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Abstract

Predictions about people, such as their expected educational achievement or their
credit risk, can be performative and shape the outcome that they are designed to
predict. Understanding the causal effect of predictions on the eventual outcomes is
crucial for foreseeing the implications of future predictive models and selecting
which models to deploy. However, this causal estimation task poses unique chal-
lenges: model predictions are usually deterministic functions of input features and
highly correlated with outcomes. This can make the causal effect of predictions
on outcomes impossible to disentangle from the direct effect of the covariates. We
study this problem through the lens of causal identifiability. Despite the hardness of
this problem in full generality, we highlight three natural scenarios where the causal
effect of predictions can be identified from observational data: randomization in
predictions, overparameterization of the predictive model deployed during data
collection, and discrete prediction outputs. Empirically we show that given our
identifiability conditions hold, standard variants of supervised learning that predict
from predictions by treating the prediction as an input feature can find transferable
functional relationships that allow for conclusions about newly deployed predictive
models. These positive results fundamentally rely on model predictions being
recorded during data collection, bringing forward the importance of rethinking
standard data collection practices to enable progress towards a better understanding
of social outcomes and performative feedback loops.

1 Introduction

Predictions can impact sentiments, alter expectations, inform actions, and thus change the course of
events. Through their influence on people, predictions have the potential to change the regularities
in the population they seek to describe and understand. This insight underlies the theories of
performativity [38] and reflexivity [62] that play an important role in modern economics and finance.
Recently, Perdomo et al. [51] pointed out that the social theory of performativity has important
implications for machine learning theory and practice. Prevailing approaches to supervised learning
assume that features X and labels Y are sampled jointly from a fixed underlying data distribution that
is unaffected by attempts to predict Y from X . Performativity questions this assumption and suggests
that the deployment of a predictive model can disrupt the relationship between X and Y . Hence,
changes to the predictive model can induce shifts in the data distribution. For example, consider a
lender with a predictive model for risk of default – performativity could arise if individuals who are
predicted as likely to default are given higher interest loans, which make default even more likely [41],
akin to a self-fulfilling prophecy. In turn, a different predictive model that predicts smaller risk and
suggests offering more low-interest loans could cause some individuals who previously looked risky
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to be able to pay the loans back, which would appear as a shift in the relationship between features X
and loan repayment outcomes Y . This performative nature of predictions poses a challenge to using
historical data to predict the outcomes that will arise under the deployment of future models.

1.1 Our work

In this work, we aim to understand under what conditions observational data is sufficient to identify
the performative effects of predictions. Only when causal identifiability is established can we rely on
data-driven strategies to anticipate performativity and reason about the downstream consequences
of deploying new models. Towards this goal, we focus on a subclass of performative prediction
problems in this paper where performative effects of predictions solely surface as a shift in the
outcome variable, and the distribution over covariates X is unaffected by the prediction Ŷ . Our goal
is to identify the expected counterfactual outcome

MY (x, ŷ) , E[Y |X = x, do(Ŷ = ŷ)].

Understanding the causal mechanismMY is crucial for model evaluation, as well as model opti-
mization. In particular, it allows for offline evaluation of the potential outcome Y of an individual X
subject to a predictive model fnew with the prediction Ŷ = fnew(X) before actually deploying it.

The need for observing predictions. We start by illustrating the hardness of performativity-agnostic
learning by relating performative prediction to a concept shift problem. Using the specifics of the
performative shift, we establish a lower bound on the extrapolation error of predicting Y from X
under the deployment of a new model fnew that is different from the model ftrain deployed during
data collection. In particular, the extrapolation error grows with the distance between the prediction
functions of the two models and the strength of performativity. This lower bound on the extrapolation
error demonstrates the necessity to take performativity into account for reliably predicting Y .

Predicting from predictions. We then explore the feasibility of learning performative effects when
the training data recorded the predictions and training data samples (X,Y, Ŷ ) are available. As an
identification strategy for learningMY , we focus on building a meta machine learning model that
predicts Y for an individual with features X , subjected to a prediction Ŷ . We term this data-driven
strategy predicting from predictions; it treats the predictions as an input to the meta machine learning
model. The meta model seeks to answer “what would the outcome be if we were to deploy a different
prediction model?” Crucially, this “what if” question is causal in nature; it aims to understand the
potential outcome under an intervention which is different from merely estimating the outcome
variable in previously seen data. Whether such a transferable model is learnable depends on whether
the training data provides causal identifiability [49] Only after causal identifiability is established can
we rely on observational data to select and design optimal prediction models under performativity.

Establishing identifiability. For our main technical results, we first show that, in general, observing
Ŷ is not sufficient for identifying the causal effects of predictions. In particular, if the training data
was collected under the deployment of a deterministic prediction function, the mechanismMY can
not be uniquely identified. The reason is a lack of coverage in the training data as X and Ŷ are
deterministically bound. Next, we establish several conditions under which observing Ŷ is sufficient
for identifying MY . The first condition exploits the presence of randomness in the prediction.
This randomness could be purposely built into the prediction for individual fairness, differential
privacy, or other considerations. The second condition exploits the property that predictive models
are often over-parameterized, which leads to incongruence in functional complexity between different
causal paths, enabling the effects of predictions to be separated from other variables’ effects. The
third condition takes advantage of discreteness in predictions such that performative effects can be
disentangled from the continuous relationship between covariates and outcomes. Together, these
results reveal that particularities of the performative prediction problem can enable us to recover
the causal effect of predictions from observational data. In particular, we show that, under these
conditions, standard supervised learning techniques can be used to find these transferable functional
relationships by treating predictions as model inputs. Empirically, we demonstrate that supervised
learning succeeds in findingMY even in finite samples.

We conclude with a discussion of limitations and extensions of our work, pointing out potential
violations of the modeling assumptions underlying our causal analysis and proposing directions for
future work.
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1.2 Broader context and related work

The work by Perdomo et al. [51], initiated the discourse of performativity in the context of supervised
learning by pointing out that the deployment of a predictive model can impact the data distribution
we train our models on. Existing scholarship on performative prediction [c.f., 51, 42, 12, 44, 24,
26, 68, 45, 52, 31] has predominantly focused on achieving a particular solution concept with a
prediction function that maps X to Y in the presence of unknown performative effects. We are
interested in understanding the underlying causal mechanism of the performative distribution shift.
Our work is motivated by the seemingly natural approach of lifting the supervised-learning problem
and incorporating the prediction as an input feature when building a meta machine learning model for
explaining Y . By establishing a connection to causal identifiability, our goal is to understand when
such a data-driven strategy can help anticipate the down stream effects of predictions

This work focuses on the setting where predictions lead to changes in the relationship between
covariates X and label Y , while the marginal distribution P (X) over covariates is assumed to be
fixed. This setting where performativity only surfaces in the label describes an interesting subclass of
problems falling under the umbrella of performative (aka. model-induced or decision-dependent)
distribution shifts [51, 37, 12]. Our assumptions are complementary to the strategic classification
framework [7, 20] that focuses on a setting where performative effects concern P (X), while P (Y |X)
is assumed to remain stable. Consequently, causal questions in strategic classification [e.g., 22,
3, 59] are concerned with identifying stable causal relationships between X and Y . Since we
assume P (Y |X) can change (i.e. the true underlying ’concept’ determining outcomes can change),
conceptually different questions emerge in our work. Similar in spirit to strategic classification, the
work on algorithmic recourse and counterfactual explanations [32, 28, 65] focuses on the causal link
between features and predictions, whereas we focus on the down-stream effects of predictions.

There are interesting parallels between our work and related work on the offline evaluation of online
policies [e.g., 35, 63, 36, 58]. In particular, [63] explicitly emphasize the importance of logging
propensities of the deployed policy during data collection to be able to mitigate selection bias. In our
work the deployed model can induce a concept shift. Thus, we find that additional information about
the predictions of the deployed model needs to be recorded to be able to foresee the impact of a new
predictive model on the conditional distribution P (Y |X), beyond enabling propensity weighting [55].
A notable work by [66] investigates how predictions at one time step impact predictions in future
time steps. Complementary to these existing works we show that randomness in the predictive model
is not the only way causal effects of predictions can be identified.

For our theoretical results, we build on classical tools from causal inference [48, 57, 64]. In particular,
we distill unique properties of the performative prediction problem to design assumptions for the
identifiability of the causal effect of predictions.

2 The causal force of prediction

Predictions can be performative and impact the population of individuals they aim to predict. For-
mulized it in the language of causal inference [48]: the deployment of a predictive model represents
an intervention on a causal diagram that describes the underlying data generation process of the
population. We will expand on this causal perspective to study an instance of ths performative
prediction problem described below.

2.1 Prediction as a partial mediator

Consider a machine learning application relying on a predictive model f that maps features X to a
predicted label Ŷ . We assume the predictive model f is performative in that the prediction Ŷ = f(X)
has a direct causal effect on the outcome variable Y of the individual it concerns. Thereby the
prediction impacts how the outcome variable Y is generated from the features X . The causal diagram
illustrating this setting is visualized in Figure 1.

The features X ∈ X ⊆ Rd are drawn i.i.d. from a fixed underlying continuous distribution over
covariates DX with support X . The outcome Y ∈ Y ⊆ R is a function of X , partially mediated by
the prediction Ŷ ∈ Y . The prediction Ŷ is determined by the deployed predictive model f : X → Y .
For a given prediction function f , every individual is assumed to be sampled i.i.d. from the data
generation process described by the causal graph in Figure 1. We assume the exogenous noise ξY is
zero mean, and ξf allows the prediction function to be randomized.
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X Y

Ŷf X = ξX ξX ∼ DX (1)

Ŷ = f(X, ξf ) ξf ∼ Df (2)

Y = g(X, Ŷ ) + ξY ξY ∼ DY (3)

Figure 1: Performative effects mediated by predictions for a given f

Note that our model is not meant to describe performativity in its full generality (which includes
other ways f may affect P (X,Y )). Rather, it describes an important and practically relevant class of
performative feedback problems that are characterized by two properties: 1) performativity surfaces
only in the label Y , and 2) performative effects are mediated by the prediction, such that Y ⊥⊥ f | Ŷ ,
rather than dependent on the specifics of the decision rule.

Application examples. Causal effects of predictions on outcomes have been documented in multiple
contexts: A bank’s prediction about the client (e.g., his or her creditworthiness in applying for a loan)
determines the interest rate assigned to them, which in turn changes a client’s financial situation [41].
Mathematical models that predict stock prices inform the actions of traders and thus heavily shape
financial markets and economic realities [38]. Zillow’s housing price predictions directly impact
sales prices [39]. Predictions about the severity of an illness play an important role in treatment
decisions and hence the very chance of survival of the patient [34]. Another prominent example from
psychology is the Pygmalion effect [56]. It refers to the phenomenon that high expectations lead to
improved performance, which is widely documented in the context of education [6], sports [61], and
organizations [16]. Examples of such performativity abound, and we hope to have convinced the
reader that the performative effects in the label are important for algorithmic prediction.

2.2 Implications for performativity-agnostic learning

Begin with considering the classical supervised learning task where Ŷ is unobserved. The goal is to
learn a model h : X → Y for predicting the label Y from the features X . To understand the inherent
challenge of classical prediction under performativity, we investigate the relationship between X and
Y more closely. Specifically, the data generation process (Figure 1) implies that

P (Y |X) =

∫
P (Y |Ŷ , X)P (Ŷ |X)dŶ . (4)

This expression makes explicit how the relationship between X and Y that we aim to learn depends
on the predictive model governing P (Ŷ |X). As a consequence, when the deployed predictive model
at test time differs from the model at training time, performative effects surface as concept shift [17].
Such distribution shift problems are known to be intractable without structural knowledge about
the shift, implying that we can not expect h to generalize to distributions induced by future model
deployments. Let us inspect the resulting extrapolation gap in more detail and put existing positive
results on performative prediction into perspective.

Extrapolation loss. We illustrate the effect of performativity on predictive performance using
a simple instantiation of the structural causal model from Figure 1. Therefore, assume a linear
performative effect of strength α > 0 and a base function g1 : X → Y

g(X, Ŷ ) := g1(X) + αŶ . (5)

Now, assume we collect training data under the deployment of a predictive model fθ and validate our
model under the deployment of fφ. We adopt the notion of a distribution map from Perdomo et al. [51]
and write DXY (f) for the joint distribution over (X,Y ) surfacing from the deployment of a model
f . We assess the quality of our predictive model h : X → Y over a distribution DXY (f) induced
by f via the loss function ` : Y × Y → R and write Rf (h) := Ex,y∼DXY (f)`(h(x), y) for the risk
of h on the distribution induced by f . We use h∗f for the risk minimizer h∗f := argminh∈HRf (h),
and H for the hypothesis class we optimize over. Proposition 1 bounds the extrapolation loss and
can be viewed as a concrete instantiation of the more general extrapolation bounds for performative
prediction discussed in [37] within the feedback model from Figure 1.
Proposition 1 (Hardness of performativity-agnostic prediction). Consider the data generation pro-
cess in Figure 1 with g given in (5) and fθ, fφ being deterministic functions. Take a loss function
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` : Y × Y → R that is γ-smooth and µ-strongly convex in its second argument. Let h∗fθ be the risk
minimizer over the training distribution and assume the problem is realizable, i.e., h∗fθ ∈ H. Then,
we can bound the extrapolation loss of h∗fθ on the distribution induced by fφ as

γ

2
α2d2DX (fθ, fφ) ≥ ∆Rfθ→fφ(h∗fθ ) ≥

µ

2
α2d2DX (fθ, fφ) (6)

where d2DX (fθ, fφ) := Ex∼DX (fθ(x)− fφ(x))2 and ∆Rfθ→fφ(h) := Rfφ(h)− Rfθ (h).

The extrapolation loss ∆Rfθ→fφ(h∗fθ ) is zero if and only if either the strength of performativity tends
to zero (α → 0), or the predictions of the two predictors fθ and fφ are identical over the support
of DX . If this is not the case, an extrapolation gap is inevitable. This elucidates the fundamental
hardness of performative prediction from feature, label pairs (X,Y ) when performative effects
disrupt the causal relationship between X and Y .

The special case where α = 0 aligns with the assumption of classical supervised learning, in which
there is no performativity. This may hold in practice if the predictive model is solely used for
descriptive purposes, or if the agent making the prediction does not enjoy any economic power [21].
The second special case where the extrapolation error is small is when d2DX (fθ, fφ)→ 0. In which
case DXY (fθ) and DXY (fφ) are equal in distribution and hence exhibit the same risk minimizer.
Such a scenario can happen, for example, if the model fφ is obtained by retraining fθ on observational
data and a fixpoint is reached (fθ = h∗fθ ). The convergence of policy optimization strategies to
such fixpoints (perfromative stablity) has been studied in prior work [e.g., 51, 42, 12] and enabled
optimality results even in the presence of performative concept shifts, relying on the target model fφ
not being chosen arbitrarily, but based on a pre-specified update strategy.

3 Identifying the causal effect of prediction

Having illustrated the hardness of performativity-agnostic learning, we explore under what conditions
incorporating the presence of performative predictions into the learning task enables us to anticipate
the perfromative effects of Ŷ on Y . Towards this goal, we assume that the mediator Ŷ in Figure 1
is observed—the prediction takes on the role of the treatment in our causal analysis and we can not
possibly hope to estimate the treatment effect of a treatment that is unobserved.

3.1 Problem setup

Assume we are given access to data points (x, ŷ, y) generated i.i.d. from the structural causal model
in Figure 1 under the deployment of a prediction function fθ. From this observational data, we wish
to estimate the expected potential outcome of an individual under the deployment of an unseen (but
known) predictive model fφ. We note that given our causal graph, the implication of intervening on
the function f can equivalently be explained by an intervention on the prediction Ŷ . Thus, we are
interested in identifying the causal mechanism:

MY (x, ŷ) := E[Y |X = x,do(Ŷ = ŷ)]. (7)
Unlike P (Y |X), the mecahnismMY is invariant to the changes in the predictive model governing
P (Ŷ |X). Thus, being able to identifyMY will allow us to make inferences about the potential
outcome surfacing from planned model updates beyond explaining patterns in historical data. We can
evaluateMY to infer y for any x at ŷ = fφ(x) for fφ being the model of interest.

For simplicity of notation, we will write D(fθ) to denote the joint distribution over (X, Ŷ , Y ) of
the observed data collected under the deployment of the predictive model fθ. We sayMY can be
identified, if it can uniquely be expressed as a function of observed data. More formally:
Definition 1 (identifiability). Given a predictive model f , the causal graph in Figure 1, and a set
of assumptions A. We sayMY is identifiable from D(f), if for any function h that complies with
assumptions A and h(x, ŷ) = MY (x, ŷ) for pairs (x, ŷ) ∈ supp(DXY (f)) it must also hold that
h(x, ŷ) =MY (x, ŷ) for all pairs (x, ŷ) ∈ X × Y .

Without causal identifiability, there might be models h′ 6=MY that explain the training distribution
equally well but do not transfer to the distribution induced by the deployment of a new model. Causal
identifiability is crucial for enabling extrapolation. It quantifies the limits of what we can infer given
access to the training data distribution, ignoring finite sample considerations.
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Identification with supervised learning. Identifiability ofMY from samples of D(fθ) implies
that the historical data collected under the deployment of fθ contains sufficient information to recover
the invariant relationship (7). As a concrete identification strategy, consider the following standard
variant of supervised learning that takes in samples (x, ŷ, y) and builds a meta-model that predicts Y
from X, Ŷ by solving the following risk minimization problem

hSL := argmin
h∈H

E(x,ŷ,y)∼D(fθ)

[
(h(x, ŷ)− y)

2 ]
. (8)

whereH denotes the hypothesis class. We consider the squared loss for risk minimization because it
pairs well with the exogeneous noise ξY in (3) being additive and zero mean. The strategy (8) is an
instance of what we term predicting from predictions. Lemma 2 provides a sufficient condition for
the supervised learning solution hSL to recover the invariant causal quantityMY .
Lemma 2 (Identification strategy). Consider the data generation process in Figure 1 and a set of
assumptions A. Given a hypothesis classH such that every h ∈ H complies with A and the problem
is realizable, i.e., MY ∈ H. Then, if MY is causally identifiable from D(fθ) given A, the risk
minimizer hSL in (8) will coincide withMY .

3.2 Challenges for identifiability

The main challenge for identification ofMY from data is that in general, the prediction rule fθ which
produces Ŷ is a deterministic function of the covariates X . This means that, for any realization of
X , we only get access to one Ŷ = fθ(X) in the training distribution, which makes it challenging
to disentangle the direct and the indirect effects of X on Y . To illustrate this challenge, consider
the function h(x, ŷ) :=MY (x, fθ(x)) that ignores the input parameter ŷ and only relies on x for
explaining the outcome. This function explains y equally well and can not be differentiated from
MY based on data collected under the deployment of a deterministic prediction rule fθ. The problem
is akin to fitting a linear regression model to two perfectly correlated covariates. More broadly, this
ambiguity is due to what is known as a lack of overlap (or lack of positivity) in the literature of causal
inference [47, 23]. In the covariate shift literature, the lack of overlap surfaces when the covariate
distribution violates the common support assumption and the propensity scores are not well-defined
(see e.g., Pan and Yang [46]). This problem renders causal identification and thus data-driven learning
of performative effects from deterministic predictions fundamentally challenging.
Proposition 3 (Nonidentifiability from deterministic predictions). Consider the structural causal
model in Figure 1. Assume Y non-trivially depends on Ŷ , and the set Y is not a singleton. Then,
given a deterministic prediction function f , the mechanismMY is not identifiable from D(f).

The identifiability issue persists as long as the two variables X , Ŷ are deterministically bound and
there is no incongruence or hidden structure that can be exploited to disentangle the direct effect
of X on Y from the indirect effect mediated by Ŷ . In the following, we focus on particularities of
prediction problems and show how they allow us to identifyMY .

3.3 Identifiability from randomization

We start with the most natural setting that provides identifiability guarantees: randomness in the
prediction function fθ. Using standard arguments about overlap [47] we can identifyMY (x, ŷ) for
any pair x, ŷ with positive probability in the data distribution D(fθ) from which the training data is
sampled. To relate this to our goal of identifying the outcome under the deployment of an unseen
model fφ we introduce the following definition:
Definition 2 (output overlap). Given two predictive models fθ, fφ, the model fφ is said to satisfy
output overlap with fθ, if for all x ∈ X and any subset Y ′ ⊆ Y with positive measure, it holds that

P[fφ(x) ∈ Y ′]
P[fθ(x) ∈ Y ′]

> 0. (9)

In particular, output overlap requires the support of the new model’s predictions fφ(x) to be contained
in the support of fθ(x) for every potential x ∈ X . The following proposition takes advantage of the
fact that the joint distribution over (X,Y ) is fully determined by the deployed model’s predictions to
relate output overlap to identification:
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Proposition 4. Given the causal graph in Figure 1, the mechanismMY (x, ŷ) is identifiable from
D(fθ) for any pair x, ŷ with ŷ = fφ(x), as long as fφ is a prediction function that satisfies output
overlap with fθ.

Proposition 4 allows us to pinpoint the models fφ to which we can extrapolate to from data collected
under fθ. Furthermore, it makes explicit that for collecting data to learn about performative effects,
it is ideal to deploy a predictor fθ that is randomized so that the prediction output has full support
over Y for any x. Such a model would generate a dataset that guarantees global identification ofMY

over X × Y and thus robust conclusions about any future deployable model fφ. One interesting and
relevant setting that satisfies this property is the differentially private release of predictions through an
additive Laplace (or Gaussian) noise mechanism applied to the output of the prediction function [13].1

While standard in the literature, a caveat of identification from randomization is that there are several
reasons a decision-maker may choose not to deploy a randomized prediction function in performative
environments, including negative externalities and concerns about user welfare [29], but also business
interests to preserve consumer value of the prediction-based service offered. In the context of our
credit scoring example, random predictions would imply that interest rates are randomly assigned
to applicants in order to learn how the rates impact their probability of paying back. We can not
presently observe this scenario, given regulatory requirements for lending institutions.

3.4 Identifiability through overparameterization

The following two sections consider situations where we can achieve identification, without ran-
domization, from data collected under a deterministic fθ. Our first result exploits incongruences in
functional complexity arising from machine learning models that are overparameterized [e.g. 30]. By
overparameterization, we refer to the fact that the representational complexity of the model is larger
than the underlying concept it needs to describe.
Assumption 1 (overparameterization). We say a function f is overparameterized with respect to G
over X if there is no function g′ ∈ G and c ∈ R such that f(x) = c · g′(x) for all x ∈ X .

A challenge for identification is that for deterministic fθ the prediction can be reconstructed from X

without relying on Ŷ , and thus h(x, ŷ) =MY (x, fθ(x)) can not be differentiated fromMY based
on observational data. However, note that this ambiguity relies on there being an admissable h such
that h(·, ŷ) for a fixed ŷ can represent fθ. If fθ is overparameterized with respect to the hypothesis
classH, this ambiguity is resolved. Let us make this intuition concrete with an example:
Example 3.1. Assume the structural equation for y in Figure 1 is g(x, ŷ) = αx + βŷ for some
unknown α, β. Consider prediction functions fθ of the following form fθ(x) = γx2 + ξx for some
γ, ξ ≥ 0. ConsiderH be the class of linear functions. Then, any admissable estimate h ∈ H takes
the form h(x, ŷ) = α′x+ β′ŷ. For h to be consistent with observations we need α′ + β′ξ = α+ βξ
and β′γ = βγ. This system of equations has a unique solution as long as γ > 0 which corresponds
to the case where fθ is overparameterized with respect to H. In contrast, for γ = 0 the function
h(x, ŷ) = (α+ βξ)x would explain the training data equally well.

The following result generalizes this argument to separable functions.
Proposition 5. Consider the structural causal model in Figure 1 where fθ is a deterministic function.
Assume that g can be decomposed as g(X, Ŷ ) = g1(X) + αŶ for some α > 0 and g1 ∈ G, where
the function class G is closed under addition (i.e. g1, g2 ∈ G ⇒ a1 · g1 + a2 · g2 ∈ G ∀a1, a2 ∈ R).
Let H contain functions that are separable in X and Ŷ , linear in Ŷ , and ∀h ∈ H it holds that
h(·, ŷ) ∈ G for a fixed ŷ. Then, if fθ is overparameterized with respect to G over the support of DX ,
MY is identifiable from D(fθ).

3.5 Identifiability from classification

A second ubiquitous source of incongruence that we can exploit for identification is the discrete
nature of predictions in the context of classification. The resulting discontinuity in the relationship
between X and Ŷ enables us to disentangleMY from the direct effect of X on Y . This identification
strategy is akin to the popular regression discontinuity design [33] and relies on the assumption that
all other variables in X are continuously related to Y around the discontinuities in Ŷ .

1In Appendix B we discuss two additional natural sources of randomness (randomized decisions and noisy
measurements of covariates) that can potentially help identification with appropriate side-information.
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Figure 2: Extrapolation error of supervised learning with and without access to Ŷ . (a) In the non-identifiable
setting, adding Ŷ as a feature harms generalization performance. (b)-(d) Randomization, overparameterization,
and discrete predictions are each sufficient for avoiding this failure mode.

Proposition 6. Consider the structural causal model in Figure 1 where fθ is a deterministic function.
Assume that the structural equation for Y is separable g(X, Ŷ ) = g1(X) + g2(Ŷ ),∀X, Ŷ for some
differentiable functions g1 and g2. Further, suppose X is a continuous random variable and Ŷ is a
discrete random variable that takes on at least two distinct values with non-zero probability. Then,
MY is identifiable from D(fθ).

Similar to Proposition 5, the separability assumption together with incongruence provides a way
to disentangle the direct effect from the indirect effect of X on Y . Separability is necessary in
order to achieve global identification guarantees without randomness, the identification of entangled
components without overlap is fundamentally hard. Thus, under violations of the separability
assumptions, we can only expect the separable components of g to be correctly identified. Similarly,
a regression discontinuity design only enables the identification of the causal effect locally around
the discontinuity. Extrapolation away from the decision boundary to models fφ that are substantially
different from fθ increasingly relies on separability to hold true.

4 Empirical evaluation

We investigate empirically how well the supervised learning solution hSL in (8) is able to identify the
causal mechanismMY from observational data in practical settings with finite data.

Methodology. We generated semi-synthetic data for our experiments, using a Census income
prediction dataset from folktables.org [11]. Using this dataset as a starting point, we simulate
a training dataset and test dataset with distribution shift as follows: First, we choose two different
predictors fθ and fφ to predict a target variable of interest (e.g. income) from covariates X (e.g. age,
occupation, education, etc.). If not specified otherwise, fθ is fit to the original dataset to minimize
squared error, while fφ is trained on randomly shuffled labels. Next, we posit a function g for
simulating the performative effects. Then, we generate a training dataset of (X, Ŷ , Y ) tuples from
the causal model in Figure 1, using the covariates X from the original data, g, and fθ to generate Ŷ
and Y . Similarly, we generate a test dataset of (X, Ŷ , Y ) tuples, using X, g, fφ. We assess how well
supervised methods learn transferable functional relationships by fitting a model hSL to the training
dataset and then evaluating the root mean squared error (RMSE) for regression and the accuracy for
classification on the test dataset. In our figures, we visualize the standard error from 10 replicates
with different random seeds and we compare it to an in-distribution baseline trained and evaluated on
samples of D(fφ). If not specified otherwise we use N = 200, 000 samples.

4.1 Necessity of identification guarantees for supervised learning

We start by illustrating why our identification guarantees are crucial for supervised learning under
performativity. Therefore, we instantiate the structural equation g in Figure 1 as

g(X, Ŷ ) = g1(X) + αŶ (10)

with g1(X) = β>X and ξY ∼ N (0, 1). The coefficients β are determined by linear regression on
the original dataset. The hyperparameter α quantifies the performativity strength that we vary in our
experiments. The predictions Ŷ are generated from a linear model fθ that we modify to illustrate the
resulting impact on identifiability. We optimize hSL in (8) overH being the class of linear functions.
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Figure 3: Ablation study of extrapolation performance. (a) We vary mθ . Adding Ŷ as a feature helps as soon as
fθ is overparameterized with respect to g1 (mθ > 3). (b) We vary the noise in the predictions of fθ . A small
amount of noise is sufficient for identifiability. (c) We vary number of datapoints for training hSL.

We start by illustrating a failure mode of supervised learning in a non-identifiability setting (Proposi-
tion 3). Therefore, we let fθ be a deterministic linear model fit to the base dataset (fθ(X) ≈ β>X).
This results inMY not being identifiable from D(fθ). In Figure 2(a) we can see that supervised
learning indeed struggles to identify a transferable functional relationship from the training data.
The meta model returns hSL(X, Ŷ ) = (1 + α)Ŷ , instead of identifying g, which leads to a high
extrapolation error independent of the strength of performativity. While we only show the error for
one fφ in Figure 2(a), the error grows with the distance d2Dx(fθ, fφ). In contrast, when the feature Ŷ
is not included, the supervised learning strategy returns hSL(X) = (1 + α)β>X . The extrapolation
loss of this performativity-agnostic model scales with the strength of performativity (Proposition 1)
and is thus strictly smaller than the error of the model that predicts from predictions.

Next, we move to the regime of our identification results (Proposition 4-6). Therefore, we modify the
way the predictions in the training data are generated. In Figure 2(b) we use additive Gaussian noise
to determine the predictions as Ŷ = fθ(X) + η with η ∈ N (0, σ2). In Figure 2(c) we augment the
input to fθ with second-degree polynomial features to achieve overparameterization. In Figure 2(d)
we round the predictions of fθ to obtain discrete values. In all three cases, including Ŷ as a feature is
beneficial and allows the model to match in-distribution accuracy baselines, closing the extrapolation
gap that is inevitable for performativity-agnostic prediction.

4.2 Strength of incongruence and finite samples

We next conduct an ablation study and investigate how the degree of overparameterization and
the noise level for randomized fθ impacts the extrapolation performance of supervised learning.
Therefore, we consider the setup in (10) with a general function g1. We fix the level of performativity
at α = 0.5 for this experiment. We optimize hSL in (8) overH (which we vary).

In Figure 3(a) we investigate the effect of overparameterization of fθ on the extrapolation error of hSL.
We choose fully connected neural networks with a single hidden layer to represent the functions g1,
fθ and hSL. For g1 andH we take a neural network with m = 3 units in the hidden layer. The model
g1 is fit it to the original dataset. We vary the number of units in the hidden layer of fθ, denoted mθ.
As expected, the extrapolation error decreases with the complexity of fθ. As soon as mθ > mφ there
is a significant benefit to including predictions as features. In this regime,MY becomes identifiable
as Proposition 5 suggests. In turn, without access to Ŷ the model suffers an inevitable extrapolation
gap due to a concept shift that is independent of the properties of fθ. In Figure 2(b) we investigate the
effect of the magnitude of additive noise added to the predictions. HereH and g1 are linear functions.
We have Ŷ = fθ(X) + βη with η ∈ N (0, 1) and we vary the noise level β. We see that even small
amounts of noise are sufficient for identification and adding Ŷ as a feature to our meta-machine
lenaring model is effective as soon as the noise in fθ is non-zero. In Figure 2(c) we fix the noise level
at α = 0.5 and vary the number of samples N . We find that only moderate dataset sizes are necessary
for predicting from predictions to approximateMY in our identifiable settings.

5 Discussion

This paper focused on identifying the causal effect of predictions on outcomes from observational
data. We point out several natural situations where this causal question can be answered, but we

9



also highlight situations where observational data is not sufficiently informative to reason about
performative effects. By establishing a connection between causal identifiability and the feasibility
of anticipating performative effects using data-driven techniques, this paper contributes to a better
understanding of the suitability of supervised learning techniques for explaining social effects arising
from the deployment of predictive models in economically and socially relevant applications.

We hope the positive results in this work serve as a message for data-collection: only if predictions are
observed, they can be incorporated to anticipate the performative effects of future model deployments.
Thus, access to this information is crucial for an analyst hoping to understand the effects of deployed
predictive models, an engineer hoping to foresee consequences of model updates, or a researcher
studying performative phenomena. To date, such data is scarcely available in benchmark datasets,
hindering the progress towards a better understanding of performative effects, essential for the reliable
deployment of algorithmic systems in the social world.

At the same time we have shown that the deterministic nature of prediction poses unique challenges
for causal identifiability even if Ŷ is observed. Thus, the success of observational designs (as shown
in our empirical investigations) is closely tied to the corresponding identifiability conditions being
satisfied. Our results must not be understood as a green-light to justify the use of supervised learning
techniques to address performativity in full generality beyond the scope of our theoretical results.

Limitations and Extensions. The central assumption of our work is the causal model in Figure 1.
While carving out a rich and interesting class of performative prediction problems that allows us
to articulate the challenges of covariates and predictions being coupled, it can not account for all
mechanisms of performativity. This in turn gives rise to interesting questions for follow-up studies.

A first neglected aspect is performativity through social influence. Our causal model, relies on the
stable unit treatment value assumption (SUTVA) [23]. There is no possibility for the prediction of one
individual to impact the outcome of his or her peers. Such an individualistic perspective is not unique
to our paper but prevalent in existing causal analyses and model-based approaches to performative
prediction and strategic classification [e.g., 20, 25, 43, 3, 18, 22]. Spillover effects [cf. 60, 64, 1, 40]
are yet unexplored in the context of performative prediction. Nevertheless, they have important
implications for how causal effects should be estimated and interpreted. In the context of our work
they imply that an intervention on f can no longer be explaind solely by changing an individual’s
prediction. As a result, approaches for microfounding performative effect based on models learned
from simple, unilateral interventions on an individual’s prediction result in different causal estimates
than supervised learning based methods for identification as studied in this work. A preliminary study
included in Appendix C shows that data-driven techniques can pick up on interference patterns in the
data and benefit from structural properties such as network homophily [19], whereas individualistic
modeling misses out on the indirect component arising from neighbors influencing each other.

A second aspect is performativity in non-causal prediction. Our model posits that prediction is solely
based on features X that are causal for the outcome Y . This is a desirable situation in many practical
applications because causal predictions disincentivize gaming of strategic individuals manipulating
their features [43, 3] and offer explanations for the outcome that persist across environments [54, 8].
Nevertheless, non-causal variables are often included as input features in practical machine learning
prediction tasks. Establishing a better understanding for the implications of the resulting causal
dependencies due to performativity could be an important direction for future work.

Finally, performative effect can also lead to covariate shift and impact the joint distribution
P (X,Y ) = P (Y |X)P (X) over covariates and labels. We assumed that performative effects
only surface in P (Y |X). For our theoretical results, this implied that overlap in the X variable
across environments is trivially satisfied, which enabled us to pinpoint the challenges of learning
performative effects due to the coupling between X and Ŷ . For establishing identification in the
presence of a causal arrow fθ → X additional steps are required to ensure identifiability.
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A The extrapolation problem

This section provides additional motivation for the setup from Section 3.1. A general goal in the
context of performativity is to evaluate a statistic κ(X,Y ) over the hypothetical distribution D(fφ)
surfacing from the deployment of fφ in order to decide whether we want to deploy fφ or not. This
can be summarized with the following extrapolation problem:

Extrapolation Problem EP(κ, fθ, fφ)

Input: Sample access to a training distribution DX,Y (fθ) for a known predictor fθ.
Test-time predictor: fφ, Statistic to evaluate: κ

Assumption: Data is generated from the structural causal model described in Figure 1
Output: E(x,y)∼DXY (fφ)[κ(x, y)]

Being able to solve this extrapolation problem will enable both policy evaluation and policy opti-
mization. The statistic κ can be a measure of accuracy, but could also be a measure of social welfare,
individual improvement, and other goals for socially beneficial machine learning. In the main body
of our work, we have focused on κ(X,Y ) = Y for simplicity of exposition. However, the criteria for
identifiability would remain the same for any continuous function κ, only the target in the supervised
learning objective (8) would need to be adapted accordingly.

We say EP(κ, fθ, fφ) can be solved if the output can be identified from the input data. Relating
this learning problem to classical results from causal inference [2] reveals the following sufficient
condition for solvability that we target in this work.

Lemma 7. For any continuous statistic κ and predictive model fφ, a sufficient condition for
EP(κ, fθ, fφ) being solvable is identifiability of

Mκ
Y (x, ŷ) = E[κ(X,Y )|X = x, do(Ŷ = ŷ)]

from D(fθ).

Proof. If we can identifyMκ
Y (x, ŷ) we can evaluate the output for any x, ŷ and hence EP(κ, fθ, fφ)

as Ex∼DX [Mκ
Y (x, fφ(x))], where the distribution over covariates DX is obtained by marginalizing

the input distribution DXY (fθ) over X .

B Identification with side-information from alternate sources of randomness

In Section 3.3 we have investigated how randomness in the prediction function leads to identification.
In this section we demonstrate that identification can also be achieved from other natural sources
of randomness if additional side-information, observations, or more fine grained knowledge about
the causal graph structure is available. However, incorporating such side-information requires going
beyond standard ERM which is not the main focus of this work. Therefore we include this discussion
in the appendix.

Randomized prediction-based decision. Assume the performative effect of predictions is medi-
ated by a down-stream decision T ∈ {0, 1} based on the prediction Ŷ such that Y ⊥⊥ Ŷ |T,X . This
scenario is illustrated in the following causal graph:

X Y

Ŷ Tfθ

In this case, randomness in the discrete decision function T (instead of the continuous prediction Ŷ )
is sufficient for identification of the causal graph. Randomness in prediction-based decisions can be a
deliberate part of an algorithmic system for a number of reasons, including designing individually
fair decision rules [14, 5, 4].
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Noisy measurement of covariates A second natural source of randomness in performative predic-
tion is noise in the measurement of the covariates X , representing the unobserved true underlying
attributes U . This scenario is illustrated in the following graph

U Y

X Ŷ fθ

Figure 4: X is a noisy measurement of U .

For example, a student’s college performance depends on their underlying scholastic ability, but
predictions of performance (and perhaps admissions decisions) are made based on a noisy proxy
like SAT score. In this case, side-information about the structure of the measurement noise enables
identification [15] without precise knowledge of U . The intuition is that the attributes U that are
causal for the outcome Y enter the prediction through the noisy measurements X , which adds
independent variation to the indirect causal path.

C Social influence

We have mentioned that the stable unit treatment value assumption (SUTVA) [23] underlying our
causal analysis could be violated in certain performative prediction settings due to social influence
and spill-over effects. We want to use this section to discuss the following simple interference patterns
that generalizes our causal graph from Figure 1:

Xi Ŷi Yi

Xj Ŷj Yj

fθ

Xi = ξX ξX ∼ DX
Ŷi = fθ(Xi)

Yi = g′(Xi, Ŷi, (Ŷj)j∈[n]) + ξY ξY ∼ DY

In particular, it allows for predictions of individual j to impact the outcome of individual i 6= j,
which implies that

E[Yi|Xi = x, do(fθ = fθ∗))] 6= E[Yi|Xi = x, do(Ŷi = fθ∗(x))] (11)

Such effects could arise due to information flow about predictions in the population through social
media platforms [9] or verbal sharing. This in turn leads to indirect exposure that can bring forward
phenomena of social comparison such as envy or encouragement [10]. In the presence of such
interference effects the causal effect of intervening on the predictive model is no longer the same as
the causal effect of intervening on an individual’s prediction, as stated in (11); on the left-hand side
the predictions of all individuals are changed, whereas on the right-hand side only the prediction of
individual i changed.

Exposure modeling. In the broadest generality the outcome Yi in the above causal graph could
depend on the predictions assigned to any other individual. This results in 2n−1 possible interference
patterns. Thus, to formally reason about interference effects through predictions, it is common
to assume ther is a sufficient statistic Gi that mediates the dependency among units, such that
Yi ⊥⊥ {Ŷj}j 6=i|Gi for all i ∈ [n]. The statistic Gi could encode the exposure of the entire population,
the average prediction across the population, relevant predictions of the closest neighbors in a social
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network, or the relative value of Ŷi compared to peers in a group. Gi is typically constructed based
on domain knowledge and is often assumed to be low-dimensional, limiting the complexity of
interference among units and making the problem more tractable. What is unique to the prediction
setting studied in this work, compared to randomized treatment assignments, is that predictions
(and hence Gi) are typically correlated with the covariates and thus inherit structures present in the
population, such as network homophily.

Homophily. Homophily refers to the tendency for individuals to be similar to their neighbors which
surfaces in our setting as correlations between the features of neighboring units [19]. In the context
of prediction, this further implies that a smooth prediction function fθ will also exhibit correlations
between predictions assigned to neighbors. We formalize it through the following property:

|Ej∈N(i)Ŷj − Ŷi| < δ for every i ∈ [n] and some small δ ≥ 0. (12)

In the following, we want to highlight that in the presence of homophily the data-driven strategy (8)
(that builds a model based on data collected under a population intervention) is able to implicitly
pick up on the interference effects present in the data, whereas this information is not available from
data collected under unilateral interventions. More, specifically, assume interference effects are
mediated by the average prediction in the neighborhood, i.e., Gi = Ej∈N(i)Ŷj , then the outcome of
individual i can (at least partially) be explained by the prediction Ŷi itself. This results in a machine
learning model (8) that will implicitly pick up the interference effects from the training data in order
to explain the total causal effect of fθ on the outcome. This is helpful for prediction, despite a
misspecified causal graph. We illustrate this advantageous property over microfoundation models
with the following example:

Linear-in-means model. Consider the following model proposed by Manski [40]:

Yi = g(Xi) + αŶi + βGi where Gi =
1

|N(i)|
∑
j∈N(i)Ŷj (13)

for some α > β > 0. This structural causal model describes a setting of positive interference where
spillover effects are mediated by the average prediction in the neighborhood of an individual and
represent a dampened version of the direct effect. We can show that fitting a model h to explain Y as
a function of X and Ŷ leads to smaller estimation error than learning h from unilateral interventions.
Proposition 8. Given the structural causal model in (13). Assume the homophily assumption (12)
holds for δ = 0. Then, under the same identifiability conditions established in Section 3 for the
SUTVA case. The supervised leanrning solution hSL will find a transferrable functional relationship
even in the presence of interference.

Without explicitly measuring Gi, fitting a model to explain Y as a function of X and Ŷ will result
in h(x, ŷ) = g(x) + (α+ β)ŷ, which identifies the causal quantity of interest, i.e., the effect of an
intervention to the predictive model on the outcome Yi of an individual. In contrast, an estimate based
on unilateral interventions would result in h(x, ŷ) = g′(x) +αŷ which systematically underestimates
the overall strength of performative effects and thus leads to a biased estimator.
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D Proofs

Assumption 2 (positivity). Consider the causal graph in Figure 1. Positivity of Ŷ over Y is satisfied
if P [Ŷ ∈ S|X = x] > 0 for all x ∈ X and all sets S ⊆ Y with positive measure, i.e., P [S] > 0.

Lemma 9. If the training distribution satisfies positivity of Ŷ over Y ′ ⊆ Y , then E[Y |X = x, Ŷ = ŷ]
is identifiable from the training data for any ŷ ∈ Y ′.

D.1 Proof of Proposition 1

For notational convenience we write hopt(fθ) for h∗fθ . From realizability it follows that
Rfθ (hopt(fθ)) = 0. Hence, the extrapolation loss is equal to

Errfθ→fφ(hopt(fθ)) = Rfφ(hopt(fθ))− Rfθ (hopt(fθ)) = Rfφ(hopt(fθ))

and it remains to bound Rfφ(hopt(fθ)):

Rfφ(hopt(fθ)) = Ex,y∼DX,Y(fφ)L(hopt(fθ)(x), y) (14)

= Ex∼DXL(hopt(fθ)(x), g(x, fφ(x))) (15)
= Ex∼DXL(g(x, fθ(x)), g(x, fφ(x))) (16)

Further assuming that the loss function L is µ-strongly convex and γ-smooth in the second argument.
Then,

Rfφ(hopt(fθ)) ≥
µ

2
Ex∼DX (g(x, fθ(x))− g(x, fφ(x)))

2 (17)

Rfφ(hopt(fθ)) ≤
γ

2
Ex∼DX (g(x, fθ(x))− g(x, fφ(x)))

2 (18)

and the result follows.

D.2 Proof of Lemma 2

Given that the risk minimization problem (8) is realizabe andMY is uniquely identifiable overH,
the risk minimizer of the squared loss corresponds to E[Y |X = x, Ŷ = ŷ]. Given the graph structure
in Figure 1 there is no unobserved confounding and hence

E[Y |X = x, Ŷ = ŷ] = E[Y |X = x, do(Ŷ = ŷ)] =⇒ hSL(x, ŷ) =MY (x, ŷ).

D.3 Proof of Proposition 3

Our goal is to show thatMY (X, Ŷ ) can not uniquely be identified fromD(fθ) if fθ is a deterministic
function. The proof is by construction of a h that fits the training data equally well, but does not
generalize to data induced by a new prediction function.

Since fθ is deterministic it holds that ŷ = fθ(x) for all pasirs x, ŷ in the observed data distribution.
Thus, the function h defined as follows

h(x, ŷ) =MY (x, fθ(x))

is equally compatible with the observational data. That is

EŶ=fθ(X)E[Y |X, Ŷ ] =MY (X, Ŷ ) = h(X, Ŷ ).

Hence,MY can not be distinguished from h based on observational data. It remains to show that
MY and h do not coincide on new data.

We assume that Y non-trivially depends on Ŷ and Y is not a singleton. This means, given some x,
for every ŷ there exists a ŷ′ ∈ Y such that g(x, ŷ) 6= g(x, ŷ′). Define fφ such that for ŷ = fθ(x), we
set fφ(x) = ŷ′. Then,

EŶ=fφ(X)E[Y |X, Ŷ ] =MY (X, Ŷ ) 6= h(X, Ŷ )

which concludes the proof.
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D.4 Proof of Proposition 4

Output overlap guarantees that P [Ŷ = fφ(x)|X = x] > 0 in the training distribution D(fθ) for any
x ∈ X . Identification and extrapolation to models fφ that satisfy output overlap with fθ follows
from positivity (Lemma 9) and the causal graph (Figure 1) which implies that there is no unobserved
confounding and E[Y |X = x, Ŷ = ŷ] = E[Y |X = x,do(Ŷ = ŷ)].

D.5 Proof of Proposition 5

We first note that the overparameterization assumption implies that g1 ∈ G and fθ are linearly
independent. (Proof by contradiction. If not, then there exists α1 6= α′1, α2 6= α′2 and functions
g1, g

′
1 ∈ G such that α1g1(x) + α2fθ(x) = α′1g

′
1(x) + α′2fθ(x) for all x; it implies that α1g1(x)−

α′1g
′
1(x) = (α2 − α′2)fθ(x) for all x. α1g1(x) − α′1g′1(x) ∈ G since the class G is closed under

addition. This leads to a contradiction with the fact that fθ(·) is overparametrized with respect to G,
which requires there exist no function g ∈ G such that g(x) = cfθ(x) for some c > 0.)

Next, since any h ∈ H is separable in X and Ŷ , linear in Ŷ , and that h(·, ŷ) ∈ G for any ŷ, we
have that h(x, ŷ) = g′1(x) + α′ŷ for some g′1 ∈ G and some constant α′ ∈ R. Therefore, finding
MY amounts to solve g′1, α

′ from the observational data relationship g1(X) + αŶ = g′1(X) + α′Ŷ

subject to the constraint that Ŷ = fθ(X). Plugging in the constraints gives g1(X) + αfθ(X) =
g′1(X) + α′fθ(X). This equations gives a unique solution that g′1 = g1 and α′ = α if we have
observation from all values of X , hence the identifiability ofMY .

D.6 Proof of Proposition 6

The proof is inspired by Wang and Blei [67] and Puli et al. [53]. Because Ŷ is discrete and
E[Y |do(Ŷ = ŷ), X = x] is separable, we have that

∂

∂x
E[Y |do(Ŷ = ŷ), X = x] =

∂

∂x
g1(x) =

∂

∂x
E[Y |Ŷ = ŷ′, X = x]

for any pair of Ŷ , X that are observable, i.e. ŷ′ = fθ(x). This implication is due to g2(ŷ) being
a piecewise constant function (its partial derivative is zero with respect to x). Therefore,MY is
identifiable as

MY (x, ŷ) = E[Y |do(Ŷ = ŷ), X = x] = E[Y |Ŷ = ŷ, X = x′] +

∫ x

x′

∂

∂x
E[Y |Ŷ = ŷ′, X = x]dx,

for any x′ 6= x such that (x′, ŷ) is observed. This equation establishes the identifiability ofMY .
It also implies that the solution of the risk minimization problem (8) must coincides with MY

if H satisfies the identifiability condition, i.e. H contains only separable functions g(x, ŷ) with
differentiable g1, g2; these constraints implies the uniqueness of solution to the risk minimization
problem, hence the solution must coincide withMY .
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E Experiment details and additional experiments

E.1 Data and Licenses

Data in folktables was extracted from Census Bureau databases, which collected data in standardized
surveys with consent.2 The Census Bureau takes care to ensure that through their pre-processing of
survey results, personally identifiable information is not included in their data releases.3

The income dataset with binary outcome variables used in the main text is the ACSIncome task
defined in folktables, with data from the 2018 Census from the state of California. The income dataset
with continuous outcome variables is a modified version of ACSIncome that performs the same
pre-processing, except it leaves the income target variable as a real number, rather than thresholding
to produce a binary outcome. Additional experiments below (referred to as Census travel time) were
conducted on the ACSTravelTime task defined in folktables, with data from the 2018 Census from
the state of California. The features and preprocessing for these datasets can be found in the code
documentation of [11]. The data contains 10 features and the target variable is a binary indicator for
whether an individual became delinquent on a loan:

X= [RevolvingUtilizationOfUnsecuredLines, age, NumberOfTime30-59DaysPastDueNotWorse,
DebtRatio, MonthlyIncome, NumberOfOpenCreditLinesAndLoans, Num-
berOfTimes90DaysLate, NumberRealEstateLoansOrLines, NumberOfTime60-
89DaysPastDueNotWorse, NumberOfDependents],

Y= SeriousDlqin2yrs

E.2 Experimental details

Machine learning models were trained using functionalities from sklearn [50] with default parameters
if not specified otherwise. We use the class LinearRegression from sklearn.linear_model
for the linear models and the class MLRRegressor from sklearn.neural_network for the fully
connected neural network models.

Training data. The Census income dataset composes of 195665 datapoints, if not specified otherwise
the full dataset was used for training.

Test dataset. We train fφ on randomized labels. More precisely, we randomly shuffle the labels
among data points in the original dataset to obtain fφ. This process leads a model that is different
from fθ which serves to test the extrapolation performance of our meta-machine learning model.

Overparameterization. For the experiment in Figure 2(c) second degree polynomial features were
included to achieve overparameterization (using sklearn.preprocessing), no further hyperparam-
eters were set; all second-order terms were included in the overparameterization. For the experiments
in Figure 3(a) we simulate the degree of overparameterization by working with neural networks and
varying the number of neurons in the hidden layers using the parameter hidden_layer_sizes.

Randomization. For the randomized decision experiments we use Gaussian noise. If not specified
otherwise it is drawn from N (0, 1).

Discretization. To obtain discrete predicions, we round the prediction outputs of the linear model fθ
so we achieve 4 distinct discrete values.

Finite data. The finite data experiments were conducted on datasets with a continuous target variable
Y (Census income), and performance was assessed using root mean squared error (RMSE). To
simulate the effect of trainingset size we randomly subsample the original data to obtain a smaller
training set size for our meta machine learning model.

We simulate different amounts of distibrution shift by choosing φ′ = ρθ + (1− ρ)φ where θ are the
parameters of the model trained on the original data, and φ are the parameters of a model trained on
randomized labels.

Infrastructure. Experiments were run on 4 CPU cores for a total of 200 hours.

2https://www.census.gov/programs-surveys/acs/microdata/documentation.html.
3https://www.census.gov/data/developers/about/terms-of-service.html.
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Figure 5: Effect of training dataset size. With a moderate amount of training data, randomized decisions and
overparameterization can find transferable functions hSL. The variance in the extrapolation loss increases with
the distribution shift magnitude.

Baseline. The baseline in the plots is the RMSE of a model trained on samples from the test set and
evaluated on a validation set that is held out from the test set, but from the same distribution. Thus it
represents a setting with no distribution shift.

E.3 Additional Experioments: Learning with finite data

Recall that causal identification results are feasibility guarantees. They imply that MY can be
recovered from observational data in the limit of infinite data. However, in practical settings, we only
get access to a finite set of data points from the training distribution. In the following, we show that
supervised learning can successfully learn transferable functions hSL with only a few training data
points, given that our identifiability conditions are satisfied.

In Figure 5(a)-(b) we consider the same setup as in Section 4.1; we fix performativity strength at
α = 0.5, and vary training set size. We find that only moderate dataset sizes are necessary for hSL to
identify an accurate model that is robust to performative distribution shifts in our identifiable settings.

In Figure 5(c) we choose N = 5000 and investigate the performance of supervised learning as we
vary the distance between predictions from fθ and fφ, i.e. the distribution shift between train and test
set. We achieve this by interpolating the parameters of the predictive model in the test set between
fθ and f ′φ where the latter is trained on randomized labels as before. We observe that the error
and variance of hSL grow with the magnitude of the distribution shift. This can be explained as
failures in the meta model to identify the transferable causal modelMY become more pronounced as
distribution shifts get larger. In addition, the variance is expected to grow further away from the mean
of fθ(x) due to data scarcity implied by the shape of the noise distribution in the randomized fθ.
This observation supports our recommendation to explore the parameter space gradually for policy
optimization under performativity, instead of directly extrapolating to models fφ that are substantially
different from fθ.

E.4 Additional experiments: Robustness to model misspecifications

We investigate the robustness of supervised learning to misspecification of g. Therefore we focus
on discrete classification where fθ and fφ are binary predictors. We use gradient boosted decision
trees implemented in sklearn [50] with the default hyperparameters. Performance is assessed using
classification accuracy. Experiments are performed for the dataset used in the main body, as well as
the Census travel time and Kaggle credit score datasets [27].

Our theoretical result in Proposition 6 depend on knowing the correct model classH to optimize hSL
on. In this section we test the resiliency to model misspecification. Therefore, we defineH to be the
class of linear functions but construct a non-linear data generation process as follows

g(x, ŷ) = ŷ with probability p, and g(x, ŷ) = g1(x) otherwise, (19)
where g1(x) is a (possibly non-linear) function that maps x to its original label y in the original
dataset, and p ∈ [0, 1] is a hyperparameter for performativity strength that we vary. Like in the finite
data experiments, we also vary the distance between predictions from fθ and fφ, i.e. distribution shift
magnitude.

Effect of distance between fθ and fφ. In Figure 6(a) we investigate the effect of the distirbution-
shift magnitude for p = 0.5. The distribution shift magnitude is simulated by changing the data that
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fφ is trained on. As in the finite data experiments, fφ is fit on a noisy version of the original dataset,
where we tune the level of noise and generate noisy labels y′ via

y′ = y with probability 1− γ, and 1− y with probability γ.

In other words, γ parameterizes the distance between the predictors fθ (fit to clean data) and fφ fit to
noisy data. With γ = 0.5 the label y and y′ are uncorrelated.

We observe that despite misspecification, the meta model benefits of having access to ŷ and the
accuracy of hSL remains close to in-distribution accuracy as long as distribution shifts are not too
large (specifically, until fθ and fφ become uncorrelated).

Strength of performativity. Next, we investigate the effect of varying p for a fixed γ = 0.45.
Figure 6(b) highlights that the benefit of adding ŷ as a feature persists across almost all values of p.
However, hSL is more prone to errors from model misspecification when performativity is very weak.
This is intuitive, since Ŷ is correlated with the outcome Y , and a misspecified hSL might be best off
attributing this correlation to the causal link; in such extreme cases, the results suggests that accuracy
is slightly improved by dropping Ŷ as a feature.

Weaker accuracy of fθ. Finally, we investigate the effect of varying p for a model fθ that is fit to
noisy labels in Figure 6(c). We see that if the accuracy of fθ is reduced (by fitting to noisy labels),
the superiority of performativity-agnostic learning for p→ 0 disappears.

In summary, for the experimental setup used in this section we found qualitatively similar results
across all datasets; including Ŷ as a feature outperforms not including it, even when little performa-
tivity is present.
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Figure 6: Performance degrades gracefully under model misspecification for different datasets. Census
income prediction dataset(first row), Census travel time dataset (second row), Kaggle credit score dataset (thrid
row). (a) Accuracy on the test distribution (higher is better) is plotted against distribution shift magnitude;
supervised learning remains accurate until the train and test predictors, fθ and fφ, are uncorrelated (shift
magnitude of 0.5). (b) Accuracy is plotted against performativity strength; despite model misspecification,
accuracy is higher when Ŷ is included as a feature, across most performativity strengths. (c) When the training
set predictor fθ is fit to random labels and is less accurate than fφ, including Ŷ as a feature universally improves
accuracy.
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F Societal impact

The fact that predictions are performative and have an impact on the population they predict is a
natural phenomenon observed in various applications. In this work, we discuss one dimension of
performativity and investigate how to develop an improved causal understanding of these performative
effects from data. Our intent is to develop this understanding from observational data in order to
foresee potential negative consequences of a future model deployment before actually deploying it
across an entire population. Typical machine learning approaches would not take these consequences
into account when training a predictive model. At most, they would observe performative effects in
a monitoring step after deploying a model and then decide post-hoc whether the model satisfies a
given constraint. At this point, harm might already have been caused, even if unintentional. Naturally,
though, any improvement in understanding can also be used with bad intent. Instead of being treated
as a potential for harm to mitigate against, performative effects could also be instrumentalized by
powerful profit-maximizing firms or self-interested agencies in order to achieve their goals [21].
These goals might not always be aligned with social welfare and if the respective firm has high
performative power, i.e. ability to influence performative effects, these actions hold the potential for
social harm.
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