1], C, B0 ≈ε B1, and Eb (for b ∈ {0, 1}) such that
A(Db) ≡ (1− δ) · (p ·C+ (1− p) ·Bb) + δ ·Eb // By Definition B.2

if Ber(δ) ≡ 1 then // Non-private Data Holder call with Failure
Fail
Publish r ∼ Eb

else
if Ber(p) ≡ 1 then

Publish r ∼ C // No access to data holder
else

Publish r ∼ Bb // ε-DP Data Holder Call
h← h+ 1 // counter of ε-private data holder calls
if h > (1 + α)τ/q then // Number of Holder calls exceeded limit

Fail
if r ∈ ⊤ then // outcome is a target hit

C ← C + 1
if C = τ then Halt

Theorem B.4 (Privacy of Target-Charging). Algorithm 6 satisfies the following approximate DP605

privacy bounds:606 (
(1 + α)

τ

q
ε, Cδ + δ∗(τ, α)

)
, for any α > 0;(

1

2
(1 + α)

τ

q
ε2 + ε

√
(1 + α)

τ

q
log(1/δ), δ + Cδ + δ∗(τ, α)

)
, for any δ > 0, α > 0.

where δ∗(τ, α) ≤ e−
α2

2(1+α)
τ and Cδ ≤ τδ is as computed by the algorithm.607

Proof. We apply the simulation-based privacy analysis in Lemma A.5 and use privacy analysis with608

failure events (Lemma A.6).609

The simulation is described in Algorithm 7. Fix two neighboring data sets D0 and D1. The simulator610

initializes the target hit counter C ← 0 and the cumulative δ-values tracker Cδ ← 0. For i ≥ 1 it611

proceeds as follows. It receives (Ai,⊤i) where Ai is (ε, δi)-DP. If Cδ + δi > τδ it halts. Since ⊤i612

is a q-target for Ai, there are p, C, B0, B1, E0 and E1 as in Definition B.2. The simulator flips a613

biased coin c′ ∼ Ber(δ). If c′ = 1 it outputs r ∼ Eb and the execution is designated as Fail. In614
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this case there is an interaction with the data holder but also a failure designation. The simulator615

flips a biased coin c ∼ Ber(p). If c = 1, then the simulator publishes a sample r ∼ C (this does not616

require an interaction with the data holder). Otherwise, the data holder is called. The data holder617

publishes r ∼ Bb. We track the number h of calls to the data holder. If h exceeds (1 + α)τ/q, we618

designate the execution as Fail. If r ∈ ⊤i then C is incremented. If C = τ , the algorithm halts.619

The correctness of the simulation (faithfully simulating Algorithm 1 on the dataset Db) is straightfor-620

ward. We analyse the privacy cost. We will show that621

(i) the simulation designated a failure with probability at most Cδ + δ∗(τ, α).622

(ii) Conditioned on no failure designation, the simulation performed at most r = (1 + α) τq623

adaptive calls to (ε, 0)-DP algorithms624

Observe that (ii) is immediate from the simulation declaring failure when h > r. We will establish (i)625

below.626

The statement of the Theorem follows from Lemma A.6 and when applying the DP composition627

bounds (Lemma A.4). The first bounds follow using basic composition and the second follow using628

advanced composition [14].629

This analysis yields the claimed privacy bounds with respect to the private bit b. From Lemma A.5630

this is the privacy cost of the algorithm.631

It remains to show bound the failure probability. There are two ways in which a failure can occur.632

The first is on each call, with probability δi. This probability is bounded by 1−
∏

i δi ≤
∑

i δi ≤ Cδ .633

The second is when the number h of private accesses to the data holder exceeds the limit. We show634

that the probability that the algorithm halts with failure due to that is at most δ∗.635

We consider a process that continues until τ charges are made. The privacy cost of the simulation636

(with respect to the private bit b) depends on the number of times that the data holder is called. Let X637

be the random variable that is the number of calls to the data holder. Each call is ε-DP with respect to638

the private b. In each call, there is probability at least q for a “charge” (increment of C).639

A failure is the event that the number of calls to data holder exceeds (1 + α)τ/q before τ charges are640

made. We show that this occurs with probability at most δ∗(τ, α):641

Pr

[
X > (1 + α)

τ

q

]
≤ δ∗(τ, α) . (1)

To establish (1), we first observe that the distribution of the random variable X is dominated by a642

random variable X ′ that corresponds to a process of drawing i.i.d. Ber(q) until we get τ successes643

(Domination means that for all m, Pr[X ′ > m] ≥ Pr[X > m]). Therefore, it suffices to establish644

that645

Pr

[
X ′ > (1 + α)

τ

q

]
≤ δ∗(τ, α) .

Let Y be the random variable that is a sum of m = 1 +
⌊
(1 + α) τq

⌋
i.i.d. Ber(q) random variables.646

Note that647

Pr

[
X ′ > (1 + α)

τ

q

]
= Pr[Y < τ ] .

We bound Pr[Y < τ ] using multiplicative Chernoff bounds [4]1. The expectation is µ = mq and648

we bound the probability that the sum of Bernoulli random variables is below 1
1+αµ = (1− α

1+α )µ.649

Using the simpler form of the bounds we get using µ = mq ≥ (1 + α)τ650

Pr[Y < τ ] = Pr[Y < (1− α

1 + α
)µ] ≤ e

− α2

2(1+α)2
µ ≤ e−

α2

2(1+α)
τ .

651

1Bound can be tightened when using precise tail probability values.

17



Remark B.5 (Number of target hits). The TCT privacy analysis has a tradeoff between the final652

“ε” and “δ” privacy parameters. There is multiplicative factor of (1 + α) (
√
1 + α with advanced653

composition) on the “ε” privacy parameter. But when we use a smaller α we need a larger value of654

τ to keep the “δ” privacy parameter small. For a given α, δ∗ > 0, we can calculate a bound on the655

smallest value of τ that works. We get656

τ ≥ 2
1 + α

α2
· ln(1/δ∗) (simplified Chernoff)

τ ≥ 1

(1 + α) ln
(
eα/(1+α)(1 + α)−1/(1+α)

) · ln(1/δ∗) (raw Chernoff)

For α = 0.5 we get τ > 10.6 · ln(1/δ∗). For α = 1 we get τ > 3.26 · ln(1/δ∗). For α = 5 we get657

τ > 0.31 · ln(1/δ∗).658

Remark B.6 (Mix-and-match TCT). TCT analysis can be extended to the case where we use659

algorithms with varied privacy guarantees εi and varied qi values.2 In this case the privacy cost660

depends on
∑

i|Ai(D)∈⊤i

εi
qi

. The analysis relies on tail bounds on the sum of random variables, is661

more complex. Varied ε values means the random variables have different size supports. A simple662

coarse bound is according to the largest support, which allows us to use a simple counter for target663

hits, but may be lossy with respect to precise bounds. The discussion concerns the (analytical or664

numerical) derivation of tail bounds is non-specific to TCT and is tangential to our contribution.665

B.1 Multi-Target TCT666

Multi-target charging is described in Algorithm 8. We show the following667

Lemma B.7 (Privacy of multi-TCT). Algorithm 8 satisfies (ε′, kδ′)-approximate DP bounds, where668

(ε′, δ′) are privacy bounds for single-target charging (Algorithm 1).669

Specifically, when we expect that one (index) of multiple outcomes ⊥1, . . . ,⊥k will dominate our670

interaction but can not specify which one it is in advance, we can use k-TCT with NotPrior targets671

with priors ⊥1, . . . ,⊥k. From Lemma B.7, the overall privacy cost depends on the number of times672

that the reported output is different than the most dominant outcome. More specifically, for private673

testing, when we expect that one type of outcome would dominate the sequence but we do not know674

if it is 0 or 1, we can apply 2-TCT. The total number of target hits corresponds to the less dominant675

outcome. The total number of privacy charges (on average) is at most (approximately for small ε)676

double that, and therefore is always comparable or better to composition (can be vastly lower when677

there is a dominant outcome).678

Algorithm 8: Multi-Target Charging
Input: Dataset D = {x1, . . . , xn} ∈ Xn. Integer τ ≥ 1 (charging limit). Fraction q ∈ [0, 1],

k ≥ 1 (number of targets).
for i ∈ [k] do Ci ← 0 // Initialize charge counters

while mini∈[k] Ci < τ do // Main loop

Receive (A, (⊤i)i∈[k]) where A is an ε-DP mechanism, and ⊤i is a q-target for A
r ← A(D)
Publish r
for i ∈ [k] do

if r ∈ ⊤i then Ci ← Ci + 1 // outcome is in q-target ⊤i

679

Proof of Lemma B.7 (Privacy of multi-Target TCT). 3Let (ε, δ) be the privacy bounds forMi that is680

single-target TCT with (Ai,⊤i). LetM be the k-target algorithm. Let ⊤j
i be the ith target in step j.681

2One of our applications of revise calls to conditional release (see Section D applies TCT with both ε-DP
and 2ε-DP algorithms even for base ε-DP algorithm)

3We note that the claim generally holds for online privacy analysis with the best of multiple methods. We
provide a proof specific to multi-target charging below.
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We say that an outcome sequence R = (rj)
h
j=1 ∈ R is valid for i ∈ [k] if and only ifMi would halt682

with this output sequence, that is,
∑h

j=1 1{rj ∈ ⊤
j
i} = τ and rh ∈ ⊤h

i . We define G(R) ⊂ [k] to be683

all i ∈ [k] for which R is valid.684

Consider a set of sequences H . Partition H into k + 1 sets Hi so that H0 = {R ∈ H | G(R) = ∅}685

and Hi may only include R ∈ H for which i ∈ G(R). That is, H0 contains all sequences that are not686

valid for any i and Hi may contain only sequences that are valid for i.687

Pr[M(D) ∈ H] =

k∑
i=1

Pr[M(D) ∈ Hi] =

k∑
i=1

Pr[Mi(D) ∈ Hi]

≤
k∑

i=1

(
eε · Pr[Mi(D

′) ∈ Hi] + δ
)
= eε ·

k∑
i=1

Pr[Mi(D
′) ∈ Hi] + k · δ

= eε Pr[M(D′) ∈ H] + k · δ.

688

C Properties of NotPrior targets689

Recall that a NotPrior target of an (ε, δ)-DP algorithm is specified by any potential outcome (of690

our choice) that we denote by ⊥. The NotPrior target is the set of all outcomes except ⊥. In this691

Section we prove (a more general statement of) Lemma 2.3:692

Lemma C.1 (Property of a NotPrior target). Let M : X → Y ∪ {⊥}, where ⊥ ̸∈ Y , be an693

(ε, δ)-DP algorithm. Then the set of outcomes Y constitutes an 1
eε+1 -target with (ε, δ) forM.694

We will use the following lemma:695

Lemma C.2. If two distributions Z0, Z1 with support Y ∪ {⊥} satisfy Z0 ≈ε Z
1 then Y constitutes696

an 1
eε+1 -target with (ε, 0) for (Z0,Z1).697

Proof of Lemma 2.3. From Definition B.2, it suffices to show that for any two neighboring datasets,698

D0 and D1, the set Y is an 1
eε+1 -target with (ε, δ) for (M(D0),M(D1)) (as in Definition B.1).699

Consider two neighboring datasets. We have M(D0) ≈ε,δ M(D1). Using Lemma A.1, for700

b ∈ {0, 1} we can have701

M(Db) = (1− δ) ·Nb + δ ·Eb, (2)

where N0 ≈ε N1. From Lemma C.2, Y is a 1
eε+1 -target with (ε, 0) for (N0,N1). From Defini-702

tion B.1 and (2), this means that Y is a 1
eε+1 -target with (ε, δ) for (M(D0),M(D1)).703

C.1 Proof of Lemma C.2704

We first prove Lemma C.2 for the special case of private testing (when the support is {0, 1}):705

Lemma C.3 (target for private testing). Let Z0 and Z1 with support {0, 1} satisfy Z0 ≈ε Z
1 Then706

⊤ = {1} (or ⊤ = {0}) is an 1
eε+1 -target with (ε, 0) for (Z0,Z1).707

Proof. We show that Definition B.1 is satisfied with ⊤ = {1}, q = 1
eε+1 and (ε, 0), and Z0,Z1.708

π = Pr[Z0 ∈ ⊤]
π′ = Pr[Z1 ∈ ⊤]

be the probabilities of ⊤ outcome in Z0 and Z1 respectively. Assume without loss of generality709

(otherwise we switch the roles of Z0 and Z1) that π′ ≥ π. If π ≥ 1
eε+1 , the choice of p = 0 and710

Bb = Zb (and any C) trivially satisfies the conditions of Definition 2.1. Generally, (also for all711

π < 1
eε+1 ):712
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• Let713

p = 1− π′eε − π

eε − 1
.

Note that since Z0 ≈ε Z1 it follows that π′ ≈ε π and (1 − π′) ≈ε (1 − π) and therefore714

p ∈ [0, 1] for any applicable 0 ≤ π ≤ π′ ≤ 1.715

• Let C be the distribution with point mass on ⊥ = {0}.716

• Let B0 = Ber(1− π′−π
π′−e−επ ) = Ber( π−πe−ε

π′−e−επ )717

• Let B1 = Ber(1− π′−π
eεπ′−π ) = Ber( e

επ′−π′

eεπ′−π )718

We show that this choice satisfies Definition 2.1 with q = 1
eε+1 .719

• We show that for both b ∈ {0, 1}. Zb ≡ p ·C+ (1− p) ·Bb: It suffices to show that the720

probability of ⊥ is the same for the distributions on both sides. For b = 0, the probability of721

⊥ in the right hand side distribution is722

p+ (1− p) · π′ − π

π′ − e−επ
= 1− π′eε − π

eε − 1
+

π′eε − π

eε − 1
· π′ − π

π′ − e−επ
= 1− π .

For b = 1, the probability is723

p+ (1− p) · π′ − π

eεπ′ − π
= 1− π′eε − π

eε − 1
+

π′eε − π

eε − 1
· π′ − π

eεπ′ − π

= 1− π′eε − π

eε − 1

(
1− π′ − π

eεπ′ − π

)
= 1− π′eε − π

eε − 1
· e

επ′ − π − π′ + π

eεπ′ − π
= 1− π′ .

• We show that for b ∈ {0, 1}, Pr[Bb ∈ ⊤] ≥ 1
eε+1 .724

Pr[B0 ∈ ⊤] = π − e−επ

π′ − e−επ

≥ π − e−επ

eεπ − e−επ
=

eε − 1

e2ε − 1
=

1

eε + 1
.

Pr[B1 ∈ ⊤] = π′(eε − 1)

π′eε − π

≥ π(eε − 1)

πe2ε − π
=

eε − 1

e2ε − 1
=

1

eε + 1

Note that the inequalities are tight when π′ = π (and are tighter when π′ is closer to π).725

This means that our selected q is the largest possible that satisfies the conditions for the726

target being ⊤.727

• We show that B0 and B1 are ε-indistinguishable, that is728

Ber(1− π′ − π

π′ − e−επ
) ≈ε Ber(1− π′ − π

eεπ′ − π
).

Recall that Ber(a) ≈ε Ber(b) if and only if a ≈ε b and (1− a) ≈ε (1− b). First note that729

e−ε · π′ − π

π′ − e−επ
=

π′ − π

eεπ′ − π

Hence730
π′ − π

π′ − e−επ
≈ε

π′ − π

eεπ′ − π
.

It also holds that731

1 ≤
π−e−επ
π′−e−επ

π′(1−e−ε)
π′−e−επ

=
π′

π
≤ eε.
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732

Proof of Lemma C.2. The proof is very similar to that of Lemma C.3, with a few additional details733

since ⊤ = Y can have more than one element (recall that ⊥ is a single element).734

Assume (otherwise we switch roles) that Pr[Z0 = ⊥] ≥ Pr[Z1 = ⊥]. Let735

π = Pr[Z0 ∈ Y]
π′ = Pr[Z1 ∈ Y] .

Note that π′ ≥ π.736

We choose p, C, B0, B1 as follows. Note that when π ≥ 1
eε+1 , then the choice of p = 0 and737

Bb = Zb satisfies the conditions. Generally,738

• Let739

p = 1− π′eε − π

eε − 1
.

• Let C be the distribution with point mass on ⊥.740

• Let B0 be ⊥ with probability π′−π
π′−e−επ and otherwise (with probability π−πe−ε

π′−e−επ ) be Z0741

conditioned on the outcome being in Y .742

• Let B1 be ⊥ with probability π′−π
eεπ′−π and otherwise (with probability eεπ′−π′

eεπ′−π ) be Z1743

conditioned on the outcome being in Y .744

It remains to show that these choices satisfy Definition 2.1:745

The argument for Pr[Bb ∈ Y] ≥ eε−1
e2ε−1 is identical to Lemma C.3 (with Y = ⊤).746

We next verify that for b ∈ {0, 1}: Zb ≡ p ·C+ (1− p) ·Bb. The argument for the probability of ⊥747

is identical to Lemma C.3. The argument for y ∈ Y follows from the probability of being in Y being748

the same and that proportions are maintained.749

For b = 0, the probability of y ∈ Y in the right hand side distribution is750

(1− p) · π − πe−ε

π′ − e−επ
· Pr[Z

0 = y]

Pr[Z0 ∈ Y]
= π · Pr[Z

0 = y]

Pr[Z0 ∈ Y]
= Pr[Z0 = y].

For b = 1, the probability of y ∈ Y in the right hand side distribution is751

(1− p) · e
επ′ − π′

eεπ′ − π
· Pr[Z

1 = y]

Pr[Z1 ∈ Y]
= π′ · Pr[Z

1 = y]

Pr[Z1 ∈ Y]
= Pr[Z1 = y].

Finally, we verify that B0 and B1 are ε-indistinguishable. Let W ⊂ Y . We have752

Pr[B0 ∈W ] =
π(1− e−ε)

π′ − e−επ
· Pr[Z

0 ∈W ]

π
=

eε − 1

π′eε − π
Pr[Z0 ∈W ]

Pr[B1 ∈W ] =
π′(eε − 1)

eεπ′ − π
· Pr[Z

1 ∈W ]

π′ =
eε − 1

π′eε − π
Pr[Z1 ∈W ] .

Therefore753

Pr[B0 ∈W ]

Pr[B1 ∈W ]
=

Pr[Z0 ∈W ]

Pr[Z1 ∈W ]

and we use Z0 ≈ε Z
1. The case of W = ⊥ is identical to the proof of Lemma C.3. The case ⊥ ∈W754

follows.755
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D Conditional Release with Revisions756

In this section we analyze an extension to conditional release that allows for revision calls to be made757

with respect to previous computations. This extension was presented in Section 2.3 and described in758

Algorithm 2. A conditional release applies a private algorithm A → Y with respect to a subset of759

outcomes ⊤ ⊂ Y . It draws y ∼ A(D) and returns y if y ∈ ⊤ and ⊥ otherwise. Each revise calls760

effectively expands the target to ⊤h ∪ ⊤′, when ⊤h is the prior target and ⊤′ a disjoint extension.761

If the (previously) computed result hits the expanded target (y ∈ ⊤′), the value y is reported and762

charged. Otherwise, additional revise calls can be performed. The revise calls can be interleaved with763

other TCT computations at any point in the interaction.764

D.1 Preliminaries765

For a distribution Z with support Y and W ⊂ Y we denote by ZW the distribution with support766

W ∪ {⊥} where outcomes not in W are “replaced” by ⊥. That is, for y ∈ W , Pr[ZW = y] :=767

Pr[Z = y] and Pr[ZW = ⊥] := Pr[Z ̸∈W ].768

For a distribution Z with support Y and W ⊂ Y we denote by Z |W the conditional distribution of769

Z on W . That is, for y ∈W , Pr[(Z |W ) = y] := Pr[Z = y]/Pr[Z ∈W ].770

Lemma D.1. If B0 ≈ε,δ B1 then B0
W ≈ε,δ B1

W .771

Lemma D.2. Let B0, B1 be probability distributions with support Y such that B0 ≈ε B1. Let772

W ⊂ Y . Then B0 |W ≈2ε B
1 |W .773

We extend these definitions to a randomized algorithm A, where AW (D) has distribution A(D)W774

and (A | W )(D) has distribution A(D) | W . The claims in Lemma D.1 and Lemma D.2 then775

transfer to privacy of the algorithms.776

D.2 Analysis777

To establish correctness, it remains to show that each ConditionalRelease call with an (ε, δ)-DP778

algorithm A can be casted in TCT as a call to an (ε, δ)-DP algorithm with a NotPrior target and779

each ReviseCR call cap be casted as a call to an 2ε-DP algorithm with a NotPrior target.780

Proof of Lemma 2.5. The claim for ConditionalRelease was established in Lemma 2.4: Condi-781

tional release ConditionalRelease (A,⊤) calls the algorithmA⊤ with target⊤. From Lemma D.1,782

A⊤ is (ε, δ)-DP when A is (ε, δ)-DP. ⊤ constitutes a NotPrior target for A⊤ with respect to prior783

⊥.784

We next consider revision calls as described in Algorithm 2. We first consider the case of a pure-DP785

A (δ = 0).786

When ConditionalRelease publishes ⊥, the internally stored value rh conditioned on published787

⊥ is a sample from the conditional distribution A(D) | ¬⊤.788

We will show by induction that this remains true after ReviseCR calls, that is the distribution of789

rh conditioned on ⊥ being returned in all previous calls is A(D) | ¬⊤h where ⊤h is the current790

expanded target.791

An ReviseCR call with respect to current target ⊤h and extension ⊤′ can be equivalently framed792

as drawing r ∼ A(D) | ¬⊤h. From Lemma D.2, if A is ε-DP then A | ¬⊤h is 2ε-DP. If r ∈ ⊤′793

we publish it and otherwise we publish ⊥. This is a conditional release computation with respect794

to the 2ε-DP algorithm A | ¬⊤h and the target ⊤′. Equivalently, it is a call to the 2ε-DP algorithm795

(A | ¬⊤h)⊤′ with a NotPrior target ⊤′.796

Following the ReviseCR call, the conditional distribution of rh conditioned on ⊥ returned in the797

previous calls is A(D) | ¬(⊤h ∪ ⊤′) as claimed. We then update ⊤h ← ⊤h ∪ ⊤′.798

It remains to handle the case δ > 0. We consider ReviseCR calls for the case where A is (ε, δ)-DP799

(approximate DP). In this case, we want to show that we charge for the δ value once, only on800

the original ConditionalRelease call. We apply the simulation-based analysis in the proof of801

Theorem B.4 with two fixed neighboring datasets. Note that this can be viewed as each call being802

with a pair of distributions with an appropriate q-target (that in our case is always a NotPrior target).803
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The first ConditionalRelease call uses the distributions A(D0) and A(D1). From Lemma A.1804

they can be expressed as respective mixtures of pure N0 ≈ε N1 part (with probability 1− δ) and805

non-private parts. The non-private draw is designated failure with probability δ. Effectively, the call806

in the simulation is then applied to the pair (N0
⊤,N

1
⊤) with target ⊤.807

A followup ReviseCR call is with respect to the previous target ⊤h and target extension ⊤′. The808

call is with the distributions (Nb | ¬⊤h)⊤′ that using Lemma D.1 and Lemma D.2 satisfy (N0 |809

¬⊤h)⊤′ ≈2ε (N
1 | ¬⊤h)⊤′ .810

E Boundary Wrapper Analysis811

In this section we provide details for the boundary wrapper method including proofs of Lemma 2.7812

and Lemma 2.8. For instructive reasons, we first consider the special case of private testing and then813

outline the extensions to private classification.814

Algorithm 4 when specialized for tests first computes π(D) = min{Pr[A(D) = 0], 1− Pr[A(D) =815

0]}, returns ⊤ with probability π/(1 + π) and otherwise (with probability 1/(1 + π)) return A(D).816

Overall, we return the less likely outcome with probability π/(1 + π), and the more likely one with817

probability (1− π)/(1 + π).818

Lemma E.1 (Privacy of wrapped test). If the test is ε-DP then the wrapper test is t(ε)-DP where819

t(ε) ≤ 4
3ε.820

Proof. Working directly with the definitions, t(ε) is the maximum of821

max
π∈(0,1/2)

∣∣∣∣ln(1− e−επ

1 + e−επ
· 1 + π

1− π

)∣∣∣∣ ≤ 4

3
ε (3)

max
π∈(0,1/2)

∣∣∣∣ln( e−επ

1 + e−επ
· 1 + π

π

)∣∣∣∣ ≤ ε (4)

max
π∈( e−ε

2 , 1
1+eε )

∣∣∣∣ln( π

1 + π
· 2− eεπ

eεπ

)∣∣∣∣ ≤ ε (5)

max
π∈( e−ε

2 , 1
1+eε )

∣∣∣∣ln(1− π

1 + π
· 2− eεπ

1− eεπ

)∣∣∣∣ ≤ 4

3
ε (6)

max
π∈( e−ε

2 , 1
1+eε )

∣∣∣∣ln( π

1 + π
· 2− eεπ

1− eεπ

)∣∣∣∣ ≤ ε (7)

Inequality (3) bounds the ratio change in the probably of the larger probability outcome when it822

remains the same and (4) the ratio change in the probability of the smaller probability outcome when823

it remains the same between the neighboring datasets. When the less probable outcome changes824

between the neighboring datasets it suffices to consider the case where the probability of the initially825

less likely outcome changes to eεπ > 1/2 so that eεπ < 1− π, that is the change is from π to eεπ826

where π ∈ ( e
−ε

2 , 1
1+eε ). Inequalities 5 and 6 correspond to this case. The wrapped probabilities of827

the ⊤ outcome are the same as the less probably outcome in the case that it is the same in the two828

databases. Inequality 7 corresponds to the case when there is change.829

We now show that ⊤ is a target for the wrapped test.830

Lemma E.2 (q-value of the boundary target). The outcome ⊤ of a boundary wrapper of an ε-DP test831

is a et(ε)−1
2(eε+t(ε)−1)

-target.832

Proof. Consider two neighboring datasets where the same outcome is less likely for both and π ≤ π′.833

Suppose without loss of generality that 0 is the less likely outcome.834

The common distribution (C) has point mass on 1.835

The distribution B0 is a scaled part of M(D0) that includes all 0 and ⊤ outcomes (probability836

π/(1 + π) each) and probability of ∆ et(ε)

et(ε)−1
of the 1 outcomes, where ∆ = 2π′

1+π′ − 2π
1+π .837
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The distribution B1 is a scaled part of M(D1) that includes all 0 and ⊤ outcomes (probability838

π′/(1 + π′) each) and probability of ∆ 1
et(ε)−1

of the 1 outcomes.839

It is easy to verify that B0 ≈t(ε) B
1 and that840

1− p =
2π′

1 + π′ +∆
1

et(ε) − 1
=

2π

1 + π
+∆

et(ε)

et(ε) − 1

=
2π′

1 + π′
et(ε)

et(ε) − 1
− 2π

1 + π

1

et(ε) − 1

=
2

et(ε) − 1
(et(ε)

π′

1 + π′ −
π

1 + π
)

Using π
1+π ≤

π′

1+π′ and
π′

1+π′
π

1+π
≤ eε we obtain841

q ≥
π

1+π

1− p

=
et(ε) − 1

2

(
1

et(ε) · π′

1+π′ · 1+π
π − 1

)

≥ et(ε) − 1

2

1

et(ε)+ε − 1
.

842

Extension to Private Classification To extension from Lemma E.1 to Lemma 2.7 follows by843

noting that the same arguments also hold respectively for sets of outcomes and also cover the case844

when there is no dominant outcome and when there is a transition between neighboring datasets from845

no dominant outcome to a dominant outcome. The extension from Lemma E.1 to Lemma 2.7 is846

also straightforward by also noting the cases above (that only make the respective ∆ smaller), and847

allowing C to be empty when there is no dominant outcome.848

F Boundary wrapping without a probability oracle849

We present a boundary-wrapping method that does not assume a probability oracle. This method850

accesses the distribution A(D) in a blackbox fashion.851

At a very high level, we show that one can run an (ε, 0)-DP algorithm A twice and observe both852

outcomes. Then, denote by Y the range of the algorithm A. We can show that E = {(y, y′) : y ̸=853

y′} ⊆ Y × Y is an Ω(1)-target of this procedure. That is, if the analyst observes the same outcome854

twice, she learns the outcome “for free”. If the two outcomes are different, the analyst pays O(ε) of855

privacy budget, but she will be able to access both outcomes, which is potentially more informative856

than a single execution of the algorithm.857

Lemma F.1. Suppose A : X ∗ → Y is an (ε, 0)-DP algorithm where |Y| < ∞. Denote by A ◦ A858

the following algorithm: on input D, independently run A twice and publish both outcomes. Define859

E := {(y, y′) : y ̸= y′} ⊆ Y × Y . Then, A ◦ A is a (2ε, 0)-DP algorithm, and E is a f(ε)-target860

for A ◦ A, where861

f(ε) = 1−
√
e2ε/(1 + e2ε).

Proof. A ◦ A is (2ε, 0)-DP by the basic composition theorem. Next, we verify the second claim.862

Identify elements of Y as 1, 2, . . . ,m = |Y|. Let D,D′ be two adjacent data sets. For each i ∈ [m],863

let864

pi = Pr[A(D) = i], p′i = Pr[A(D′) = i].

We define a distribution C. For each i ∈ [m], define qi to be the largest real such that865

p2i − qi ∈ [e−2ε(p′i
2 − qi), e

2ε(p′i
2 − qi)].
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Then, we define C to be a distribution over {(i, i) : i ∈ [m]} where Pr[C = (i, i)] = qi∑
j qj

.866

We can then write (A ◦ A)(D) = α ·C+ (1− α) ·N0 and (A ◦ A)(D′) = α ·C+ (1− α) ·N1,867

where α =
∑

i qi, and N0 and N1 are 2ε-indistinguishable.868

Next, we consider lower-bounding Pr[N0 = (y, y′) : y ̸= y′]. The lower bound of Pr[N0 = (y, y′) :869

y ̸= y′] will follow from the same argument.870

Indeed, we have871

Pr[N0 = (y, y′) : y ̸= y′]

Pr[N0 = (y, y)]
=

∑
i pi(1− pi)∑
i p

2
i − qi

.

We claim that872

p2i − qi ≤ 1− p′i
2
.

The inequality is trivially true if p2i ≤ 1−p′i
2. Otherwise, we can observe that for q := pi

2+p′i
2−1 >873

0, we have pi
2 − q = 1− p′i

2 and p′i
2 − q = 1− pi

2. Since 1− p′i
2 ∈ [e−2ε(1− p2i ), e

2ε(1− p2i )],874

this implies that qi can only be larger than q.875

Since we also trivially have that p2i − qi ≤ pi
2, we conclude that876

Pr[N0 = (y, y′) : y ̸= y′]

Pr[N0 = (y, y)]
≥

∑
i pi(1− pi)∑

i min(p2i , 1− p′i
2)
≥

∑
i pi(1− pi)∑

i min(p2i , e
2ε(1− p2i ))

.

Next, it is straightforward to show that, for every p ∈ [0, 1], one has877

p(1− p)

min(p2, e2ε(1− p2))
= min

(
1− p

p
,

p

e2ε(1 + p)

)
≥

1−
√
e2ε/(1 + e2ε)√

e2ε/(1 + e2ε)
.

Consequently,878

Pr[N0 = (y, y′) : y ̸= y′] =
Pr[N0 = (y, y′) : y ̸= y′]

Pr[N0 = (y, y′) : y ̸= y′] + Pr[N0 = (y, y)]
≥ 1−

√
e2ε/(1 + e2ε),

as desired.879

Remark F.2. For a typical use case where ϵ = 0.1, we have f(ε) ≈ 0.258. Then, by applying880

Theorem B.4, on average we pay ≈ 8ε privacy cost for each target hit. Improving the constant of 8881

is a natural question for future research. We also note that while the overhead is more significant882

compared to the boundary wrapper of Algorithm 4, the output is more informative as it includes two883

independent responses of the core algorithm whereas Algorithm 4 returns one or none (when ⊤ is884

returned). We expect that it is possible to design less-informative boundary wrappers for the case of885

blackbox access (no probability oracle) that have a lower overhead. We leave this as an interestion886

question for followup work.887

G q value for BetweenThresholds888

We provide details for the BetweenThresholds classifier (see Section 2.6). The889

BetweenThresholds classifier is a refinement of AboveThreshold. It is specified by a 1-890

Lipschitz function f , two thresholds tℓ < tr, and a privacy parameter ε. We compute f̃(D) =891

f(D) + Lap(1/ε), where Lap is the Laplace distribution. If f̃(D) < tℓ we return L. If f̃(D) > tr892

we return H. Otherwise, we return ⊤.893

Lemma G.1 (Effectiveness of the “between” target). The ⊤ outcome is an (1− e−(tr−tl)ε) · eε−1
e2ε−1 -894

target for BetweenThresholds.895

Proof. Without loss of generality we assume that tℓ = 0 and tr = t/ε.896

Consider two neighboring data sets D0 and D1 and the respective f(D0) and f(D1). Since f is897

1-Lipschitz, we can assume without loss of generality (otherwise we switch the roles of the two data898
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sets) that f(D0) ≤ f(D1) ≤ f(D0) + 1. Consider the case f(D1) ≤ 0. The case f(D0) ≥ t/ε is899

symmetric and the cases where one or both of f(Db) are in (0, t/ε) make ⊥ a more effective target.900

πb
L := Pr[f(Db) + Lap(1/ε) < tℓ = 0] = 1− 1

2
e−|f(Db)|ε

πb
H := Pr[f(Db) + Lap(1/ε) > tr = t/ε] =

1

2
e−(|f(Db)|ε−t

πb
⊤ := Pr[f(Db) + Lap(1/ε) ∈ (0, t/ε)] =

1

2

(
e−|f(Db)|ε − e−(|f(Db)|ε−t

)
=

1

2
e−|f(Db)|ε(1− e−t)

Note that π0
L ≈ε π

1
L and π1

H ≈ε π
0
H , π0

L ≥ π1
L and π1

H ≥ π0
H901

We set902

p = (π1
L −

1

eε − 1
(π0

L − π1
L)) + (π0

H −
1

eε − 1
(π1

H − π0
H))

and the distribution C to be L with probability (π1
L − 1

eε−1 (π
0
L − π1

L))/p and H otherwise.903

We specify p and the distributions Bb and C as we did for NotPrior (Lemma 2.3) with respect to904

“prior” L. (We can do that and cover also the case where f(D0) > t/ε where the symmetric prior905

would be H because the target does not depend on the values being below or above the threshold).906

The only difference is that our target is smaller, and includes only ⊤ rather than ⊤ and H. Because of907

that, the calculated q value is reduced by a factor of908

πb
⊤

πb
⊤ + πb

H

=
1
2e

−|f(Db)|ε(1− e−t)
1
2e

−|f(Db)|ε = (1− e−t) .

909

H Analysis of SVT with individual privacy charging910

We provide the privacy analysis for SVT with individual privacy charging (see Section 2.8).911

Our improved SVT with individual charging is described in Algorithm 5. We establish the following912

privacy guarantee:913

Theorem H.1 (Privacy of Algorithm 5). Assume ε < 1. Algorithm 5 is (O(
√

τ log(1/δ)ε, 2−Ω(τ) +914

δ)-DP for every δ ∈ (0, 1).915

Proof of Theorem H.1. We apply simulation-based privacy analysis (see Section A.5). Consider two916

neighboring datasets D and D′ = D ∪ {x}. The only queries where potentially f(D) ̸= f(D′) and917

we may need to call the data holder are those with f(x) ̸= 0. Note that for every x′ ∈ D, the counter918

Cx′ is the same during the execution of Algorithm 5 on either D or D′. This is because the update of919

Cx′ depends only on the published results and fi(x
′), both of which are public information. Hence,920

we can think of the processing of Cx′ as a post-processing when we analyze the privacy property921

between D and D′.922

After x is removed, the response on D and D′ is the same, and the data holder does not need to be923

called. Before x is removed from D′, we need to consider the queries such that f(x) ̸= 0 while924

Cx < τ . Note that this is equivalent to a sequence of AboveThreshold tests to linear queries, we925

apply TCT analysis with ConditionalRelease applied with above threshold responses. The claim926

follows from Theorem B.4.927

We also add that Algorithm 5 can be implemented with BetweenThresholds test (see Section 2.6),928

the extension is straightforward with the respective privacy bounds following from Lemma G.1 (q929

value for target hit).930

I Private Selection931

In this section we provide proofs and additional details for private selection in TCT (Sections 2.4932

and 2.4.1). Let A1, . . . ,Am be of m private algorithms that return results with quality scores. The933
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private selection task asks us to select the best algorithm from the m candidates. The one-shot934

selection described in Algorithm 3 (with k = 1) runs each algorithm once and returns the response935

with highest quality.936

It is shown in [21] that if each Ai is (ε, 0)-DP then the one-shot selection algorithm degrades the937

privacy bound to (mε, 0)-DP. However, if we relax the requirement to approximate DP, we can938

show that one-shot selection is (O(log(1/δ)ε), δ)-DP, which is independent of m (the number of939

candidates). Moreover, in light of a lower-bound example by [21], Theorem I.1 is tight up to constant940

factors.941

Formally, our theorem can be stated as942

Theorem I.1. Suppose ε < 1. Let A1, . . . ,Am : Xn → Y × R be a list of (ε, δi)-DP algorithms,943

where the output ofAi consists of a solution y ∈ Y and a score s ∈ R. Denote by Best(A1, . . . ,Am)944

the following algorithm (Algorithm 3 with k = 1): run each A1, . . . ,Am once, get m results945

(y1, s1), . . . , (ym, sm), and output (yi∗ , si∗) where i∗ = argmaxi si.946

Then, for every δ ∈ (0, 1), Best(A1, . . . ,Am) satisfies (ε′, δ′)-DP where ε′ = O(ε log(1/δ)), δ′ =947

δ +
∑

i δi.948

Proof. Discrete scores. We start by considering the case that the output scores from A1, . . . ,Am949

always lie in a finite set X ⊆ R. The case with continuous scores can be analyzed by a discretization950

argument.951

Fix D0, D1 to be a pair of adjacent data sets. We consider the following implementation of the vanilla952

private selection.953

Algorithm 9: Private Selection: A Simulation
Input: Private data set D. The set X defined above.
for i = 1, . . . ,m do

(yi, si)← Ai(D)

for ŝ ∈ X in the decreasing order do
for i = 1, . . . ,m do

if si ≥ ŝ then
return (yi, si)

Assuming the score of Ai(D) always lies in the set X , it is easy to see that Algorithm 9 simulates the954

top-1 one-shot selection algorithm (Algorithm 3 with k = 1) perfectly. Namely, Algorithm 9 first955

runs eachAi(D) once and collects m results. Then, the algorithm searches for the lowest ŝ ∈ X such956

that there is a pair (yi, si) with a score of at least si ≥ ŝ. The algorithm then publishes this score.957

On the other hand, we note that Algorithm 9 can be implemented by the conditional release with958

revisions framework (Algorithm 2). Namely, Algorithm 9 first runs each private algorithm once959

and stores all the outcomes. Then the algorithm gradually extends the target set (namely, when the960

algorithm is searching for the threshold ŝ, the target set is {(y, s) : s ≥ ŝ}), and tries to find an961

outcome in the target. Therefore, it follows from Lemma 2.5 and Theorem B.4 that Algorithm 9 is962

(O(ε log(1/δ)), δ +
∑

i δi)-DP.963

Continuous scores. We then consider the case that the distributions of the scores of964

A1(D), . . . ,AK(D) are continuous over R. We additionally assume that the distribution has no965

“point mass”. This is to say, for every i ∈ [m] and ŝ ∈ R, it holds that966

lim
∆→0

Pr
(yi,si)∼Ai(D)

[ŝ−∆ ≤ s ≤ ŝ+∆] = 0.

This assumption is without loss of generality because we can always add a tiny perturbation to the967

original output score of Ai(D).968

Fix D,D′ as two neighboring data sets. We show that the vanilla selection algorithm preserves969

differential privacy between D and D′.970
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Let η > 0 be an arbitrarily small real number. Set M = 10·m4

η . For each ℓ ∈ [1,M ], let qℓ ∈ R be971

the unique real such that972

Pr
i∼[m],(yi,si)∼Ai(D)

[si ≥ qℓ] =
ℓ

M + 1
.

Similarly we define q′ℓ with respect to Ai(D
′). Let X = {qℓ, q′ℓ}.973

Now, consider running Algorithm 9 with the set X and candidate algorithms A1, . . . ,AK on D or974

D′. Sort elements of X in the increasing order, which we denote as X = {q̂1 ≤ · · · ≤ q̂m}. After975

sampling Ai(D) for each i ∈ [m], Algorithm 9 fails to return the best outcome only if one of the976

following events happens.977

• The best outcome (y∗, s∗) satisfies that s∗ < q̂1.978

• There are two outcomes (yi, si) and (yj , sj) such that si, sj ∈ [q̂ℓ, q̂ℓ+1) for some ℓ ∈ [n].979

If Item 1 happens, Algorithm 9 does not output anything. If Item 2 happens, then it might be possible980

that i < j, si > sj , but Algorithm 9 outputs si.981

It is easy to see that Event 1 happens with probability at most m2

M ≤ η by the construction of982

X . Event 2 happens with probability at most M · m4

M2 ≤ η. Therefore, the output distribution of983

Algorithm 9 differs from the true best outcome by at most O(η) in the statistical distance. Taking the984

limit η → 0 completes the proof.985

Remark I.2. Theorem I.1 shows that there is a factor of log(1/δ) overhead when we run top-1986

one-shot private selection (Algorithm 9) only once. Nevertheless, we observe that if we compose top-1987

one-shot selection with other algorithms under the TCT framework (e.g., compose multiple top-1988

one-shot selections, generalized private testing, or any other applications mentioned in this paper)),989

then on-average we only pay 4ε privacy cost (one NotPrior target hit with a 2ε-DP algorithm) per990

top-1 selection (assuming ε is sufficiently small so that eε ≈ 1). In particular, adaptively performing991

c executions of top-1 selection is (ε′, δ)-DP where ε′ = ε · (4
√

c log(1/δ) + o(
√
c)).992

Liu and Talwar [21] established a lower bound of 2ε on the privacy of a more relaxed top-1 selection993

task. Hence, there is a factor of 2 gap between this lower bound and our privacy analysis. Note that994

for the simpler task of one-shot above threshold score (discussed in Section 2.4.1), where the goal is995

to return a response that is above the threshold if there is one, can be implemented using a single996

target hit on Conditional Release call (without revise) and this matches the lower bound of 2ε. We997

therefore suspect that it might be possible to tighten the privacy analysis of top-1 one-shot selection.998

We leave it as an interesting question for followup work.999

I.1 One-Shot Top-k Selection1000

In this section, we prove our results for top-k selection.1001

We consider the natural one-shot algorithm for top-k selection described in Algorithm 3, which (as1002

mentioned in the introduction) generalizes the results presented in [9, 29], which were tailored for1003

selecting from 1-Lipschitz functions, using the Exponential Mechanism or the Report-Noise-Max1004

paradigm.1005

We prove the following privacy theorem for Algorithm 3.1006

Theorem I.3. Suppose ε < 1. Assume that each Ai is (ε, 0)-DP. Then, for every δ ∈ (0, 1),1007

Algorithm 3 is (ε ·O(
√

k log( 1δ ) + log( 1δ )), δ)-DP.1008

Remark I.4. The constant hidden in the big-Oh depends on ε. For the setting that ε is close to zero so1009

that eε ≈ 1 and δ ≥ 2o(k), the privacy bound is roughly (ε′, δ)-DP where ε′ = ε · (4
√

k log(1/δ) +1010

o(
√
k)).1011

Remark I.5. We can take Ai as the Laplace mechanism applied to a 1-Lipschisz quality function fi1012

(namely, Ai(D) outputs a pair (i, fi(D) + Lap(1/ε)), where i denotes the ID of the i-th candidate,1013

and fi(D) + Lap(1/ε) is the noisy quality score of Candidate i with respect to the data D). In this1014

way, Theoerem I.3 recovers the main result of [29].1015
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Moreover, Theorem I.3 improves over [29] from three aspects: Firstly, Theorem I.3 allows us to1016

report the noisy quality scores of selected candidates for free, while [29] needs to run one additional1017

round of Laplace mechanism to publish the quality scores. Second, our privacy bound has no1018

dependence on m, while the bound in the prior work [29] was (O(ε
√

k log(m/δ)), δ)-DP. Lastly,1019

Theorem I.3 applies more generally to any private-preserving algorithms, instead of the classic1020

Laplace mechanism.1021

Proof. The proof is similar to that of Theorem I.1. Namely, we run each Ai(D) once and store all1022

results. Then we maintain a threshold T , which starts with T =∞. We gradually decrease T , and1023

use Algorithm 2 (Conditional Release with Revised Calls) to find outcomes with a quality score1024

larger than T . We keep this process until we identify k largest outcomes. The claimed privacy bound1025

now follows from Lemma 2.5 and Theorem B.4.1026
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