
6 Proofs

6.1 Proof of Theorem 3.2

Proof of Theorem 3.2. Recall that

vt = argmin
v2Rd

n
krf(✓t)� vk2 s.t. rg(✓t)>v � �(✓t)

o
, (20)

and its solution is vt = rf(✓t) + �trg(✓t), where �t is the Lagrange multiplier of (20). We have
rg(✓t)>vt � �(✓t) by the constraint in (20). In addition, by the slack condition of (20), we have

�trg(✓t)>vt = �t�(✓t),

which plays an important role in the derivation below.

If g(✓t)� c > 0, we have Pµ(✓t) = f(✓t) + µ(g(✓t)� c), and hence
d

dt
Pµ(✓t) = �(rf(✓t) + µrg(✓t))>vt

= �kvtk2 � µrg(✓t)>vt + �trg(✓t)>vt //using rf(✓t) = vt � �trg(✓t)
 �kvtk2 � (µ� �t)�(✓t) //using µrg(✓t)>vt � µ�(✓t) and �trg(✓t)>vt = �t�(✓t)

= �kvtk2 � (µ� �t)[�(✓t)]+. //�(✓t) � 0 by sign condition (7)

If g(✓t)� c < 0, we have Pµ(✓t) = f(✓t) and hence d
dtPµ(✓t) = �rf(✓t)>vt.

If g(✓t)� c = 0, we are on the non-differentiable points of Pµ(✓t) = f(✓t) + µ[g(✓t)� c]+. In this
case, because the moving direction is orthogonal to rg(✓t), that is, d

dtg(✓t) = rg(✓t)
>
vt = 0, we

have d
dt [g(✓t)� c]+ = 0. Therefore, we also have d

dtPµ(✓t) = �rf(✓t)>vt.
Therefore, when g(✓t)� c  0, we have

d

dt
Pµ(✓t) = �rf(✓t)>vt

= �kvtk2 + �trg(✓t)>vt //using rf(✓t) = vt � �trg(✓t)
= �kvtk2 + �t�(✓t) //by the slack condition �trg(✓t)>vt = �t�(✓t)

= �kvtk2 � �t[��(✓t)]+. //�(✓t)  0 by sign condition (7)

Combining the cases above, we have
d

dt
Pµ(✓t)  �kvtk2 � (µ� �t)[�(✓t)]+ � �t[��(✓t)]+

= �Kµ��t(✓t,�t). //by the definition of the KKT score in (9) (21)

6.2 Proof of Corollary 3.3

Proof of Corollary 3.3. i) At each time point t 2 [0,1), dividing both sides of (11) by µ > 0 and
taking µ! +1 gives

d

dt
[g(✓t)� c]+  �[�(✓t)]+  0.

Integrating this on time interval [0, t] gives

min
s2[0,t]

[�(✓s)]+ 
1

t

Z t

0
[�(✓s)]+ds 

1

t
([g(✓0)� c]+ � [g(✓t)� c]+) 

1

t
[g(✓0)� c]+.

ii) Taking µ = 0 in (11), we obtain
d

dt
f(✓t)  �krf(✓t) + �tg(✓t)k2 � �t[��(✓t)]+ + �t[�(✓t)]+, 8t 2 [0,1).

If we have g(✓t)  c at time t, we have [�(✓t)]+ = [g(✓t) � c]+ = 0 by the sign condition (7),
which yields (13).
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6.3 Proof of Corollary 3.5

Proof of Corollary 3.5. 1) Under the sign condition of � in (7), Assumption 3.4 is equivalent to say
that �t[�(✓t)]+  �max[�(✓t)]+ for all time t 2 [0,+1). Therefore, following the definition of the
KKT score in (9), we have Kµ��t(✓t,�t) � Kµ��max(✓t,�t). Hence, (14) holds following (11).

2) Take ⌫ = µ� �max and integrate both sides of (14) in time interval [0, t]. We get

min
s2[0,t]

K⌫(✓s,�s) 
1

t

Z t

0
K⌫(✓s,�s)ds

 1

t
(P⌫+�max(✓0)� P⌫+�max(✓t))

 1

t
(P⌫+�max(✓0)� f

⇤),

where we used that P⌫+�max(✓t) = f(✓t) + (⌫ + �max)[g(✓t)� c]+ � f(✓t) � f
⇤.

3) If ✓t is a fixed point (i.e., d✓t/dt = �vt = 0), then d
dtPµ(✓t) = 0 for 8µ � 0. But d

dtPµ(✓t) 
�Kµ��t(✓t,�t) following (11). Hence Kµ��t(✓t,�t)  0, for all µ � 0. Because �t <1, taking
µ = �t + ⌫ > �t gives that K⌫(✓t,�t) = 0 for any ⌫ � 0. Hence the KKT condition holds.

6.4 Proof of Proposition 3.6

Proof of Proposition 3.6. 1) It is easy to note that

{✓ : g(✓)  c0} = {✓ : [g(✓)� c]+  [g(✓0)� c]+}.

Therefore, ✓t is contained in {✓ : g(✓)  c0} because [g(✓t) � c]+  [g(✓0) � c]+ for 8t 2 [0,1)
as shown in Corollary 3.3.

2) Note that

�t = max

 
�(✓t)�rf(✓t)>rg(✓t)

krg(✓t)k2
, 0

!
 �(✓t)

krg(✓t)k2
+
krf(✓t)k
krg(✓t)k

. (22)

Therefore, if max(�(✓), krf(✓)k , 1/ krg(✓)k)  M < +1, it is easy to see that �max  M
3 +

M
2
<1.

Obviously, the condition that max(�(✓), krf(✓)k , 1/ krg(✓)k) < +1 can be replaced by a finite
bound of the right hand side of (22), which is a weaker condition.

6.5 Proof of Proposition 3.7

Proof of Proposition 3.7. In the lexico case, we have c = g
⇤ and hence g(✓t)� c = g(✓t)� g

⇤ � 0
and �(✓t) � 0 for 8t 2 [0,1). Plugging this into (11), we have for any µ � 0,

d

dt
(f(✓t) + µ(g(✓t)� g

⇤))  �krf(✓t) + �trg(✓t)k2 � (µ� �t)�(✓t), 8t 2 [0,1).

Taking integration on both sides on time interval [0, t] gives:
Z t

0

⇣
krf(✓s) + �srg(✓s)k2 + (µ� �s)�(✓s)

⌘
ds  (f(✓0)� f(✓t)) + µ(g(✓0)� g(✓t)))

(23)
 (f(✓0)� f

⇤) + µ(g(✓0)� g
⇤)). (24)

Taking µ! +1 in (23) gives
Z t

0
�(✓s)ds  g(✓0)� g

⇤
, (25)

which gives mins2[0,t] �(✓s)  1
t

R t
0 �(✓s)ds  1

t (g(✓0)� g
⇤).
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Taking µ = 0 in (23) gives
Z t

0
krf(✓s) + �srg(✓s)k2 ds 

Z t

0
�s�(✓s)ds+ (f(✓0)� f

⇤).

To get the desirable upper bound of
R t
0 krf(✓s) + �srg(✓s)k2 ds, the main challenge is to boundR t

0 �s�(✓s)ds. Because we assume �(✓t)  � krg(✓t)k⌧ with ⌧ � 1, from Lemma 6.1, we have

�t�(✓t) 
⇣
� krg(✓t)k⌧�1 + krf(✓t)k

⌘
�

1
⌧ �(✓t)

1� 1
⌧  C0�(✓t)

1� 1
⌧ ,

where C0 = sup✓2Rd

⇣
� krg(✓)k⌧�1 + krf(✓)k

⌘
�

1
⌧ . We have

Z t

0
�s�(✓s)ds  C0

Z t

0
�(✓s)

1� 1
⌧ ds

 C0

✓Z t

0
�(✓s)ds

◆1� 1
⌧
✓Z t

0
1ds

◆ 1
⌧

 C0

✓Z t

0
�(✓s)ds

◆1� 1
⌧

t
1
⌧

 C0(g(✓0)� g
⇤)1�

1
⌧ t

1
⌧ , //using (25)

Therefore,

min
s2[0,t]

krf(✓s) + �trg(✓s)k2 
1

t

Z t

0
krf(✓s) + �trg(✓s)k2 ds

 1

t

Z t

0
�s�(✓s)dt+

1

t
(f(✓0)� f

⇤)

 1

t1�
1
⌧

C0 (g(x0)� g
⇤)1�

1
⌧ +

1

t
(f(✓0)� f

⇤).

This completes the proof.

Lemma 6.1. Assume

�t = max

 
�(✓t)�rf(✓t)>rg(✓t)

krg(✓t)k2
, 0

!
, and �(✓t)  � krg(✓t)k⌧ ,

where � � 0 and ⌧ � 0. Then we have

�t�(✓t) 
⇣
� krg(✓t)k⌧�1 + krf(✓t)k

⌘
�

1
⌧ �(✓t)

1� 1
⌧ .

Proof. From �(✓t)  � krgtk⌧ , we have
�(✓t)

krgtk
 � krg(✓t)k⌧�1 and

�(✓t)

krgtk
 �

1
⌧ �(✓t)

1� 1
⌧ .

Since �(✓t) � 0,

�t =
max(0,�(✓t)�rf(✓t)>rgt)

krgtk2
 �(✓t) + krf(✓t)k krgtk

krgtk2
.

Therefore,

�t�(✓t) 
�(✓t)2

krgtk2
+ krf(✓t)k

�(✓t)

krgtk


⇣
� krg(✓t)k⌧�1 + krf(✓t)k

⌘
�(✓t)

krgtk


⇣
� krg(✓t)k⌧�1 + krf(✓t)k

⌘
�

1
⌧ �(✓t)

1� 1
⌧ .
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6.6 Proof of Proposition 3.8

Proof of Proposition 3.8. Because limt!1 ✓t = ✓
⇤ and �, rg are continuous, we have

limt!1 �(✓t) = �(✓⇤), and limt!1 krg(✓t)k = krg(✓⇤)k .

Eq. (25) shows that
R1
0 �(✓t)dt  g(✓0) � g

⇤
< +1. Therefore, we must have limt!1 �(✓t) =

�(✓⇤) = 0. On the other hand, we have limt!1 kvtk = 0 by Assumption. This yields
limt!1 K⌫(✓t,�t) = 0 for any ⌫ > 0 and applying Proposition 6.2 yields the result.

Proposition 6.2. Consider the lexico optimization (3) with c = g
⇤ = inf✓ g(✓) > �1, and

� satisfying the sign condition (7). Assume f , g, rg, � are continuously differentiable. Let
{(✓t,�t) : t � 0} be a sequence which satisfies limt!1 K⌫(✓t,�t) = 0 for some ⌫ > 0. As-
sume that ✓⇤ is a limit point of {✓t} as t ! 1, and that the rank of the Hessian matrix r2

g(✓)
equals a constant in a neighborhood of ✓⇤. Then there exists !

⇤ 2 Rd, such that the lexico KKT
condition in (16) holds.

Proof. In the lexico case, we have �(✓) � 0. The assumption that limt!1 K⌫(✓t,�t) = 0 for some
⌫ > 0 yields say that limt!1 �(✓t) = 0 and limt!1 krf(✓t) + �trg(✓t)k = 0. We just need to
prove that limt!1 krg(✓t)k = 0 and use Proposition 6.3 below.

Because we assume that ✓⇤ is a limit of {✓t}, there exists an increasing sequence {tn : n = 1, 2, · · · }
such that tn ! +1 and ✓tn ! ✓

⇤ as n ! +1. Because �, rg are continuous, we have
limn!1 �(✓tn) = �(✓⇤) = 0, and limn!1 krg(✓tn)k = krg(✓⇤)k .
Because �(✓⇤) = 0, by the sign condition of �, we have sign(g(✓⇤)�g⇤) = sign(�(✓⇤)) = 0. Hence
g(✓⇤) = g

⇤ and ✓
⇤ is a minimum point of g. This gives 0 = krg(✓⇤)k = limn!1 krg(✓tn)k. On

the other hand, we have limt!1 krf(✓t) + �trg(✓t)k = 0 by Assumption. Applying Proposi-
tion 6.3 yields the result.

Proposition 6.3. Assume f , g, rg are continuously differentiable. Let {(✓t,�t) : t � 0} be a
sequence which satisfies limt!1 krg(✓t)k = 0 and limt!1 krf(✓t) + �trg(✓t)k = 0. Assume
that ✓⇤ is a limit point of {✓t} as t ! 1, and that the rank of the Hessian matrix r2

g(✓) equals a
constant in a neighborhood of ✓⇤. Then there exists !⇤ 2 Rd, such that the lexico KKT condition in
(16) holds.

Proof. Because we assume that ✓⇤ is a limit of {✓t}, there exists an increasing sequence {tn : n =
1, 2, · · · } such that tn ! +1 and ✓tn ! ✓

⇤ as n ! +1. Because rg is continuous, we have
rg(✓⇤) = limn!+1rg(✓tn) = 0.

krf(✓t) + �trg(✓t)k = krf(✓t) + �t(rg(✓t)�rg(✓⇤))k
=
��rf(✓t) + �tr2

g(✓0t)(✓t � ✓
⇤)
�� //Taylor expansion

=
��rf(✓t) +r2

g(✓0t)!
0
t

�� ,
where ✓

0
t is a convex combination of ✓t and ✓

⇤, and we defined !
0
t = �t(✓t � ✓

⇤).

Define !t = (r2
g(✓0t))

+rf(✓t), where (r2
g(✓0t))

+ denotes the Moore–Penrose pseudo-inverse of
matrix r2

g(✓0t), which satisfies that

!t = argmin
!2Rd

⇢
k!k s.t. ! 2 argmin

w

��rf(✓t) +r2
g(✓0t)w

��
�
.

Therefore,��rf(✓t) +r2
g(✓0t)!t

�� 
��rf(✓t) +r2

g(✓t)!
0
t

�� = krf(✓t) + �trg(✓t)k .
Because krf(✓tn) + �tnrg(✓tn)k ! 0 as n! +1, we have

��rf(✓tn) +r2
g(✓0tn)!tn

��! 0.

Note that ✓tn ! ✓
⇤ and ✓

0
tn ! ✓

⇤ as n! +1. By the constant rank assumption and Corollary 3.5
of Stewart (1977) (rephrased in Lemma 6.4), we have that (r2

g(✓0tn))
+ ! (r2

g(✓⇤))+ and hence
!tn ! !

⇤ as n! +1, where !
⇤ := (r2

g(✓⇤))+rf(✓⇤).

Therefore, we have
��rf(✓t) +r2

g(✓0t)!t

�� !
��rf(✓⇤) +r2

g(✓⇤)!⇤
�� ., which implies that��rf(✓⇤) +r2

g(✓⇤)!⇤
�� = 0.
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Lemma 6.4 (Corollary 3.5 of Stewart (1977)). Let {At} be a sequence of matrices that converges
to A⇤ as t!1. Then a necessary and sufficient condition that

lim
t!1

A
+
t = A

+
⇤

is that rank(At) = rank(A⇤) for sufficiently large t.

6.7 Primal-Dual Methods and Non-convexity

Example 6.5 (Expansion of Example 3.9). Consider a simple problem of form
min
✓2R

|✓ � 1|↵ s.t. |✓|↵  b
↵
,

where b 2 (0, 1) and ↵ > 0. Note that all ↵ > 0 yields an equivalent problem whose true solution
and the associated Lagrange multiplier are

✓
⇤ = b, �

⇤ = (1� b)↵�1
/b

↵�1
. (26)

However, the choice of ↵ changes the convexity and hence impacts the results of different algorithms.
The dual function is

�(�) = min
✓

|✓ � 1|↵ + �(|✓|↵ � b
↵).

If ↵  1, we can show �(�) = min (1, �) � �b
↵
. Maximizing it yields �̂⇤ = 1, which is different

from the true �
⇤ in (26). In this case, minimizing f(✓) + �̂

⇤
g(✓) would yield ✓̂

⇤ = 0, or 1, which is
different from the true solution ✓

⇤ = b.

Even if we plugin the true Lagrange multiplier �⇤ in (26) and minimize f(✓)+�
⇤
g(✓) (see the green

curve in Figure (5)), we would still yield ✓̂
⇤ = 0 or 1. As shown in Figure 5, the true solution ✓

⇤ = b

is a local maximum (rather than minimum) of f(✓) + �
⇤
g(✓).

In comparison, Algorithm 1 can find the true solution for all ↵ > 0. This is because the algorithm
jointly updates ✓t and �t, such that the update direction vt = rf(✓t) + �trg(✓t) always points
towards the true solution ✓

⇤ (see the red curve in Figure 5). The way we update �t in Algorithm 1
can be viewed as a “closed loop controller” that adjust �t in a way that stabilizes ✓t around ✓

⇤.

Figure 3: Green curve: f(✓) + �⇤g(✓) with the true Lagrange multiplier �⇤ associated with the true solution
✓⇤ (green dash) in (26); Red curve: f(✓) + �tg(✓) with the �t associated with ✓t (red dash) in Algorithm 1;
the red arrow shows the update direction of in Algorithm 1, which points towards the true solution ✓⇤. But
minimizing f(✓) + �⇤g(✓) would yield ✓ = 0 or 1, which is not the true solution; instead, the true solution ✓⇤

(green dash line) is a local maximum of f(✓) + �⇤g(✓).

7 Multiple Constraints

Consider the constrained optimization with m different constraints {gi}mi=1:
min
✓2Rd

f(✓) s.t. gi(✓)  ci, 8i 2 [m].

To solve this problem, we iteratively update the parameter by
✓t+1  ✓t � ✏vt,

where vt is choosen to be solve the following optimization:

vt = argmin
v2Rd

⇢
1

2
krf(✓t)� vtk2 s.t. rgi(✓t)>v � �i(✓t)

�
, (27)
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where �i is a control function associated with constraint gi, which should satisfy the sign condition:

sign(�i(✓)) = sign(gi(✓)� ci), 8✓ 2 Rd
, 8i 2 [m].

The Lagrange dual of (27) is

max
��0

�(�), �(�) = min
v2Rd

(
1

2
krf(✓t)� vtk2 �

mX

i=1

�i(rgi(✓t)>v � �i(✓t))

)
, (28)

where � 2 Rm is the Lagrange multiplier and � is the dual function. It is easy to see that the optimal
vt in (28) is achieved by

vt = rf(✓t) +
mX

i=1

�irgi(✓t),

and plugging it into � yields

�(�) = �1

2

�����rf(✓t) +
mX

i=1

�irgi(✓t)

�����

2

+
mX

i=1

�i�i(✓t) +
1

2
krf(✓t)k2 .

Therefore, the dual problem reduces to

min
��0

8
<

:
1

2

�����rf(✓t) +
mX

i=1

�irgi(✓t)

�����

2

�
mX

i=1

�i�i(✓t)

9
=

; .

This is a convex quadratic programming and can be solved efficiently for small m.

8 Additional Materials on Experiments

8.1 2D Toy

We use an Rd-toy example with f(✓) = k✓ � ✓
⇤k2 and g(✓) =

��a>✓ + b
��2, where ✓, ✓

⇤
, a 2 R2,

b 2 R are constants. Note that the optima set of g is the line a
>
✓ + b = 0.

In Figure 4, we show the trajectory of the algorithm with different ↵, � for constrained optimization
(4(a) and (b)) and lexicographic optimization (4(c)). We can see that the algorithm converges to the
true solution in call cases. As ↵ and � increase, the algorithm tends to descent the constraint faster.
We use constant step size by default. In Figure 4(d), we show an example of trajectories when we
use two popular adaptive step size schemes, Adam and RMSprop.

α= . 1
α=1

α=10
α=∞

β=∞
β=1

β= . 01 α= . 1
α=1

α=10
α=∞

Adam
CRnstant steS size
RMSSrRS

(a) Varying ↵ (b) Varying � (c) Vary ↵ (d) Different Stepsize
(c = 0.01,� = 1) (c = 0.01,↵ = 20) (c = g⇤ = 0,� = 1) (c = 0.01,↵ = � = 1)

Figure 4: Algorithm trajectories on 2D toy with different threshold c and (↵,�) in (8). The contours denote
the objective f and the green areas are the feasible set. The stars are true solutions.

8.2 More Results

Ablation on Batch Size For the fine-grained image classification tasks, we conduct an additional
ablation study with different batch sizes. As shown in Table 4, different batch size yield similar
performance.

8.3 Experiment Details

For the fairness regularization experiment, our model is a two-layer ReLU network with 50 hidden
neurons. We use the SGD optimizer with a learning rate of 0.1 and a weight decay factor of 10�2.
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`2 regularization (linear combination) Lexico (batch size)
1 2.5⇥ 107 2.5⇥ 106 2.5⇥ 105 2.5⇥ 104 64 128 256

Oxford Flower AlphaNet-A0 96.6±0.2 96.8±0.2 97.2±0.1 97.7±0.2 97.3±0.1 97.6±0.1 97.7±0.1 97.6±0.1
EffNet-B0 96.4±0.1 96.7±0.1 96.9±0.1 97.2±0.1 96.9±0.1 97.1±0.1 97.1±0.1 97.0±0.1

Table 4: Top-1 test accuracy on fine-grained image classification tasks obtained by lexicographic optimization
with different batch sizes, and the linear combination with different �.

Lo
g

va
lu

e
0 100 200 300 400 500

−6

−4

−2

0 target
constraint

Threshold
lambda

Iterations

Figure 5: An example of the curve of constraint function, target function and �t w.r.t. the iteration in our
algorithm on the toy test function in ‘sparsity representation learning’ in Section 4.

We find the left-most endpoint of the Pareto set by solving the lexicographic optimization problem
with Algorithm 1. The other points are found by solving the constrained optimization problem with
uniformly increasing c, again using Algorithm 1. We set ↵ = � = 1 in Algorithm 1 for all the
experiments.

For semi-supervised learning, we use WRN-28-10 as the network architecture, SGD optimizer with
0.03 learning rate, 0.9 momentum and 5 ⇥ 10�4 weight decay. Each batch contains 512 unlabeled
data and 64 labelled data. The learning rate is cosine decayed, and RandAugment is used as data
augmentation to construct the consistency loss. We conduct experiments on 8 V100 GPUs.

For semantic segmentation, Cityscapes dataset labels 19 different categories (with an additional un-
known class) and consists of 2975 training images, 500 validation images and 1525 testing images.
We do an evaluation on the Cityscapes validation set in this paper. We closely follow the fine-tuning
settings and hyper-parameters proposed in SWIN transformers (Liu et al., 2021). For the SWIN
transformer, the window size is 7, the MLP ratio is 4, the drop path rate is 0.3 and the relative po-
sitional embedding is used. For the UperNet, the dropout rate is 0.1, and the number of channels
is 512. During training, the image is re-scaled to 2049 ⇥ 1025 and a 769 ⇥ 769 random crop is
applied. The batch size is 8 while synchronized batch normalization is used. During evaluation, the
test image size is 2049⇥ 1025 and single scale evaluation with flipping is applied. The data process
pipeline follows MMSegmentation (2020). We conduct experiments on 8 V100 GPUs.
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