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Appendix

7 Proof of Theorem 2

Proof. Let eqi = φQ(qi; θt) be the query embedding, ezi = φD(zi; θt) be the document embedding,
and ezJ = φD(zJ ; θt). Recall that E1, E2, . . . , Em be the (potentially stale) embeddings in the cache.
Let s+ = eqi · ezi , sj = eqi · φD(zj ; θt), s̃j = eqi · Ej .
Recall that

LCEi(θt) = − log

(
exp(βs+)

exp(βs+) +
∑
j 6=yi exp(βsj)

)
.

For simplicity, we use ∇ and ∇̃ to denote ∇LCEi
(θt) and ∇L̃CEi

(θt) respectively. We first observe
that

∇̃ = EJ [gt] = −β∇s+ +
∑
j

p̃jβ∇sj .

This follows as simple consequence of the Gumbel-Max sampling. Furthermore, we have

∇ = −β∇s+ +
∑
j

pjβ∇sj .

From the above expression, we have that

‖∇ − ∇̃‖2 = β‖
∑
j

(pj − p̃j)∇sj‖2

≤ β
∑
j

|pj − p̃j |‖∇sj‖2

≤ βM‖p− p̃‖1.
The last inequality follows from bounded nature of the score ‖∇sj‖ ≤M . Consider a term pj − p̃j .
We have that

pj − p̃j =
exp(βsj)∑
l exp(βsl)

− exp(βs̃j)∑
l exp(βs̃l)

=
exp(βsj)∑
l exp(βsl)

− exp(β(sj + (s̃j − sj)))∑
l exp(β(sl + (s̃l − sl)))

≤ exp(βsj)∑
l exp(βsl)

(1− exp(−β‖s̃− s‖∞))

= pj(1− exp(−2β‖s̃− s‖∞))

≤ 2pjβ‖s̃− s‖∞
Similarly, we have that

p̃j − pj ≤ 2p̃jβ‖s̃− s‖∞.

Thus we have that |pi − p̃i| ≤ 2β‖s̃− s‖∞(pi + p̃i) and thus
‖p− p̃‖1 ≤ 4β‖s̃− s‖∞

We bound ‖s̃− s‖∞ as follows. Suppose it is at most k updates since any embedding in E has been
updated. In particular, let tj denote the time step when j was last updated in E . Then, we have

|s̃j − sj | =
∣∣eqi · Ej − eqi · ezj ∣∣

≤ ‖eqi‖2
∥∥Ej − ezj∥∥2

≤
∥∥Ej − ezj∥∥2

=
∥∥φD(zj ; θt)− φD(zj ; θtj )

∥∥
≤ L

∥∥θt − θtj∥∥ ≤ ηβLM(t− tj)

Thus we have that ‖∇ − ∇̃‖2 ≤ 4ηβ3LM2k. When using the refresh fraction of ρ, it can be shown
the k is in expectation of the order 1

ρ − 1, which completes the proof.
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8 Proof of Theorem 3

To prove Theorem 3, we start with the following result.
Lemma 6. Let L = 1

m

∑m
i=1 LCEi

. Assume that a loss function LCEi
(θ) satisfies:

• (Bounded Gradients) We have that ‖LCEi
(θ)‖ ≤ 2M for all parameters θ ∈ Rp.

• (Smoothness) We have that ‖∇LCEi(θ)−∇LCEi(θ
′)‖2 ≤ S‖θ − θ′‖2.

Furthermore, suppose we run an approximate stochastic gradient descent with stochastic gradient
with bounded bias, ‖E[gt | θt]−∇L(θt)‖2 ≤ ∆t, and additionally ‖gt‖ ≤M for all t ∈ [T ]. If we
update our parameters with a stepsize η, we have that

1

T

T∑
t=0

E[‖∇L(θt)‖22] ≤ L(θ0)− L(θ∗)

ηT
+

1

2T

T∑
t=0

∆2
t + 2ηSM2.

Proof. From the Lipschitz continuous nature of the function L, we have

E[L(θt+1)] ≤ E
[
L(θt) +∇L(θt) · (θt+1 − θt) +

S

2
‖θt+1 − θt‖22

]
= E

[
L(θt)− η∇L(θt) · gt +

η2S

2
‖gt‖22

]
≤ E

[
L(θt)− η‖∇L(θt)‖22 − η∇L(θt) ·∆t

]
+

4η2SM2

2

≤ E
[
L(θt)− η‖∇L(θt)‖22 + η∆t‖∇L(θt)‖2

]
+ 2η2SM2.

The second inequality follows from bounded nature of gt. The above inequality can be further
bounded in the following manner:

E[L(θt+1)] ≤ E
[
L(θt)− η‖∇L(θt)‖22 + η∆t‖∇L(θt)‖2

]
+ 2η2SM2

≤ E[L(θt)]−
η

2
E[‖∇L(θt)‖22] +

η

2
∆2
t + 2η2SM2.

The second inequality follows from the fact that ab ≤ (a2 + b2)/2. Summing over all t ∈ [0, T ] and
using telescoping sum, we have

1

T

T∑
t=0

E[‖∇L(θt)‖22] ≤ L(θ0)− L(θT )

ηT
+

1

2T

T∑
t=0

∆2
t + 2ηSM2. (3)

This completes the proof of the lemma.

We now focus on the proof of Theorem 3..

Proof. We first note that under the assumptions of Theorem 3, ‖∇LCE(θt)‖ ≤ 2M and ‖gt‖ ≤ 2M .
This simply follows from the structure of∇LCE. Using the above lemma, we have the following:

1

T

T∑
t=0

E[‖∇LCE(θt)‖22] ≤ LCE(θ0)− LCE(θ∗)

ηT
+ 8η2β6L2M4

(
1

ρ
− 1

)2

+ 2ηSM2.

This follows simply from the bias bounded obtained in Theorem 2. Using η =

√
LCE(θ0)−LCE(θ∗)√

2TSM
specified in the theorem, we obtain

1

T

T∑
t=0

E[‖∇LCE(θt)‖22] ≤ 4M

√
S(LCE(θ0)− LCE(θ∗))

T
+

4β6L2M2(LCE(θ0)− LCE(θ∗))

ST

(
1

ρ
− 1

)2

.

This completes the proof of Theorem 3.
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9 Proof of Lemma 4 and Theorem 5

We use the following lemma in the proof of Lemma 4.
Lemma 7 (Lemma 5 in [30]). Given a random variable V ≥ a > 0, we have that

1

E[V ]
≤ E

[
1

V

]
≤ 1

E[V ]
+

Var(V )

a3
.

We now prove Lemma 4.

Proof. Our proof follows the proof approach in Theorem 1 in [30], modified to work with an `2
bound on the score gradients and simplified for our sampling scheme.

Assume that the positive element is z1 and thus the negative elements are z2, . . . , zm.

Let U = exp(βs1)β∇s1 + 1
α

∑
j∈S exp(βsj)β∇sj and V = exp(βs+) + 1

α

∑
j∈S exp(βsj). We

have that −β∇s1 + E[U ]
E[V ] = ∇LCEi and E[g] = −β∇s1 + E

[
U
V

]
We thus want to show that

E
[
U
V

]
≈ E[U ]

E[V ] .

Let k1, k2, . . . , kc be the c elements of S. We have that

E

[
U

V

]
= E

[
exp(βs1)β∇s1 + 1

α

∑c
j=1 exp(βskj )β∇skj

exp(βs1) + 1
α

∑c
j=1 exp(βskj )

]

= exp(βs1)β∇s1E
[

1

V

]
+ E

[
1
α

∑c
j=1 exp(βskj )β∇skj

exp(βs1) + 1
α

∑c
j=1 exp(βskj )

]
(4)

We first bound the first term in Equation (4) from above and below.

We have that V ≥ m exp(−β) and Var(V ) ≤ c exp(2β)α2 . Thus by Lemma 7 we have that

1

E[V ]
≤ E

[
1

V

]
≤ 1

E[V ]
+

c exp(2β)α2

m3 exp(−3β)
=

1

E[V ]
+

exp(5β)

αm2
.

This implies that

exp(βs1)β∇s1
Z

≤ exp(βs1)β∇s1E
[

1

V

]
≤ exp(βs1)β∇s1

Z
+

exp(6β)β|∇s1|
αm2

(5)

We now bound the second equation in Equation (4).

Let Sc−1 =
∑c−1
j=1 exp(βskj ). We have that

E

[
1
α

∑c
j=1 exp(βskj )β∇skj

exp(βs1) + 1
α

∑c
j=1 exp(βskj )

]
=
c

α
E

[
exp(βskc)β∇skc

exp(βs1) + 1
αSc−1 + 1

α exp(βskc)

]

=
c

αm

m∑
i=2

exp(βsi)β∇siE
[

1

exp(βs1) + 1
αSc−1 + 1

α exp(βsi)

]

=

m∑
i=2

exp(βsi)β∇siE
[

1

exp(βs1) + 1
αSc−1 + 1

α exp(βsi)

]
(6)

Now we have that

E

[
exp(βs1) +

1

α
Sc−1 +

1

α
exp(βsi)

]
= exp(βs1) +

c− 1

c
Z− +

1

α
exp(βsi)

= Z − 1

c
Z− +

1

α
exp(βsi),
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where Z− is the partition function restricted to just the negatives.

Using Z ≥ Z− and m exp(−β) ≤ Z ≤ m exp(β), we have that

Z

(
1− 1

c

)
≤ Z − 1

c
Z− +

1

α
exp(βsi) ≤ Z

(
1 +

exp(2β)

c

)
,

and thus by Lemma 7 we have that

1

Z

(
1− exp(2β)

c

)
≤ E

[
1

exp(βs1) + 1
αSc−1 + 1

α exp(βsi)

]
≤ 1

Z(1− 1
c )

+
1

α2

Var(Sc−1)

m3 exp(−3β)

≤ 1

Z(1− 1
c )

+
exp(5β)

αm2

≤ 1

Z

(
1 +O

(
1

c

))
+

exp(5β)

αm2

=
1

Z
+

exp(O(β))

αm2
.

We conclude that

E

[
1

exp(βs1) + 1
αSc−1 + 1

α exp(βsi)

]
=

1

Z
± exp(O(β))

αm2
(7)

Continuing Equation (6) by applying Inequality (7), we have that

E

[
1
α

∑c
j=1 exp(βskj )β∇skj

exp(βs+) + 1
α

∑c
j=1 exp(βskj )

]
=

m∑
i=2

(
exp(βsi)β∇si

Z
±

exp(βskj )β∇skj exp(O(β))

αm2

)

=

(
m∑
i=2

exp(βsi)β∇si
Z

)
± exp(O(β))

αm2

m∑
i=2

exp(βsi)∇si

=

(
m∑
i=2

exp(βsi)β∇si
Z

)
± exp(O(β))

αm2

m∑
i=2

∇si. (8)

Combining Inequalities (5) and (8), we have that

E

[
U

V

]
− E[U ]

E[V ]
= ±exp(O(β))

αm2

m∑
i=1

∇si,

and thus ∥∥∥∥E [UV
]
− E[U ]

E[V ]

∥∥∥∥
2

=
exp(O(β))

αm2

m∑
i=1

‖∇si‖

=
exp(O(β))M

αm
.

We can now prove Theorem 5.

Proof. We use Theorem 2 to bound the bias due to the staleness of the cache and Lemma 4 to bound
the bias due to using a sampled cache. We can then apply Lemma 6 to finish the proof.
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