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1 NOTATIONS AND OVERALL MODEL WORKFLOW

We list all used symbols in Table 1.

Notation Definition
n The number of items

A ∈ Rn×n The adjacency matrix of item-item affinity
D ∈ Rn×n The degree matrix of A
X ∈ Rn×d Feature matrix of items
Z ∈ Rn×k Low-dimensional item embeddings
Ẑ ∈ Rn×k Approximated item embeddings

O Item-item pairs dataset
θ = (θ1, θ2) GNN I2I prediction layer parameters
α = {αa}na=1 Parameterization of prior pα(Z|X) in VGAE

ma Mean item embeddings from GNNϕ1(X,A)
va Variance item embeddings from GNNϕ2

(X,A)
ϕ = (ϕ1, ϕ2) GNN layer parameters for GNNϕ1

and GNNϕ2

p The number of market segment
w∗ The global GNN parameters
θ The local GNN parameters

ℓi(θ) Local training loss
Cκi The clusters assignment weights
κi The cluster embedding of cluster i
Pκi Differentiable clustering operator for cluster i
ϕ∗ Global GNN parameters
ξ∗ Global GNN summerization
nτ Number of global updates
nr Number of local updates
λw Local regularization weights on GNN parameters
λs Local regularization weights on summarization

Table 1: Notation Table

*Corresponding Author.
†Mentor. Co-corresponding Author.
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2 RESULTS WITH ERROR BARS

To demonstrate the confidence of our reported results in the main text, we further repeat all experiments on the best
hyper-parameters settings 5 times and report the standard deviation, as shown in Fig. 1 below. We omit baselines with error
bars to avoid cluttering the plot. In particular, the results suggest that our empirical conclusions made in the main text are
with high confidence, given that the reported deviations are relatively small. For most markets, PF-GNN and PF-GNN+
achieve the best performance over all metrics. We can also observe that PF-GNN+ consistently outperforms all baseline
models, which verifies our hypothesis that accounting for structural information is crucial to capture and to adapt domain
knowledge in GNN modeling.
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Figure 1: Re-plotting MRR@20 and NDCG@20 recommendation metric with reported standard deviation. The metric
report is with respect to the performance of our PF-GNN and PF-GNN+ algorithms, and other baselines across different
market segments. All plots are best viewed with color. All results are averaged over 5 independent runs.

3 RESULTS ON HOME & KITCHEN DOMAIN

We have also conducted more experiments on another large product domain, Home and Kitchen of the Cross-Market Dataset.
The entire set of results1 is reported in Fig. 2. Similar to prior observations on Electronics domain, the results on Home and
Kitchen consistently show that PF-GNN performs more robustly and produces better performance than both Local GNN
and Federated GNN in all market segments over all metrics. These results reinforce and corroborate our earlier results in
Electronics domains, showcasing the robustness of the proposed method across different product categories.
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Figure 2: Comparison of the MRR@20 and NDCG@20 recommendation metric between our personalized federated
domain adaptation algorithm, PF-GNN and other baselines across different markets on the Home and Kitchen domain. To
avoid cluttering the plots, we split the performance report of all baselines into smaller plots. The first two plots collectively
report the MRR@20 and NDCG@20 performances of all algorithms in the first 6 market segments while the next two plots
report for the remaining segments. All plots are best viewed with color.

4 EXPERIMENT SETUP

All our experiments were conducted on a computing machine with 8 V100 GPUs. For all GNN baselines, the GNN
is parameterized with 3 layers of Simplified Graph Convolution Network [Wu et al., 2019] which map from an item’s

1Note that Home and Kitchen and Electronics domains have different sets of markets because Home and Kitchen has more missing
markets, and we also filter out markets with no more than 100 item-item interactions.
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Figure 3: Empirical comparison between PF-GNN and PF-GNN+ on the Electronics domain.

768-dimensional feature vector to a 128-dimensional representation embedding vector.

We perform grid search for important parameters of the models such as the learning rate which varies within
{0.1, 0.01, 0.001}; the feature aggregation adaptation parameter λw in Eq. (12) within {0.01, 0.1, 1, 10, 100} which controls
the importance of adapting feature aggregation via personalizing ϕ; and the structure adaptation parameter λs within
{0.01, 0.1, 1, 10} which moderates the relative importance of item-item interaction structure adaptation via ξ – see last term
in Eq. (12). The best parameter configurations are selected based on their performance in the US market segment.

In particular, the best configuration of PF-GNN is specified with 0.1 for learning rate and 1000 for λw. For PF-GNN+
which additionally involves the structure adaptation moderator λs, the best configuration is specified with the same learning
rate but with different choices of λw = 1 and λs = 0.01.

5 EMPIRICAL CONVERGENCE ANALYSIS

We show the empirical convergence analysis of both PF-GNN and PF-GNN+ in Fig. 3. Both models converge as the
number of global communication rounds increases, demonstrating that the bi-level optimization can minimize the loss even
if heterogeneity exists across market segments. By comparing PF-GNN and PF-GNN+, PF-GNN has more fluctuations
than PF-GNN+. Moreover, PF-GNN+ achieves faster convergence than PF-GNN, which demonstrates the necessity of
modeling statistical structural information in each market segment’s item-item graph.

6 SENSITIVITY ANALYSIS

For empirical thoroughness, we also investigate the influence of our proposed GNN model parameters adaptation and the
graph summary adaptation on overall performance. As formulated previously in our proposed structural optimization loss in
Phase 3, we use λw to control the adaptation degree of GNN model parameters and λs to moderate the adaptation degree
of graph summarized structural information. The sensitivity trends of λw and λs are plotted in Fig. 4 where we report the
model performance with different values of λw (λs) while fixing the other at 1. We observe that with a fixed λs = 1, the
best averaged MRR@20 (over all market segments) is achieved when λw = 1. Increasing or decreasing λw appear to both
decrease the recommendation performance via MRR@20 substantially (Fig. 4a). Likewise, we observe the same behavior for
λw while fixing λs = 1 in Fig. 4b. The peak shapes in both plots suggest that the model performance depends substantially
on setting the optimal values for λw and λs. These observations, however, do not suggest that the best configuration for
(λw, λs) is (1, 1). Instead, their implication is under a fixed value for one parameter, over- or under-emphasizing the other to
either extreme of the value range will reduce the performance. To find the optimal configuration for (λw, λs), we adopt a
grid search approach reported in Appendix 4.



0.01 0.1 1.0 10.0 100
λw

0.05

0.06

0.07

0.08

0.09

A
ve

ra
ge

M
R

R
@

20

(a) Sensitivity to λw

0.01 0.1 1.0 10.0
λs

0.065

0.070

0.075

0.080

0.085

0.090

A
ve

ra
ge

M
R

R
@

20

(b) Sensitivity to λs

Figure 4: Performance Sensitivity (averaged over all markets) with respect to variation in (a) λw which moderates the
adaptation degree of learnable parameters ϕ; and (b) λs which regulates the adaptation degree of graph summary ξ.

Table 2: Overall Performance Comparison on top-10 ranking results.

Market Metric Popularity Siamese FeatMLP SLIM SPE Local GNN F-GNN PF-GNN PF-GNN+

sa MRR@10 0.07121 0.02032 0.07867 0.09213 0.01873 0.14561 0.13379 0.11706 0.15806
sa NDCG@10 0.07209 0.04201 0.08922 0.09715 0.04615 0.15745 0.15857 0.14597 0.18075
cn MRR@10 0.04896 0.05084 0.04918 0.02083 0.00672 0.09067 0.07899 0.08927 0.10807
cn NDCG@10 0.05756 0.06330 0.04844 0.01523 0.02256 0.09087 0.09542 0.10324 0.11434
au MRR@10 0.01451 0.06060 0.02300 0.00562 0.00923 0.03692 0.05314 0.06654 0.07477
au NDCG@10 0.01350 0.07189 0.02211 0.00527 0.02011 0.03705 0.05558 0.07105 0.07563
jp MRR@10 0.00992 0.03293 0.03654 0.01360 0.00320 0.04876 0.05916 0.07132 0.07497
jp NDCG@10 0.01240 0.04040 0.04130 0.01139 0.00638 0.05068 0.05957 0.07490 0.07521
fr MRR@10 0.01710 0.03959 0.02461 0.04945 0.00961 0.05625 0.06992 0.08676 0.09448
fr NDCG@10 0.01701 0.05525 0.02255 0.03485 0.01890 0.05431 0.06632 0.08324 0.08734
es MRR@10 0.01092 0.03319 0.01939 0.03555 0.01599 0.04764 0.05681 0.06777 0.07312
es NDCG@10 0.01289 0.04591 0.02042 0.02664 0.02855 0.04859 0.05728 0.06985 0.07606
de MRR@10 0.01258 0.04968 0.01662 0.04294 0.01053 0.05372 0.07774 0.09444 0.09654
de NDCG@10 0.01864 0.05698 0.01028 0.03027 0.01904 0.05236 0.07399 0.09087 0.09200
uk MRR@10 0.01465 0.02685 0.01911 0.04314 0.02097 0.05711 0.08305 0.09484 0.09499
uk NDCG@10 0.01556 0.03573 0.01888 0.03213 0.02855 0.06287 0.08268 0.09510 0.09512
in MRR@10 0.01269 0.03687 0.01350 0.00883 0.01455 0.04061 0.07307 0.08228 0.10007
in NDCG@10 0.01285 0.04445 0.01297 0.00583 0.02657 0.03999 0.06615 0.07736 0.09240
mx MRR@10 0.01283 0.02970 0.01443 0.01756 0.03063 0.03658 0.05520 0.06705 0.07755
mx NDCG@10 0.01080 0.03583 0.01299 0.01044 0.04197 0.03398 0.05089 0.06123 0.07039
ca MRR@10 0.00953 0.02444 0.01324 0.02483 0.03697 0.03697 0.05652 0.06757 0.07431
ca NDCG@10 0.00791 0.03232 0.01206 0.01698 0.05350 0.03662 0.05511 0.06708 0.07287
us MRR@10 0.00560 0.01891 0.01328 0.05168 0.02225 0.03488 0.04932 0.06500 0.07764
us NDCG@10 0.00467 0.02799 0.01196 0.03676 0.03196 0.03330 0.04685 0.06105 0.07220



7 OVERALL RESULTS ON TOP-10

We include more overall ranking performance results on top-10, as shown in Table 2. The top-10 performance results have
same observations similar to ones in top-20 results, which are presented in the main text.

8 RELATED WORK

8.1 ITEM-TO-ITEM RECOMMENDATION

Item-to-item (I2I) recommendation is a crucial component in recommender systems. I2I recommendation has several widely
applied scenarios, including you may also like in E-commerce homepages and because you watched in video-streaming
services. Existing I2I recommendation work adopts the item metadata and ID to infer the item embedding and proposes
novel distance metrics for item-item affinity evaluation. One representative work is semi-parametric embedding (SPE) [Hu
et al., 2019], which adopts the mixture of ID embedding and item metadata to infer the item embedding. A pioneering
work in this direction is SLIM [Ning and Karypis, 2011], which proposes to model the item-item correlation weight
matrix via collaborative filtering but does not account for item metadata or their higher-order interaction. Graph Neural
Networks (GNNs), which have demonstrated superiority in modeling high-order connectivity information in graph data,
have been recently adopted to boost the performance of item recommendation. In fact, several GNN-based recommendation
models have been proposed, which (most notably) include NGCF [Wang et al., 2019] and LightGCN [He et al., 2020, Mao
et al., 2021]. However, these I2I methods assume the possibility of a centralized graph data storage which is often not
practical when sharing transaction information across separate market segments is not allowed.

8.2 FEDERATED LEARNING FOR GNNS

Federated Learning (FL) provides new possibilities for training a global model with decentralized data privately owned
by multiple clients. This is achieved via the pioneering work FedAvg of McMahan et al. [2017], which assumes all local
datasets are independent and identically distributed. However, in some practical cases, this assumption is often violated
when the clients collect data from heterogeneous environments. For example, in the recommendation, the item-item graphs
acquired from different markets are often generated by heterogeneous preferential behaviors over a wide range of user
demographics. To accommodate for this, personalized FL has been recently proposed which learns both the global model on
the server and according personalized models hosted at each client node.

Notably, Per-FedAvg [Fallah et al.] formulates personalized FL following the model-agnostic meta-learning setup, which
introduces the potential application to domain adaptation. Alternatively, pFedMe [Dinh et al., 2020] extends FedAvg with an
additional bi-level optimization regularization that moderates the deviation between each client model and the global model.
Cluster FL [Sattler et al., 2020] proposes to apply clustering on clients so that clients in the same cluster follow similar
data distribution. However, most existing personalized FL works assume a homogeneous, centralized model specification.
However, this is not suitable to the context of graph-based models in item-to-item recommendation scenarios where a part of
the model specification is the graph that is not fully visible to each client. In fact, each client only has access to a sub-graph
of the entire item-item graph due to strict regulations concerning the storing and sharing of customer data. As such, most
existing personalized FL methods cannot be applied straightforwardly to our setting.

Also, to the best of our knowledge, there have been several proposals of federated learning for GNNs with decentralized
graph data in recent years, which (most notably) include GCFL+ [Xie et al.] and FedGNN [Wu et al., 2021]. However,
GCFL+ focuses on the graph classification task, which assumes local graphs are completed graphs instead of being fragments
of a global graph (as is the case in our setting). Therefore, the proposed GCFL+ solution is applicable to GNNs that are
parameterized only by the feature aggregation weights while treating the graph as the art of the input instead of part of
the model specification. This does not apply to our scenario where local graphs need to be merged (without being shared
explicitly) into a global graph which is part of the federated model specification. FedGNN, on the other hand, motivates the
development of a federated user-centric recommender via GNN. Nonetheless, its encryption mechanism is discrete in nature
and cannot be readily integrated into the gradient-based optimization framework of personalized federated learning. In our
experiment, it was adapted into our baseline F-GNN, which ignores the encryption mechanism.

Similarly, there are also several federated learning for recommendation using local graph data from client nodes, which
include (most notably) DeepRec [Han et al., 2021] and MetaMF [Lin et al., 2020]. However, like GCFL+, these works do
not focus on constructing global graphs from local fragments. The proposed solutions also focus exclusively on building



a common recommendation model rather than catering towards personalized models, which are specifically tailored to
different user distributions that constitute different market segments. As such, these works also do not apply straightforwardly
to our scenarios. With that, we believe our work on federated domain adaptation for item-item recommendation is the first
that explores a potential combination between personalized FL and GNN models, which are parameterized by both (1) the
graph that characterizes local interactions between feature components and (2) the combination weights that aggregate them.
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