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A More Related Studies

Image synthesis. Over the past decade, image synthesis [2, 11, 57, 64, 94] has been extensively
explored, with four main approaches leading the way: generative adversarial networks (GANs) [15,
30], auto-regressive models [34, 50], diffusion models [ 14, 28], and neural radiance fields [18, 41, 78].
Recently, diffusion techniques, such as DALL-E2 [49], Imagen [54], and Stable Diffusion [52],
have demonstrated exceptional capabilities in producing photo-realistic images. In practice, these
techniques can serve as prior models in our GIF framework for dataset expansion. Additionally,
CLIP [47], thanks to its text-image matching ability, has been used to guide image generation [33,
42,45, 66]. In these approaches, CLIP matches a generated image with a given text. In contrast, our
work uses CLIP to align the latent features of category-agnostic generative models with the label
space of the target dataset. This alignment enables GIF to perform guided data expansion, generating
informative new samples specific to target classes.

Furthermore, model inversion [69, 71] is another technique that has been investigated for image
generation by inverting a trained classification network [67, 77] or a GAN model [95]. Although
we currently apply only two advanced generative models (DALL-E2 and Stable Diffusion) and a
reconstruction model (MAE) within the GIF framework in this study, model inversion methods could
also be incorporated into our framework for dataset expansion. This opens up exciting avenues for
future research.

More discussion on data augmentation. Image data augmentation has become a staple in enhanc-
ing the generalization of DNNs during model training [61, 76]. Based on technical characteristics,
image data augmentation can be categorized into four main types: image manipulation, image erasing,
image mix, and auto augmentation.

Image manipulation augments data through image transformations like random flipping, rotation,
scaling, cropping, sharpening, and translation [76]. Image erasing, on the other hand, substitutes
pixel values in certain image regions with constant or random values, as seen in Cutout [13], Random
Erasing [92], GridMask [6], and Fenchmask [37]. Image mix combines two or more images or
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sub-regions into a single image, as exemplified by Mixup [84], CutMix [80], and AugMix [25].
Lastly, Auto Augmentation utilizes a search algorithm or random selection to determine augmentation
operations from a set of random augmentations, such as AutoAugment [9], Fast AutoAugment [39],
and RandAugment [10].

While these methods have shown effectiveness in certain applications, they primarily augment
data by applying pre-defined transformations on each image. This results in only local variations
in pixel values and does not generate images with significantly diversified content. Furthermore,
as most methods employ random operations, they cannot ensure that the augmented samples are
informative for model training and may even introduce noisy augmented samples. Consequently,
the new information brought about is often insufficient for expanding small datasets, leading to low
expansion efficiency. In contrast, our proposed GIF framework utilizes powerful generative models
(such as DALL-E2 and Stable Diffusion) trained on large-scale image datasets, guiding them to
optimize latent features in accordance with our established criteria (i.e., class-maintained information
boosting and sample diversity promotion). This results in the creation of images that are both more
informative and diversified than those from simple image augmentation, thereby leading to more
efficient and effective dataset expansion.

We note that the work [72] also explores MAE for image augmentation based on its reconstruction
capability. It first masks some sub-regions of images and then feeds the masked images into MAE for
reconstruction. The recovered images with slightly different sub-regions are then used as augmented
samples. Like other random augmentation methods, this approach only varies pixel values locally and
cannot ensure that the reconstructed images are informative and useful. In contrast, our GIF-MAE
guides MAE to create informative new samples with diverse styles through our guided latent feature
optimization strategy. Therefore, GIF-MAE is capable of generating more useful synthetic samples,
effectively expanding the dataset.

Contrasting with dataset distillation. Dataset distillation, also known as dataset condensation,
is a task that seeks to condense a large dataset into a smaller set of synthetic samples that are
comparably effective [4, 60, 68, 74, 89, 90, 91, 93]. The goal of this task is to train models to achieve
performance comparable to the original dataset while using significantly fewer resources. Such a
task is diametrically opposed to our work on dataset expansion, which strives to expand a smaller
dataset into a larger; richer, and more informative one. We achieve this by intelligently generating
new samples that are both informative and diverse. Hence, dataset distillation focuses on large-data
applications, whereas our focus lies on expanding dataset diversity and information richness for more
effective deep model training in small-data applications.

Contrasting with transfer learning. Numerous studies have focused on model transfer learning
techniques using publicly available large datasets like ImageNet [12, 51]. These approaches include
model fine-tuning [20, 38, 85], knowledge distillation [19, 27], and domain adaptation [17, 40, 46,
65,79, 88].

Despite effectiveness in certain applications, these model transfer learning paradigms also suffer
from key limitations. For instance, the study [48] found that pre-training and fine-tuning schemes
do not significantly enhance model performance when the pre-trained datasets differ substantially
from the target datasets, such as when transferring from natural images to medical images. Moreover,
model domain adaptation often necessitates that the source dataset and the target dataset share the
same or highly similar label spaces, a requirement that is often unmet in small-data application
scenarios due to the inaccessibility of a large-scale and labeled source domain with a matching label
space. In addition, the work [63] found that knowledge distillation does not necessarily work if the
issue of model mismatch exists [7], i.e., large discrepancy between the predictive distributions of the
teacher model and the student model. The above limitations of model transfer learning underscore
the importance of the dataset expansion paradigm: if a small dataset is successfully expanded, it can
be directly used to train various model architectures.

We note that some data-free knowledge distillation studies [5, 77, 82] also synthesize images, but their
goal is particularly to enable knowledge distillation in the setting without data. In contrast, our task is
independent of model knowledge distillation. The expanded datasets are not method-dependent or
model-dependent, and, thus, can train various model architectures to perform better than the original
small ones.



B More Preliminary Studies

B.1 Sample-wise expansion or sample-agnostic expansion?

When we design the selective expansion strategy in Section 3.2, another question appears: should we
ensure that each sample is expanded by the same ratio? To determine this, we empirically compare
RandAugment expansion with sample-wise selection and sample-agnostic selection according to
one expansion criteria, i.e., class-maintained information boosting. Figure 1 shows that sample-wise
expansion performs much better than sample-agnostic expansion. To find out the reason for this
phenomenon, we visualize how many times a sample is expanded by sample-agnostic expansion. As
shown in Figure 2, the expansion numbers of different samples by sample-agnostic expansion present
a long-tailed distribution [87], with many image samples not expanded at all. The main reason for
this is that, due to the randomness of RandAugment and the differences among images, not all created
samples are informative and it is easier for some samples to be augmented more frequently than
others. Therefore, given a fixed expansion ratio, the sample-agnostic expansion strategy, as it ignores
the differences in images, tends to select more expanded samples for more easily augmented images.
This property leads sample-agnostic expansion to waste valuable original samples for expansion (i.e.,
loss of information) and also incurs a class-imbalance problem, thus resulting in worse performance
in Figure 1. In contrast, sample-wise expansion can fully take advantage of all the samples in the
target dataset and thus is more effective than sample-agnostic expansion, which should be considered
when designing dataset expansion approaches.

48.0 20.0
48.0
.
= 1754 o
475 £ -
2150 -
-
8 2 -
€ 47.0 125
£ 467 § =
5 i -
£ 2 10.0 -
g 46.5 > -
3 ] -
3 E 75 J— These samples are not expanded
=460 = -
. 45.8 5
S 50 —
2 -—
45.5 3 —
Z 25 —
—
" 0.0 —
Random expansion Data-agnostic guidance Data-wise guidance 6 20‘00 40‘00 6600 SObO 10600

Sample index
Figure 1: Comparison of model performance Figure 2: Statistics of the expansion numbers of
between samples-wise selection and sample- different data in CIFAR100-Subset by sample-
agnostic selection for RandAugment expansion agnostic selective expansion with RandAugment,
on CIFAR100-Subset. which presents a long-tailed distribution.

B.2 Pixel-level noise or channel-level noise?

In our preliminary studies exploring the MAE expansion strategy, we initially used pixel-level noise
to modify latent features. However, this approach did not perform well. To understand why, we
analyze the reconstructed images. An example of this is presented in Figure 3(d). We find that
the generated image based on pixel-level noise variation is analogous to adding pixel-level noise
to the original images. This may harm the integrity and smoothness of image content, leading the
reconstructed images to be noisy and less informative. In comparison, as shown in Figure 3(b), a more
robust augmentation method like RandAugment primarily alters the style and geometric positioning
of images but only slightly modifies the content semantics. As a result, it better preserves content
consistency. This difference inspires us to factorize the influences on images into two dimensions:
image styles and image content. In light of the findings in [29], we know that the channel-level latent
features encode more subtle style information, whereas the token-level latent features convey more
content information. We thus decouple the latent features of MAE into two dimensions (i.e., a token
dimension and a channel dimension), and plot the latent feature distribution change between the
generated image and the original image in these two dimensions.
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(a) original image (b) RandAugment (c) MAE reconstruction  (d) noised-added MAE (e) our Guided MAE

Figure 3: An illustrated visualization of the generated images by (b) RandAugment, (c) MAE recon-
struction, (d) random pixel-level variation over latent features, and (e) our guided MAE expansion.
We find our guided MAE can generate content-consistent images of diverse styles.

Figure 4 shows the visualization of this latent feature distribution change. The added pixel-level
noise changes the token-level latent feature distribution more significantly than RandAugment (cf.
Figure 4(a)). However, it only slightly changes the channel-level latent feature distribution (cf.
Figure 4(b)). This implies that pixel-level noise mainly alters the content of images but slightly
changes their styles, whereas RandAugment mainly influences the style of images while maintaining
their content semantics. In light of this observation and the effectiveness of RandAugment, we are
motivated to disentangle latent features into the two dimensions, and particularly conduct channel-
level noise to optimize the latent features in our method. As shown in Figure 4, the newly explored
channel-level noise variation varies the channel-level latent feature more significantly than the token-
level latent feature. It thus can diversify the style of images while maintaining the integrity of
image content. This innovation enables the explored MAE expansion strategy to generate more
informative samples compared to pixel-level noise variation (cf. Figure 3(d) vs. Figure 3(e)), leading
to more effective dataset expansion, as shown in Section 5.2. In light of this finding, we also conduct
channel-level noise variation for GIF-SD.
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Figure 4: Changes of the latent feature distributions along the token dimension and the channel
dimension, between the latent feature of the generated image and that of the original image.



B.3 How to design prompts for Stable Diffusion?

Text prompts play an important role in image generation of Stable Diffusion. The key goal of prompts
in dataset expansion is to further diversify the generated image without changing its class semantics.
We find that domain labels, class labels, and adjective words are necessary to make the prompts
semantically effective. The class label is straightforward since we need to ensure the created samples
have the correct class labels. Here, we show the influence of different domain labels and adjective
words on image generation of Stable Diffusion.

Domain labels. We first visualize the influence of different domain prompts on image generation. As
shown in Figure 5, domain labels help to generate images with different styles. We note that similar
domain prompts, like "a sketch of" and "a pencil sketch of", tend to generate images with similar
styles. Therefore, it is sufficient to choose just one domain label from a set of similar domain prompts,
which does not influence the effectiveness of dataset expansion but helps to reduce the redundancy of
domain prompts. In light of this preliminary study, we design the domain label set by ["an image of",
"a real-world photo of", "a cartoon image of", "an oil painting of", "a sketch of"].

Prompts Input Images generated by pre-trained Stable Diffusion

“An image of samoyed”

“An oil painting of
samoyed”

“A cartoon image of
samoyed”

“A sketch of samoyed”

“A pencil sketch of
samoyed”

Figure 5: The influence of the domain prompts on image generation of pre-trained Stable Diffusion.
The input image is selected from the Pets dataset. Here, the strength hyper-parameter is set to 0.9,
and the scale is set to 20.



Adjective words. We next show the influence of different adjective words on image generation
of Stable Diffusion. As shown in Figure 6, different adjectives help diversify the content of the
generated images further, although some adjectives may lead to similar effects on image generation.
Based on the visualization exploration, we design the adjective set by [" ", "colorful”, "stylized",
"high-contrast", "low-contrast", "posterized", "solarized", "sheared", "bright", "dark"].

b}

Prompts Input Images generated by pre-trained Stable Diffusion

“An image of samoyed”

“An image of colorful
samoyed”

“An image of stylized
samoyed”

“An image of bright
samoyed”

“An image of sheared
samoyed”

“An image of solarized
samoyed”

“An image of
posterized samoyed”

“An image of high-
contrast samoyed”

Figure 6: The influence of the adjective prompts on image generation of pre-trained Stable Diffusion.
The input image is selected from the Pets dataset. Here, the strength hyper-parameter is set to 0.9,

and the scale is set to 20.



B.4 How to set hyper-parameters for Stable Diffusion?
B.4.1 Hyper-parameter of strength

The hyper-parameter of the nosing strength controls to what degree the initial image is destructed.
Setting strength to 1 corresponds to the full destruction of information in the input image while
setting strength to 0 corresponds to no destruction of the input image. The higher the strength value
is, the more different the generated images would be from the input image. In dataset expansion, the
choice of strength depends on the target dataset, but we empirically find that selecting the strength
value from [0.5, 0.9] performs better than other values. A too-small value of strength (like 0.1 or 0.3)
brings too little new information into the generated images compared to the seed image. At the same
time, a too-large value (like 0.99) may degrade the class consistency between the generated images
and the seed image when the hyper-parameter of scale is large.

Strength Input Images generated by pre-trained Stable Diffusion

0.1
0.3
0.5
0.7
0.9

0.99

Figure 7: The influence of the "strength" hyper-parameter on image generation of pre-trained Stable
Diffusion. The input image is selected from the Pets dataset. The prompt is "an image of colorful
samoyed", while the scale is set to 20.



B.4.2 Hyper-parameter of scale

The hyper-parameter of scale controls the importance of the text prompt guidance on image generation
of Stable Diffusion. The higher the scale value, the more influence the text prompt has on the generated
images. In dataset expansion, the choice of strength depends on the target dataset, but we empirically
find that selecting the strength value from [5, 50] performs better than other values. A too-small value
of scale (like 1) brings too little new information into the generated images, while a too-large value
(like 100) may degrade the class information of the generated images.

Scale Input Images generated by pre-trained Stable Diffusion
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Figure 8: The influence of the "scale" hyper-parameter on image generation of pre-trained Stable
Diffusion. The input image is selected from the Pets dataset. The prompt is "an image of colorful
samoyed", while the strength is set to 0.9.



B.5 More discussions on the effectiveness of zero-shot CLIP

In GIF, we exploit the zero-shot discriminability of the pre-trained CLIP to guide dataset expansion.
In Section 5.1, we have found that the zero-shot performance of CLIP is not significantly good,
particularly on medical image datasets. It is interesting to know whether further fine-tuning CLIP
on the target medical dataset can bring further improvement. To determine this, we further compare
the results of GIF-MAE with fine-tuned CLIP and with zero-shot CLIP based on OrganSMNIST. To
be specific, we add a linear classifier on the top of the CLIP image encoder and fine-tune the CLIP
model.

As shown in Table 1, GIF-MAE with fine-tuned CLIP performs only comparably to that with
zero-shot CLIP, which reflects that the CLIP’s zero-shot classifier is enough to provide sound
guidance. The reason is that, although the zero-shot performance is not that good, CLIP still plays
an important anchor effect in maintaining the class semantics of the generated samples and
helps to bring new information. Let us first recall the class-maintained informativeness score:
Sing = 8 + (slog(s) — s'log(s")). Specifically, no matter whether CLIP zero-shot classifier is
accurate or not, maximizing s’ essentially uses the prediction of the seed data as an anchor in the
CLIP semantic space to regularize the class semantics of the perturbed features. This ensures
the created data maintain the correct class, which is highly important for effective dataset expansion.
In addition, maximizing the entropy difference, i.e., slog(s) — s’ log(s’), encourages the perturbed
feature to have higher entropy regarding CLIP zero-shot prediction. When CLIP zero-shot classifier is
accurate, the entropy increment enables the created data to become more difficult to classify regarding
CLIP zero-shot discrimination and thus brings more information for classification model training.
When CLIP zero-shot classifier is not that accurate, the entropy increment introduces variations into
the created data and makes them different from the seed data. Under the condition that the true
class is maintained, this optimization is beneficial to boosting the diversity of the expanded
dataset, which is helpful for model training. Hence, CLIP’s zero-shot abilities are useful for guided
imagination in various image domains.

Afterwards, given that zero-shot CLIP can provide valuable guidance despite its limited accuracy, one
may wonder whether a random-initialized deep model could serve a similar function. However, as
shown in Table 1, using a random-initialized ResNet50 as the guidance model for dataset expansion
performs much worse than zero-shot CLIP (i.e., 79.0 vs. 80.6). This could be attributed to the fact that,
although the classifiers of both random ResNet50 and zero-shot CLIP struggle with the target
medical classes, the CLIP’s pre-training results in a feature space that is more semantically
meaningful and representative than a randomly-initialized ResNet50. This distinction allows
zero-shot CLIP to better anchor the class semantics of synthetic samples, thereby leading to more
effective dataset expansion. These empirical observations further verify the effectiveness of using
zero-shot CLIP in guiding dataset expansion.

Table 1: Comparison between the model performance by GIF-MAE expansion with zero-shot CLIP
guidance and fine-tuned CLIP guidance, as well as random-initialized ResNet-50 guidance, based on
the OrganSMNIST medical image dataset. All results are averaged over three runs.

OrganSMNIST Guidance model Guidance model accuracy Model accuracy
Original dataset - - 76.3
Randome-initialized ResNet50 714058 79.0 (+2.7)
5x-expanded by GIF-MAE Fine-tuned CLIP 75.641.5 80.7 (+4.4)
Zero-shot CLIP (ours) 7.7+0.0 80.6 (+4.3)



B.6 Do we need to fine-tune generative models on medical image datasets?

Stable Diffusion (SD) and DALL-E2 are trained on large-scale datasets consisting of natural image
and text pairs, showing powerful capabilities in natural image generation and variation. However,
when we directly apply them to expand medical image datasets, we find the performance improvement
is limited, compared to MAE as shown in Table 2.

Table 2: Accuracy of ResNet-50 trained on the 5x-expanded medical image datasets by GIF based
on SD and DALLE w/o and w/ fine-tuning. All results are averaged over three runs.

Dataset PathMNIST BreastMNIST OrganSMNIST  Average
Original 72-4i0.7 55.8i1'3 76.3i044 68.2
GIF-MAE 82.040.7 733413 80.610.5 78.6
GIF-DALLE (w/o tuning) 784410 593495 764403 71.4
GIF-DALLE (w/ tuning) 844,103 76.641.4 80.510.2 80.5
GIF-SD (w/o tuning) 80.8+1.6 594499 79.540.4 73.2
GIF-SD (w/ tuning) 86.910.6 774418 80.710.2 81.7

To pinpoint the reason, we visualize the generated images by SD on PathMNIST. As shown in
Figure 9(top), we find that SD fails to generate photo-realistic medical images, particularly when
the hyper-parameter of strength is high. For example, the generated colon pathological images by
pre-trained SD look more like a natural sketch and lack medical nidus areas found in the input image.
This implies that directly applying SD suffers from significant domain shifts between natural and
medical images, preventing the generation of photo-realistic and informative medical samples using
its image variation abilities. This issue also happens when applying DALL-E2 for medical dataset
expansion. In contrast, MAE is a reconstruction model and does not need to generate new content for
the target images, so it has much less negative impact by domain shifts. To address the issue, when
applying SD and DALL-E2 to medical domains, we first fine-tune them on target medical datasets,
followed by dataset expansion. Specifically, DALL-E2 is fine-tuned based on image reconstruction,
while SD is fine-tuned based on Dreambooth [53]. As shown in Figure 9(bottom), the fine-tuned
SD is able to generate medical images that are more domain-similar to the input colon pathological
image. Thanks to the fine-tuned SD and DALL-E2, GIF is able to bring more significant performance
gains over GIF-MAE (cf. Table 2), and thus expands medical image datasets better.
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Figure 9: Visualization of the synthetic medical colon pathological images by Stable Diffusion (SD)
with or without fine-tuning. Here, the prompt of SD is "a colon pathological sketch of colorful
debris", while the strength is set to 0.5. We find that SD suffers from severe domain shifts between
natural and medical images and cannot generate photo-realistic and informative medical samples. In
contrast, the generated medical images by the fine-tuned SD are more domain-similar to the input
colon pathological image.
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B.7 Visualization of created medical images

In the main paper, we visualize the created medical samples by GIF-SD. Here, we further visualize
the created medical samples by GIF-MAE and discuss them. As shown in Figure 10, RandAugment
randomly varies the medical images based on a set of pre-defined transformations. However, due to
its randomness, RandAugment may crop the lesion location of medical images and cannot guarantee
the created samples to be informative, even leading to noise samples. In contrast, our GIF-MAE
can generate content-consistent images with diverse styles, so it can enrich the medical images
while maintaining their lesion location unchanged. Therefore, GIF-MAE is able to expand medical
image datasets better than RandAugment, leading to higher model performance improvement (cf.
Section 5.1). However, GIF-MAE is unable to generate images with diverse content, which limits its
effectiveness. In comparison, SD, after fine-tuning, is able to generate class-maintained samples with
more diverse content and styles, and thus achieves better expansion effectiveness (cf. Section 5.1). To
summarize, our methods can expand medical image datasets more effectively than data augmentation.
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Figure 10: Examples of the created samples for PathMNIST by RandAugment and GIF.
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C Theoretical Analysis

In this appendix, we seek to analyze the benefits of our dataset expansion to model generalization
performance. Inspired by [59], we resort to the concept of d-cover [55, 26] to analyze how data
diversity influences the generalization error bound. Specifically, "a dataset E is a d-cover of a dataset
S" means a set of balls with radius § centered at each sample of the dataset £ can cover the entire
dataset S.

Definition C.1. (d-cover [55]) Let (M, p) be a metric space, let S C M and let © > 0. A set
E C M isad-cover for S, if for every s € S, there is an e € F such that p(s, e) < 4. The minimal
0 regarding S and E is denoted by 9.

In this work, we follow the assumptions of the work [59] and extend its Theorem 1 to the version
of the generalization error bound. Let A be a learning algorithm that outputs a set of parameters,
given a training dataset D = {4, y; }ie[) With n i.i.d. samples drawn from the data distribution
Pz. Assume that the hypothesis function is A”-Lipschitz continuous, the loss function £(x, y) is
A¢-Lipschitz continuous for all y and bounded by L, and /(z;, y;; A) = 0 for Vi € [n]. If the training
set D is a d-cover of Pz, with probability at least 1 — -, the generalization error bound satisfies:

|]Ez,y~772 [‘axvya . Z @ xz»ym | < 5mzn()\ + )\ULC) @))

C
where C'is a constant, and the symbol < indicates "smaller than" up to an additive constant. According
to the property of the §-cover, we then define the dataset diversity, called §-diversity, by the inverse of
the minimal §,,,;,,:

Definition C.2. (-diversity) If a dataset E'i 1s a d-cover of the full dataset .S, then the J-diversity of
the set F regarding the full set S is §g4;, =

57777,71 :

The J-diversity is easy to understand: given a training set D = {x;, y; };c[n] that is a J-cover of the
data distribution Pz, if the radius d,,;, is high, the diversity of this dataset must be low. Then, we
have:

Theorem C.1. Let A denote a learning algorithm that outputs a set of parameters given a dataset
D = {xi,Yi }icn) With n i.i.d. samples drawn from distribution Pz. Assume the hypothesis function
is \"-Lipschitz continuous, the loss function {(z,vy) is \*-Lipschitz continuous for all y, and is
bounded by L, with ¢(x;,y;; A) = 0 for all i € [n]. If D constitutes a §-cover of Pz, then with
probability at least 1 — ~, the generalization error bound satisfies:

C M+ \LC
‘Ew,yfvpz [ﬁ(m,y, - Z E xwyu > Ty ()
1€[n] w

C
where C'is a constant, and the symbol < indicates "smaller than" up to an additive constant.

This theorem shows that the generalization error is bounded by the inverse of §-diversity. That is,
the more diverse samples are created by a dataset expansion method, the more improvement of
generalization performance would be made in model training. In real small-data applications, the
data limitation issue leads the covering radius ¢ to be very large and thus the d-diversity is low,
which severely affects the generalization performance of the trained model. More critically, simply
increasing the data number (e.g., via data repeating) does not help the generalization since it does
not increase d-diversity. Instead of simply increasing the number of samples, our proposed GIF
framework adopts two key imagination criteria (i.e., "class-maintained informativeness boosting"
and "sample diversity promotion") to guide advanced generative models (e.g., DALL-E2 and Stable
Diffusion) to synthesize informative and diversified new samples. Therefore, the expanded dataset
would have higher data diversity than random augmentation, which helps to increase d-diversity and
thus improves model generalization performance.
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D More Method and Implementation Details

D.1 Method details of GIF-DALLE

Thanks to strong image generation abilities, GIF-DALLE applies DALL-E2 [49] as its prior model
which follows the pipeline described in Section 4. Its pseudo-code is provided in Algorithm 1, where
the image embedding obtained by fcip.g serves as diffusion guidance to help the diffusion decoder
to generate new images. GIF-DALLE conducts guided imagination on the CLIP embedding space.

We further clarify the implementation of the proposed guidance. Specifically, class-maintained
informativeness S,y y encourages the consistency between the predicted classification scores s and ¢/,
and improves the information entropy for the predicted score of the generated sample s':

Sing = s + (slog(s) — s'log(s")), s.t., j=argmax(s). 3)

Here, j = argmax(s) is the predicted class label of the original latent feature. Such a criterion
helps to keep the class semantics of the optimized feature the same as that of the original one in the
CLIP embedding space while encouraging the perturbed feature to have higher information entropy
regarding CLIP zero-shot predictions. This enables the generated samples to be more informative
for follow-up model training. To promote sample diversity, the diversity Sg;,, is computed by the
Kullback-Leibler (KL) divergence among all perturbed latent features of a seed sample as follows:

Saiv =Drr(f'If) = o(f)log(a(f)/e(f)), @

where f’ denotes the current perturbed latent feature and f indicates the mean over the K perturbed
latent features of this seed sample. In implementing diversity promotion Sg;,,, we measure the
dissimilarity of two feature vectors by applying the softmax function o(-) to the latent features, and
then measuring the KL divergence between the resulting probability vectors.

Algorithm 1: GIF-DALLE Algorithm

Input: Original small dataset D,; CLIP image encoder fcuip-1(-); DALL-E2 diffusion decoder G(-); CLIP
zero-shot classifier w(-); Expansion ratio K; Perturbation constraint .
Initialize: Synthetic data set Ds = (;

for z € D, do
Sing = 0;
f = feupa(z) ; // latent feature encoding for seed sample
s=w(f); // CLIP zero-shot prediction for seed sample
for i=1,...K do
Initialize noise z; ~ U(0,1) and bias b; ~ N (0, 1);
fi=Pre((L42)f +bi)s // noise perturbation
s =w(fi): // CLIP zero-shot prediction
Sing += s + (slog(s) — s'log(s)), s.t. j = argmax(s) ; // class-maintained
informativeness
end
f=mean({f}iL1);
Saiv = L APk (o (f)llo(F)NE = 32, o(f) log(a(fi) /o (f)) : // diversity
{2, b§}£1 < argmax, , Sinf + Sdiv ; // guided latent optimization
for i=1,...,K do
i =Pre(L+2)f +b); // guided noise perturbation
) =G(fl); // sample creation
Add z} — D.
end
end

Output: Expanded dataset D, U D;.

More implementation details. In our experiment, DALL-E2 is pre-trained on Laion-400M [58] and
then used for dataset expansion. The resolution of the created images by GIF-DALLE is 64 x64 for
model training without further super-resolution. Only when visualizing the created images, we use
super-resolution to up-sample the generated images to 256 x 256 for clarification. Moreover, we set
€ = 0.1 in the guided latent feature optimization. During the diffusion process, we set the guidance
scale as 4 and adopt the DDIM sampler [62] for 100-step diffusion. For expanding medical image
datasets, it is necessary to fine-tune the prior model for alleviating domain shifts.
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D.2 Method details of GIF-SD

GIF-SD applies Stable Diffusion (SD) [52] as its prior model. As its encoder differs from the CLIP
image encoder, we slightly modify the pipeline of GIF-SD.

Pipeline. As shown in Algorithm 2, GIF-SD first generates a latent feature for the seed image via its
image encoder. Following that, GIF-SD conducts prompt-based diffusion for the latent feature, where
the generation rule of prompts will be elaborated in Eq. (5). Please note that, with a suitable prompt
design, the prompt-based diffusion helps to create more diversified samples. Afterward, GIF-SD
conducts channel-wise noise perturbation. Here, the latent feature of SD has three dimensions: two
spatial dimensions and one channel dimension. As discussed in our preliminary (cf. Appendix B.2),
the channel-level latent feature encodes more subtle style information, whereas the spatial-level
latent features encode more content information. In light of the findings in this preliminary study,
we particularly conduct channel-level noise to optimize the latent features in GIF-SD for further
diversifying the style of the generated images while maintaining the content semantics of the latent
features (after prompt-guided diffusion) unchanged. Based on the randomly perturbed feature, GIF-
SD generates an intermediate image via its image decoder and applies CLIP to conduct zero-shot
prediction for both the seed and the intermediate image to compute the guidance. With the guidance,
GIF-SD optimizes the latent features for creating more style-diverse samples. Here, GIF-SD conducts
guided imagination on its own latent space.

Algorithm 2: GIF-SD Algorithm

Input: Original small dataset D,; SD image encoder f(-) and image decoder G(-); SD diffusion module
faiee(+; [prompt]); CLIP image encoder fcpp-1(-); CLIP zero-shot classifier w(-); Expansion
ratio K'; Perturbation constraint ¢.

Initialize: Synthetic data set D; = (;

for z € D, do
Sinf - 0,
f=flz); // latent feature encoding for seed sample
Randomly sample a [prompt] ; // Prompt generation
f = fae(f; [prompt]) ; // SD latent diffusion
s = w(feura(z)) ; // CLIP zero-shot prediction for seed sample
for i=1,...,. K do
Initialize noise z; ~ U(0, 1) and bias b; ~ N (0, 1);
fi=Pre((I+2z)f +b:); // noise perturbation
s =w(f]); // CLIP zero-shot prediction
Sing += s + (slog(s) — s'log(s")), s.t. j = arg max(s) ; // class-maintained
informativeness
end
f=mean({fY: )
Saiv = L APxr(o(f)llo(P)HZ = X, o(f)log(o(fi) /o (f)) ; // diversity
{227 b;}fil < argmax, , Sinf + Sdiv 3 // guided latent optimization
for i=1,...,.K do
= Pre((L42)f +b7) // guided noise perturbation
i =G(f]); // sample creation
Add z} — D.
end
end

Output: Expanded dataset D, U D;.

Rule of prompt design. In our preliminary studies in Appendix B.3, we find that domain labels,
class labels, and adjective words are necessary to make the prompts semantically effective. Therefore,
we design the prompts using the following rule:

Prompt := [domain] of a(n) [adj] [class]. @)
For example, "an oil painting of a colorful fox". To enable the prompts to be diversified, inspired

by our preliminary studies, we design a set of domain labels and adjective words for natural image
datasets as follows.

"non mnon

- Domain label set: ["an image of", "a real-world photo of", "a cartoon image of", "an oil painting of",
"a sketch of"]
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nonon non

- Adjective word set: [" ", "colorful", "stylized", "high-contrast", "low-contrast", "posterized",
"solarized", "sheared", "bright", "dark"]

For a seed sample, we randomly sample a domain label and an adjective word from the above sets to
construct a prompt. Note that, for medical image datasets, we cancel the domain label set and replace
it as the modality of the medical images, e.g., ["Abdominal CT image of"], ["Colon pathological
image of"].

Implementation details. In our experiment, we implement GIF-SD based on CLIP VIT-B/32 and
Stable Diffusion v1-4, which are pre-trained on large datasets and then used for dataset expansion.
Here, we use the official checkpoints of CLIP VIT-B/32 and Stable Diffusion v1-4. The resolution
of the created images by GIF-SD is 512x512 for all datasets. Moreover, for guided latent feature
optimization in GIF-SD, we set ¢ = 0.8 for natural image datasets and € = 0.1 for medical image
datasets. Here, we further adjust ¢ = 4 for Caltech101 to increase image diversity for better
performance. During the diffusion process, we adopt the DDIM sampler [62] for 50-step latent
diffusion. Moreover, the hyper-parameters of strength and scale in SD depend on datasets, while
more analysis is provided in Appendix B.4. Note that, for expanding medical image datasets, it is
necessary to fine-tune the prior model for alleviating domain shifts.
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D.3 Method details of GIF-MAE

Thanks to strong image reconstruction abilities, our GIF-MAE applies the MAE-trained model [21]
as its prior model. As its encoder is different from the CLIP image encoder, we slightly modify the
pipeline of GIF-MAE.

Pipeline. As shown in Algorithm 3, GIF-MAE first generates a latent feature for the seed image
via its encoder, and conducts channel-wise noise perturbation. Here, the latent feature of MAE
has two dimensions: spatial dimension and channel dimension. As discussed in our preliminary
(cf. Appendix B.2), the channel-level latent feature encodes more subtle style information, whereas
the token-level latent feature encodes more content information. Motivated by the findings in this
preliminary study, we particularly conduct channel-level noise to optimize the latent features in
our GIF-MAE method for maintaining the content semantics of images unchanged. Based on the
perturbed feature, GIF-MAE generates an intermediate image via its decoder and applies CLIP to
conduct zero-shot prediction for both the seed and the intermediate image to compute the guidance.
With the guidance, GIF-MAE optimizes the latent features for creating content-consistent samples of
diverse styles. Here, GIF-MAE conducts guided imagination on its own latent space.

Algorithm 3: GIF-MAE Algorithm

Input: Original small dataset D,; MAE image encoder f(-) and image decoder G(+); CLIP image encoder
feuwpa(+); CLIP zero-shot classifier w(-); Expansion ratio K; Perturbation constraint .
Initialize: Synthetic data set Ds = (;

for x € D, do
znf = 0
f=flz); // latent feature encoding for seed sample
s = w(feuwa(x)) ; // CLIP zero-shot prediction for seed sample
for i=1,...K do
Initialize noise z; ~ U(0, 1) and bias b; ~ N(0,1);
fi=Pre((L+2z)f +b:); // channel-level noise perturbation
=G(fi); // intermediate image generation
5" = w(feuwa(z}));
Sing += s + (slog(s) — s'log(s)), s.t. j = arg max(s) ; // class-maintained
informativeness
end
f=mean({f{}{£1);
Saiv = Z {Drr( (le)HU(f))}szl =>",0(f)log(a(f)) /o (f)) // diversity
{2, YK « arg max,  Sinf + Sdiv ; // gulded latent optimization
for i=1,...,.K do
i =Pre(L+2)f +b); // guided channel-wise noise perturbation
xy = G( 1”) ) // sample creation
Add 2/ — D,
end
end

Output: Expanded dataset D, U Ds.

Implementation details. In our experiment, we implement GIF-MAE based on CLIP VIT-B/32 and
MAE VIT-L/16, which are pre-trained on large datasets and then fixed for dataset expansion. Here,
we use the official checkpoints of CLIP VIT-B/32 and MAE VIT-L/16. The resolution of the created
images by GIF-MAE is 224 x 224 for all datasets. Moreover, we set ¢ = 5 for guided latent feature
optimization in GIF-MAE.
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D.4 Implementation details of model training

We implement GIF in PyTorch based on CLIP VIT-B/32, DALL-E2, MAE VIT-L/16, and Stable
Diffusion (SD) V1-4, which are pre-trained on large datasets and then fixed for dataset expansion. We
use the official checkpoints of CLIP VIT-B/32, MAE VIT-L/16, and SD v1-4, and use the DALL-E2
pre-trained on Laion-400M [58]. On medical datasets, since DALL-E2 and SD were initially trained
on natural images and suffer from domain shifts to medical domains (please see the discussion in
Appendix B.6), we fine-tune them on the target dataset before dataset expansion.

To fairly evaluate the expansion effectiveness of different methods, we use them to expand the original
small datasets by the same ratios, followed by training models from scratch on the expanded dataset
with the same number of epochs and the same data pre-processing. In this way, the models are
trained with the same number of update steps, so that all expansion methods are fairly compared.
The expansion ratio depends on the actual demand of real applications. In the main experiment of
Section 5.1, CIFAR100-Subset is expanded by 5 x, Pets is expanded by 30, and all other datasets
are expanded by 20x. Moreover, all medical image datasets are expanded by 5x. In addition, all
augmentation baselines expand datasets with the same expansion ratio for fair comparisons.

After expansion, we train ResNet-50 [22] from scratch for 100 epochs based on the expanded datasets.
During model training, we process images via random resize to 224 x 224 through bicubic sampling,
random rotation, and random flips. If not specified, we use the SGD optimizer with a momentum
of 0.9. We set the initial learning rate (LR) to 0.01 with cosine LR decay, except the initial LR of
CIFAR100-Subset and OrganSMNIST is 0.1. The model performance is averaged over three runs in
terms of micro accuracy on natural image datasets and macro accuracy on medical image datasets.

D.5 Discussions on limitations and broader impact

Limitations. We next discuss the limitations of our method.

1. Performance of generated samples. The expanded samples are still less informative
than real samples. For example, a ResNet-50 trained from scratch on our 5x-expanded
CIFAR100-Subset achieves an accuracy of 61.1%, which lags behind the 71.0% accuracy
on the original CIFAR100. This gap signals the potential for advancing algorithmic dataset
expansion. Please see Appendix F.6 for detailed discussions. We expect that this pioneering
work can inspire more studies to explore dataset expansion so that it can even outperform a
human-collected dataset of the same size.

2. Quality of generated samples. Some samples might have noise, as exemplified in Figure
5b. Despite seeming less realistic, those samples are created following our guidance (e.g.,
class-maintained informativeness boosting). This ensures the class consistency of these
samples, mitigating potential negative effects on model training. Nonetheless, refining the
expansion method to address these noisy cases can further enhance the effectiveness of
dataset expansion.

3. Scope of work. Our current focus is predominantly on image classification. Exploring the
adaptability of our method to other tasks, such as object detection and semantic segmentation,
is an intriguing next step.

Broader impact. We further summarize our broader impact. Our method can offer a notable
reduction in the time and cost associated with manual data collection and annotation for dataset
expansion, as discussed in Section 5.2. This can revolutionize how small datasets are expanded,
making deep learning more accessible to scenarios with limited data availability (cf. Section 5.1).
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E Dataset Statistics

The statistics of natural image datasets. We evaluate our method on six small-scale natural
image datasets, including Caltech-101 [16], CIFAR100-Subset [36], Standard Cars [35], Oxford 102
Flowers [43], Oxford-IIIT Pets [44] and DTD [8]. Here, CIFAR100-Subset is an artificial dataset
for simulating small-scale datasets by randomly sampling 100 instances per class from the original
CIFAR100 dataset, and the total sample number is 10,000. These datasets cover a wide range
of classification tasks, including coarse-grained object classification (i.e., CIFAR100-Subset and
Caltech-101), fine-grained object classification (i.e., Cars, Flowers and Pets) and texture classification
(i.e., DTD). The data statistics of these natural image datasets are given in Table 3. Note that the
higher number of classes or the lower number of average samples per class a dataset has, the more
challenging the dataset is.

Table 3: Statistics of small-scale natural image datasets.

Datasets Tasks # Classes # Samples # Average samples per class
Caltech101 Coarse-grained object classification 102 3,060 30
CIFAR100-Subset Coarse-grained object classification 100 10,000 100
Standard Cars Fine-grained object classification 196 8,144 42
Oxford 102 Flowers Fine-grained object classification 102 6,552 64
Oxford-IIIT Pets Fine-grained object classification 37 3,842 104
Describable Textures (DTD)  Texture classification 47 3,760 80

The statistics of medical image datasets. To evaluate the effect of dataset expansion on medical
images, we conduct experiments on three small-scale medical image datasets. These datasets cover
a wide range of medical image modalities, including breast ultrasound (i.e., BreastMNIST [1]),
colon pathology (i.e., PathMNIST [32]), and Abdominal CT (i.e., OrganSMNIST [73]). We provide
detailed statistics for these datasets in Table 4.

Table 4: Statistics of small-scale medical image datasets. To better simulate the scenario of small
medical datasets, we use the validation sets of BreastMNIST and PathMNIST for experiments instead
of training sets, whereas OrganSMNIST is based on its training set.

Datasets Data Modality # Classes  # Samples # Average samples per class
BreastMNIST [1, 75] Breast Ultrasound 2 78 39

PathMNIST [32, 75] Colon Pathology 9 10,004 1,112
OrganSMNIST [73, 75] Abdominal CT 11 13,940 1,267
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F More Experimental Results and Discussions

F.1 More comparisons to expansion with augmentations

F.1.1 More results on expansion efficiency

In Section 5.1, we have demonstrated the expansion efficiency of our proposed GIF over Cutout,
GridMask and RandAugment on the Cars, DTD and Pets datasets. Here, we further report the results
on Caltech101, Flowers, and CIFAR100-Subset datasets. As shown in Figure 11, 5x expansion by
GIF-SD and GIF-DALLE has already performed comparably to 20 expansion of these augmentation
methods, while 10x expansion by GIF-SD and GIF-DALLE outperforms 20x expansion by these
data augmentation methods a lot. This result further demonstrates the effectiveness and efficiency of
our GIF, and also reflects the importance of automatically creating informative synthetic samples for
model training.

—o— Cutout —@— GridMask = —@— RandAugment SimDEX-MAE (ours) SimDEX-DALLE (ours) ~ —— GIF-SD (ours)

Caltech101

o
a

Model performance

Oxford 102 Flowers

Model performance
o3 © @© o=
o N S~ o

~
®

Model performance

CIFAR100-subset

61.1

+5x +10x
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~
o

+5x +10x
Expansion size

+1x +2x +5x
Expansion size

Figure 11: Accuracy of ResNet-50 trained from scratch on the expanded datasets with different
expansion ratios based on Caltech101, Flowers, and CIFAR100-Subset datasets.

F.1.2 Comparison to Mixup and CutMix

We further compare our method to more advanced augmentation methods. Specifically, we apply
Mixup-based methods, i.e., Mixup [83] and CutMix [80], to expand CIFAR100-Subset by 5 x and
use the expanded dataset to train the model from scratch. As shown in Table 5, GIF-SD performs
much better than Mixup and CutMix, further demonstrating the superiority of our method over

augmentation-based expansion methods.

Table 5: Comparison between GIF and Mixup methods for expanding CIFAR100-Subset by 5 x.

CIFAR100-Subset Accuracy
Original dataset 35.041.7
Expanded dataset

S5x-expanded by Mixup [83] 45.641 .0
S5x-expanded by CutMix [80]  50.74¢.2
5x-expanded by GIF-SD 61.1.05
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F.1.3 Comparison with an advanced generative method

We further compare our method with an advanced generative method [23] for dataset expansion. This
method includes strategies like language enhancement (LE) [23] and CLIP Filter (CF) [23]. We use
this method to expand the CIFAR100-S dataset based on Stable Diffusion (SD). As shown in the
following table, SD combined with the method [23] is still noticeably inferior to our GIF-SD for both
training from scratch and CLIP tuning. This further demonstrates the superiority of our method.

Table 6: Comparison between GIF and the method [23] for expanding CIFAR100-Subset by 5x.

CIFAR100-S Training from scratch ~ CLIP fine-tuning
Original dataset 35.0 75.2
5x-expanded dataset by SD+method [23] 55.1 (+20.1) 77.0 (+1.8)
5x-expanded dataset by GIF-SD (ours) 61.1 (+26.1) 79.4 (+4.2)

F.1.4 Comparison to infinite data augmentation

The training time varies based on the specific datasets. However, it is pivotal to note that all dataset
expansion methods were compared based on the same expansion ratio, thus ensuring consistent
training time/cost and fair comparisons. We acknowledge that training on an expanded dataset will
inevitably take longer than training on the original dataset. However, as shown in Section 5.1, the
significant improvement in model performance (i.e., by 36.9% on average over six natural image
datasets and by 13.5% on average over three medical datasets) makes the increased investment in
training time worthwhile.

Despite this, one may wonder how the explored dataset expansion would perform compared to training
with infinite data augmentation. Therefore, in this appendix, we further evaluate the performance of
infinite data augmentation on the CIFAR100-Subset. Specifically, based on RandAugment, we train
ResNet-50 using infinite online augmentation for varying numbers of epochs from 100 to 700. As
shown in Table 7, using RandAugment to train models for more epochs leads to better performance,
but gradually converges (around 51% accuracy at 500 epochs) and keeps fluctuating afterward.
By contrast, our proposed method proves advantageous with the same training consumption costs:
training the model on the original CIFAR100-S dataset for 5x more epochs performs much worse than
the model trained on our 5x-expanded dataset. This comparison further underscores the effectiveness
of our method in achieving higher accuracy without inflating training costs.

Table 7: Comparison between GIF-SD and infinite data augmentation on CIFAR100-Subset. Here,
consumption costs equal data number X training epoch.

Methods Epochs Consumption Accuracy
Original

Standard training 100 1 million 35.041.7
Training with RandAugment 100 1 million 39.6425
Training with RandAugment 200 2 million 46.910.9
Training with RandAugment 300 3 million 48.140.6
Training with RandAugment 400 4 million 49.640.4
Training with RandAugment 500 5 million 513403
Training with RandAugment 600 6 million 51.1403
Training with RandAugment 700 7 million 50.641 1
Expanded

5 x-expanded by GIF-SD 100 6 million 61.1.5
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F.1.5 Discussion of picking related samples from larger datasets

Picking and labeling data from larger image datasets with CLIP is an interesting idea for dataset
expansion. However, such a solution is limited in real applications, since a large-scale related dataset
may be unavailable in many image domains (e.g., medical image domains). Moreover, selecting
data from different image domains (e.g., from natural images to medical images) is unhelpful for
dataset expansion. Despite the above limitations in real applications, we also evaluate this idea on
CIFAR100-Subset and investigate whether it helps dataset expansion when there is a larger dataset
of the same image nature, e.g., ImageNet. Here, we use CLIP to select and annotate related images
from ImageNet to expand CIFAR100-Subset. Specifically, we scan over all ImageNet images and
use CLIP to predict them to the class of CIFAR100-Subset. We select the samples with the highest
prediction probability higher than 0.1 and expand each class by 5x. As shown in Table 8, the idea of
picking related images from ImageNet makes sense, but performs worse than our proposed method.
This result further demonstrates the effectiveness and superiority of our method. In addition, how to
better transfer large-scale datasets to expand small datasets is an interesting open question, and we
expect to explore it in the future.

Table 8: Comparison between GIF and picking related data from ImageNet for expanding CIFAR100-
Subset by 5x.

CIFAR100-Subset Accuracy
Original dataset 35.041.7
Expanded dataset

5x-expanded by picking data from ImageNet with CLIP  50.94 ;
S5x-expanded by GIF-SD 61.1.¢5
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F.2 More results of benefits to model generalization

In CIFAR100-C [24], there are 15 types of OOD corruption (as shown in Table 9), i.e., Gaussian
noise, shot noise, impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow, frost, fog,
brightness, contrast, elastic transformation, pixelation, and JPEG compression. Each corruption type
has 5 different severity levels: the larger severity level means more severe distribution shifts between
CIFAR100 and CIFAR100-C. In Section 5.1 of the main paper, we have shown the empirical benefit
of our method to model out-of-distribution (OOD) generalization based on CIFAR100-C with the
severity level 3. Here, we further report its performance on CIFAR100-C with other severity levels.
As shown in Table 9, our method is able to achieve consistent performance gains across all severity
levels, which further verifies the benefits of GIF to model OOD generalization.

Table 9: Corruption Accuracy of ResNet-50 trained from scratch on CIFAR100-S and our 5x
expanded dataset, under 15 types of corruption in CIFAR100-C with various severity levels.

(a) CIFAR100-C with the severity level 1

Noise Blur ‘Weather Digital
Dataset | Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. | Contr. Elastic Pixel JPEG | Average
Original 256 293 250 342 322 31.7 30.9 323 283 31.8 337 | 292 31.7 34.1 30.9 30.7
5x-expanded by GIF-SD 50.3 54.6 50.8 59.2 29.4 53.7 51.9 53.1 540 587 595 57.1 52.5 579 547 | 53.2(+22.5)
20x-expanded by GIF-SD | 55.0  60.5 54.8 66.1 30.2 56.0 58.0 61.1 622 651 662 | 64.3 59.2 638 60.8 | 58.9 (+27.2)
(b) CIFAR100-C with the severity level 2
Noise Blur Weather Digital
Dataset | Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. | Contr. Elastic Pixel JPEG | Average
Original 18.6 244 17.4 325 319 28.3 29.8 284 229 236 311 16.3 30.8 337 292 26.6
5x-expanded by GIF-SD 39.5 488 417 56.3 29.6 46.4 49.7 452 464 528 576 | 455 52.1 542 511 | 47.8(+21.2)
20x-expanded by GIF-SD | 42.7 537 439 63.1 31.2 51.8 56.1 520 549 604 652 | 543 59.2 60.0 556 | 52.3(+25.7)
(c) CIFAR100-C with the severity level 3
Noise Blur ‘Weather Digital
Dataset | Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. | Contr. Elastic Pixel JPEG | Average
Original 12.8 17.0 12.5 30.5 31.7 252 28.6 26.5 19.0 18.6 28.3 11.5 29.5 336 288 23.6
5x-expanded by GIF-SD 29.7 36.4 32.7 51.9 324 39.2 46.0 453 38.1 47.1 557 373 48.6 532 494 | 433 (+19.3)
20x-expanded by GIF-SD 31.8 39.2 34.7 584 334 43.1 51.9 517 474 550 633 46.5 549 58.0 53.6 | 48.2 (+24.6)

(d) CIFAR100-C with the severity level 4

Noise Blur Weather Digital
Dataset | Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. | Contr. Elastic Pixel JPEG | Average
Original 10.8 143 7.7 28.5 29.3 252 27.8 233 195 141 249 74 29.0 33.0 28.1 21.5
5x-expanded by GIF-SD 253 31.2 18.0 45.1 21.4 39.6 425 41.7 377 402 521 26.1 442 47.8 482 | 374 (+15.9)

274 337 202 50.7 21.7 43.9 478 | 488 46.7 47.6 60.7 | 353 479 493 51.2 | 42.2(+20.7)

20x-expanded by GIF-SD

(e) CIFAR100-C with the severity level 5

Noise Blur ‘Weather Digital
Dataset | Gauss. Shot Impul. | Defoc. Glass Motion Zoom | Snow Frost Fog Brit. | Contr. Elastic Pixel JPEG | Average
Original 9.4 10.7 55 24.9 289 22.3 25.9 194 166 82 183 2.7 29.0 31.8 273 18.7
5x-expanded by GIF-SD 214 238 10.8 31.8 22.8 33.1 37.6 38.1  31.1 247 437 8.6 38.6 36.0 456 | 29.8(+11.1)
20x-expanded by GIF-SD | 229 255 11.1 335 24.1 36.2 41.8 464 384 321 535 | 139 40.4 320 48.8 | 334 (+14.7)
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F.3 More results of applicability to various model architectures

In Section 5.1, we have demonstrated the generalizability of our expanded Cars dataset to various
model architectures. Here, we further apply the expanded Caltech101, Flowers, DTD, CIFAR100-
S, and Pets datasets (5x expansion ratio) by GIF-SD and GIF-DALLE to train ResNeXt-50 [70],
WideResNet-50 [81] and MobileNet V2 [56] from scratch. Table 10 shows that our expanded datasets
bring consistent performance gains for all the architectures on all datasets. This further affirms the
versatility of our expanded datasets, which, once expanded, are readily suited for training various
model architectures.

Table 10: Model performance of various model architectures trained on 5x expanded natural image

datasets by GIF.
Caltech101 [16]

Dataset

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.
Original dataset 26.3410 32.6105 347408 338411 31.9
5x-expanded by GIF-DALLE 57344 552401 61.8. 5 594,07 58.4 (+26.5)
5x-expanded by GIF-SD 544407 528411 60.710.3 55.6105 55.9 (+24.0)
Dataset Cars [35]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.
Original dataset 19.8410.9 184405 32.040.8 2624142 24.1
S5x-expanded by GIF-DALLE ~ 53.14¢.2 43.7+0.2 60.0+0.6 478406 51.2 (+27.1)
5x-expanded by GIF-SD 60.6..1 9 64.1.1 3 751404 60.21 ¢ 65.0 (+40.9)
Dataset Flowers [43]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.
Original dataset 741401 75.841.0 793416 85.541.0 78.7
Sx-expanded by GIF-DALLE  82.8.¢ 5 81.610.4 84.610.2 88.840.5 84.4 (+5.7)
5x-expanded by GIF-SD 821417 82.04 0 85.0.056 89.0.0.1 84.5 (+5.8)
Dataset DTD [8]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.
Original dataset 23.140.2 2544106 26.1106 28.140.9 25.7
S5x-expanded by GIF-DALLE ~ 31.2.09 30.640.1 353409 374408 33.6 (+7.9)
5x-expanded by GIF-SD 339,09 3334116 40.6.1 7 40.8.1 1 37.2 (+11.5)
Dataset CIFAR100-S [36]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.
Original dataset 35.043.2 36.342.1 42.040.3 509402 41.1
5x-expanded by GIF-DALLE 545413 524407 553403 56.240.2 54.6 (+13.5)
5x-expanded by GIF-SD 61.1.¢5 59.09.7 6442 624401 61.4 (+20.3)
Dataset Pets [44]

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.
Original dataset 6.8418 19.0416 221405 37.540.4 214
Sx-expanded by GIF-DALLE  46.2.¢ 1 523415 66.210.1 60.310.3 56.3 (+34.9)
5x-expanded by GIF-SD 658106 56.5.06 70904 60.6 5 63.5 (+42.1)
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F.4 More discussions on CLIP

In the following subsections, we provide more discussions on the comparisons with CLIP.

F.4.1 Why not directly transfer CLIP models to target datasets?

In our proposed GIF framework, we leverage the pre-trained CLIP model to guide dataset expansion.
An inevitable question might be: why not directly use or transfer the CLIP model to the target dataset,
especially given its proven effectiveness on many natural image datasets? Before delving into that,
it is important to note that we aim to tackle small-data scenarios, where only a limited-size dataset
is available and there are no large-scale external datasets with a similar nature to the target dataset.
Consequently, training a new CLIP model on the target dataset (e.g., in the medical image domains) is
not feasible. Therefore, we rely on publicly available CLIP models for dataset expansion. Compared
to directly using or transferring CLIP models, our dataset expansion introduces a necessary new
paradigm for two primary reasons as follows.

First, our GIF method has better applicability to scenarios across various image domains. While CLIP
demonstrates good transfer performance on certain natural image datasets, it struggles to achieve this
performance on other domains, such as medical image datasets. To illustrate this, we test the linear-
probing and fine-tuning performance of the CLIP-trained ResNet-50 model on three medical datasets.
As shown in Table 11, directly employing or transferring the CLIP model yielded unsatisfactory
results or only marginally improved performance—significantly underperforming compared to our
dataset expansion approach. The limited transfer performance is attributed to the fact that, when
the pre-trained datasets are highly different from the target datasets, the pre-training weights do not
significantly bolster performance compared to training from scratch [48]. Such an issue cannot be
resolved by conducting CLIP pre-training on these domains, since there is no large-scale dataset of
similar data nature to the target dataset in real scenarios. In contrast, our GIF framework is capable of
generating images of similar nature as the target data for dataset expansion, enhancing its applicability
to real-world scenarios across diverse image domains.

Second, our dataset expansion can provide expanded datasets suitable for training various network
architectures. In certain practical scenarios, such as mobile terminals, the permissible model size is
severely limited due to hardware constraints. Nonetheless, the publicly available CLIP checkpoints
are restricted to ResNet-50, ViT-B/32, or even larger models, which may not be viable in these
constrained settings. In contrast, the expanded dataset by our method can be readily employed to train
a various range of model architectures (cf. Section 5.1), making it more applicable to scenarios with
hardware limitations. One might suggest using CLIP in these situations by conducting knowledge
distillation from large CLIP models to facilitate the training of smaller model architectures. However,
as indicated in Section 5.1 and Table 11, although knowledge distillation of CLIP does enhance
model performance on most datasets, the gains are limited. This arises from two key limitations
of CLIP knowledge distillation. First, distillation can only yield marginal improvements when the
performance of CLIP on the target dataset (e.g., medical image domains) is not good. Second,
distillation tends to be ineffective when there is a mismatch between the architectures of student
and teacher models [7, 63]. This comparison further underscores the advantages of our method for
training various network architectures, while the CLIP model architectures are fixed and not editable.

Table 11: Comparison between our methods and directly fine-tuning CLIP models on three medical
image datasets. All results are averaged over three runs.

Dataset PathMNIST  BreastMNIST OrganSMNIST
Original dataset 724407 558413 76.340.4
CLIP linear probing 743401 60.042.9 64.99.
CLIP ﬁne-tuning 78.410.9 67.212'4 78.910.1
CLIP knowledge distillation 773417 60.211 3 774508
5x-expanded by GIF-SD 86.9_ 3 7744118 80.710.2
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F.4.2 Discussion on when to use GIF over zero-shot CLIP models

In Section 5.1, it is noted that while zero-shot CLIP performs well on datasets like Caltech 101 and
Pets, it struggles with medical image datasets. This poses the question: when should we prefer GIF
over pre-trained CLIP models? Although zero-shot CLIP outperforms our GIF-SD on the Caltech 101
and Pets datasets, our method demonstrates superior overall performance across six natural image
datasets, as well as medical image datasets (see Section 5.1). Thus, we recommend using our method
as the primary option.

Meanwhile, if the target dataset has a high distributional similarity with the CLIP training dataset,
it may also be beneficial to consider CLIP as an alternative and see whether it can achieve better
performance. Nevertheless, it is important to note that, as discussed in Section 5.1 and Appendix F.4.1,
CLIP is less effective in some specific application scenarios. For instance, its performance on non-
natural image domains like medical images is limited (as shown in Section 5.1). Additionally, publicly
available CLIP checkpoints are restricted to larger models like ResNet-50 and ViT-B/32, making them
unsuitable for scenarios with hardware constraints (e.g., mobile terminals) where smaller model sizes
are necessary. In these scenarios, our proposed method exhibits promising performance, offering a
more versatile solution.
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F.5 More ablation studies

F.5.1 The effectiveness of guidance in GIF-DALLE

GIF optimizes data latent features for informative sample creation by maximizing the designed
objective functions of guidance (i.e., class-maintained informativeness S;,, s and sample diversity
Sa4iv), which are essential for effective dataset expansion. With these essential guidance criteria, as
shown in Table 12, our guided expansion framework obtains consistent performance gains compared
to unguided expansion with SD, DALL-E2, or MAE, respectively. This verifies the effectiveness of
our criteria in optimizing the informativeness and diversity of the created samples.

Table 12: Accuracy of ResNet-50 trained from scratch on small datasets and their expanded datasets
by various methods. Here, CIFAR100-Subset is expanded by 5 X, Pets is expanded by 30x, and all
other natural image datasets are expanded by 20 x. All medical image datasets are expanded by 5x.
Moreover, MAE, DALL-E2 and SD (Stable Diffusion) are the baselines of directly using them to
expand datasets without our GIF. All results are averaged over three runs.

Dataset Natural image datasets Medical image datasets
Caltech101 ~ Cars Flowers DTD CIFARI00-S Pets Average PathMNIST  BreastMNIST ~ OrganSMNIST Average

Original 26.3 19.8 74.1 23.1 35.0 6.8 30.9 72.4 55.8 76.3 68.2
Expanded by MAE 50.6 25.9 76.3 27.6 44.3 39.9 44.1(+13.2) 81.7 63.4 78.6 74.6 (+6.4)
Expanded by GIF-MAE (ours) 58.4 44.5 84.4 34.2 527 524 544 (+23.5) 82.0 733 80.6 78.6 (+10.4)
Expanded by DALL-E2 61.3 483 84.1 34.5 52.1 61.7 57.0(+26.1) 82.8 70.8 79.3 77.6 (+9.4)
Expanded by GIF-DALLE (ours) 63.0 53.1 88.2 39.5 54.5 66.4  60.8 (+29.9) 84.4 76.6 80.5 80.5 (+12.3)
Expanded by SD S1.1 51.7 78.8 332 529 579 543 (+23.4) 85.1 73.8 78.9 79.3 (+11.1)
Expanded by GIF-SD (ours) 65.1 75.7 88.3 434 61.1 734  67.8 (+36.9) 86.9 77.4 80.7 81.7 (+13.5)

In this appendix, we further explore the individual influence of these criteria on GIF-DALLE.
Specifically, as mentioned in Appendix D.1, GIF-DALLE conducts guided imagination on the
CLIP embedding space, which directly determines the content of the created samples. With the
aforementioned essential criteria, as shown in Section 3.2, our GIF-DALLE is able to create motorbike
images with more diverse angles of view and even a new driver compared to unguided DALLE
expansion. Here, we further dig into how different criteria influence the expansion effectiveness
of GIF-DALLE. As shown in Table 13, boosting the class-maintained informativeness S; s is
the foundation of effective expansion, since it makes sure that the created samples have correct
labels and bring new information. Without it, only Sg;,, cannot guarantee the created samples to
be meaningful, although the sample diversity is improved, even leading to worse performance. In
contrast, with S;,, ¢, diversity promotion Sg;,, can further bring more diverse information to boost
data informativeness and thus achieve better performance (cf. Table 13). Note that contrastive
entropy increment s log(s) — s’ log(s’) in class-maintained informativeness plays different roles
from diversity promotion Sy;,,. Contrastive entropy increment promotes the informativeness of each
generated image by increasing the prediction difficulty over the corresponding seed image, but this
guidance cannot diversify different latent features obtained from the same image. By contrast, the
guidance of diversity promotion encourages the diversity of various latent features of the same seed
image, but it cannot increase the informativeness of generated samples regarding prediction difficulty.
Therefore, using the two guidance together leads the generated images to be more informative and
diversified, thus bringing higher performance improvement (cf. Table 13). As a result, as shown in
Table 12, with these two essential criteria as guidance, the model accuracy by GIF-DALLE is 3.3%
accuracy higher than unguided data generation with DALL-E2.

Table 13: Ablation of guidance in GIF-DALLE for expanding CIFAR100-Subset by 5x.

Method | Sinf  Saiv  CIFAR100-Subset
52.140.9
53.140.3
GIF-DALLE
v 51.841.3
v 545414
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F.5.2 The effectiveness of guidance in GIF-SD

We next analyze GIF-SD. As mentioned in Appendix D.2, we conduct channel-wise noise perturbation
for latent optimization in GIF-SD. As analyzed in Appendix B.2, the channel-level latent feature
encodes more subtle style information, and conducting channel-level noise perturbation diversifies
the style of images while maintaining its content integrity. Therefore, our guided optimization
particularly diversifies the style of the created images, without changing the content semantics of
the latent features after diffusion (cf. Figure 12). Moreover, the prompt-guided diffusion with our
explored prompts helps to enrich image styles further (e.g., cartoon or oil painting). Hence, combining
both of them enables GIF-SD to create new samples with much higher diversity (cf. Figure 12).

Methods Input Generated images

Stable Diffusion

+ our guided optimization

+ our designed prompts

+ our guided optimization
+ designed prompts

Figure 12: Visualization of the generated images by SD with our explored guided optimization and
designed prompts.

We then investigate the individual influence of our guidance criteria on GIF-SD on the basis of our
prompt-guided diffusion. As shown in Table 14, both the class-maintained informativeness guidance
Sins and the diversity promotion guidance Sg;,, contribute to model performance. One interesting
thing is that, unlike GIF-DALLE that does not work without S;j, r, GIF-SD can work well using
only the diversity promotion guidance Sy;,. The key reason is that GIF-SD conducts channel-level
noise perturbation over latent features and particularly diversifies the style of the created images
without changing the content semantics of the latent features after diffusion. Therefore, the class
semantics can be maintained well when only promoting sample diversity. Moreover, combining both
guidance criteria enables GIF-SD to achieve the best expansion effectiveness (cf. Table 14), leading
to promising performance gains (i.e., 13.5% accuracy improvement on average over six natural image
datasets) compared to unguided expansion with SD (cf. Table 12).

Table 14: Ablation of guidance and prompts in GIF-SD for expanding CIFAR100-Subset by 5 x.
Method \ Designed prompts ~ S;,y  Sgiw  CIFAR100-Subset

529408
562410
59.641.1
594410
61.1108

GIF-SD

AN NN
ANAN
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F.5.3 Discussions on the constraint of the perturbed feature in GIF

The hyper-parameter ¢ is used to ensure that the perturbed feature does not deviate from the input
feature significantly, and its value depends on the prior model and target dataset. As described in
Appendix D, for GIF-SD, we set ¢ = 0.8 for most natural image datasets and further adjust € = 4 for
Caltech101 to increase its dataset diversity for better performance. Once determined for a given prior
model and target dataset, € remains fixed for various expansion ratios. As shown in the following
table, there is no need to increase when the expansion ratio becomes larger.

Table 15: Ablation of hyper-parameter € on Caltech101 for GIF-SD.
€ on Caltech101 2 4 8

5x-expanded by GIF-SD  53.0 544 53.6
10x-expanded by GIF-SD  59.2 59.3 58.2
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F.6 Discussion of training models with only expanded images

It is interesting to know how the model performs when trained with only the created images by our
method. To this end, we train ResNet-50 from scratch using only images generated by GIF-DALLE
on the CIFAR100-Subset and compare the result with a model trained on the real images of the
CIFAR100-Subset.

We report the results regarding 1 x expansion in Table 16. We find that the model trained with only
1x synthetic images performs worse than the model trained with the original dataset, indicating
that the quality of synthetic data still lags behind that of real images. Please note that this does not
degrade our contribution, since our work aims to expand small datasets rather than replace them
entirely. Moreover, mixing the original images with the created images to the same size as the original
dataset can lead to better performance than using only the original dataset. This suggests that the
created images are not a simple repetition of the original dataset but offer new information that is
useful for model training. Lastly, the model trained on the complete 1x-expanded dataset significantly
outperforms the models trained either only on the original dataset or solely on the generated images,
underscoring the potential of synthetic images in expanding small-scale datasets for model training.

Table 16: Performance of the model trained with only the expanded data of the 5Xx-expanded
CIFAR100-Subset dataset by GIF-DALLE.

CIFAR100-Subset Data amount  Accuracy
Training with real images in original dataset 10,000 35.041.7
Training with only the 1x-created data by GIF-DALLE 10,000 21.040.7
Training with mixing original data and 1x-created data by GIF-DALLE 10,000 372408
Training with 1 x-expanded dataset by GIF-DALLE 20,000 45.6111

We next report the results regarding 5x expansion in Table 17. The model trained with 5x synthetic
images has already performed comparably to the model trained with real images. This result further
verifies the effectiveness of our explored dataset expansion method. Moreover, the model trained with
the full 5 x-expanded dataset performs much better than that trained with only the original dataset or
with only the generated images. This further shows that using synthetic images for model training is
a promising direction. We expect that our innovative work on dataset expansion can inspire more
studies to explore this direction in the future.

Table 17: Performance of the model trained with only the expanded data of the 5x-expanded
CIFAR100-Subset dataset by GIF-DALLE.

CIFAR100-Subset Data amount  Accuracy
Training with real images in original dataset 10,000 35.041.7
Training with only the 5x-created data by GIF-DALLE 50,000 352413
Training with 5 x-expanded dataset by GIF-DALLE 60,000 545411
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F.7 Effectiveness on long-tailed classification dataset

In previous experiments, we have demonstrated the effectiveness of our proposed method on relatively
balanced small-scale datasets. However, real-world classification datasets are usually class imbalanced
and even follow a long-tailed class distribution. Therefore, we further apply GIF-SD to expand a
long-tailed dataset, i.e., CIFAR100-LT [3] (with the imbalance ratio of 100), to see whether it is
also beneficial to long-tailed learning. Here, we train ResNet-50 from scratch with the cross-entropy
loss or the balanced softmax loss [31] for 200 epochs, where Balanced Softmax [31, 86] is a class
re-balancing loss designed for long-tailed learning.

As shown in Table 18, compared to training with cross-entropy directly on the original CIFAR100-LT
dataset, 20x expansion by our GIF-SD leads to a 13.5% model accuracy gain. This demonstrates the
effectiveness of our proposed method in long-tailed learning. More encouragingly, our GIF expansion
boosts the performance of few-shot classes more than many-shot classes, which means that GIF helps
to address the issue of class imbalance.

Besides the cross-entropy loss, our dataset expansion is also beneficial to model training with long-
tailed losses, such as Balanced Softmax. As shown in Table 18, 20 x expansion by GIF-SD boosts the
accuracy of the Balanced Softmax trained model by 14.8%, and significantly improves its tail-class
performance by 26.8%. These results further demonstrate the applicability of our GIF to long-tailed
learning applications. We expect that this work can inspire more long-tailed learning studies to explore
dataset expansion since information lacking is an important challenge in long-tailed learning [87].

Table 18: Effectiveness of GIF-SD for expanding CIFAR100-LT (imbalance ratio 100) by 10x, where
all models are trained for 200 epochs. Here, Balanced Softmax [31, 86] is a class re-balancing losses
designed for long-tailed learning.

CIFAR100-LT Training losses Many-shot classes Medium-shot classes Few-shot classes Overall
Original Cross-entropy 70.5 41.1 8.1 41.4
20x-expanded by GIF-SD Cross-entropy 79.5 (+9.0) 54.9 (+13.8) 26.4 (+18.3) 54.9 (+13.5)
Original Balanced Softmax 67.9 45.8 17.7 45.1
20x-expanded by GIF-SD  Balanced Softmax 73.7 (+5.8) 59.2 (+13.4) 44.5 (+26.8) 59.9 (+14.8)

F.8 Effectiveness on larger-scale dataset

In previous experiments, we have demonstrated the effectiveness of our proposed method on small-
scale natural and medical image datasets. In addition to that, one may also wonder whether our
method can be applied to larger-scale datasets. Although expanding larger-scale datasets is not the
goal of this paper, we also explore our method to expand the full CIFAR100 by 5 x for model training.
As shown in Table 19, compared to direct training on the original CIFAR100 dataset, our GIF-SD
leads to a 9.4% accuracy gain and GIF-DALLE leads to an 8.7% accuracy gain. Such encouraging
results verify the effectiveness of our methods on larger-scale datasets.

Table 19: Effectiveness of GIF for expanding the full CIFAR100.

Dataset CIFAR100
Original 709106
Expanded

Sx-expanded by GIF-DALLE  79.6¢ 3
5x-expanded by GIF-SD 80.3. 3
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F.9 Safety check

Ethical considerations, especially in Al research and data generation, are indeed paramount. Our
approach is constructed with care to avoid negative implications, as evidenced in the following points:

* Controlled generation: In our approach, the generation of synthetic data is driven by our
expansion guidances, which ensure that new data is derived directly and meaningfully from
the original dataset. This controlled mechanism minimizes the risks of creating unrelated or
potentially harmful images.

* No personal or sensitive data: It is also worth noting that our method primarily focuses
on publicly available datasets like CIFAR, Stanford Cars, and similar, which do not con-
tain personal or sensitive information. As such, the risks related to privacy breaches or
misrepresentations are substantially diminished.

Following this, we further employ the Google Cloud Vision API” to perform a safety check on
the 50,000 images generated during 5x-expansion of CIFAR100-S by GIF-SD. The Google Cloud
Vision API is a tool from Google that uses deep learning to analyze and categorize content in images,
commonly used for safety checks. It evaluates the likelihood of the image containing adult themes
such as nudity or sexual activities, alterations made for humor or offensiveness (spoof), medical
relevance, violent content, and racy elements which could include suggestive clothing or poses. This
assessment aids in ensuring that images adhere to content standards and are appropriate for their
target audiences.

As evidenced by Table 20, the synthetic images by our method are safe and harmless. To be specific,
the majority of our generated images are categorized as either "Very unlikely" or "Unlikely" across all
five metrics. Moreover, for categories like "Adult" and "Medical", the likelihood is almost negligible.
Moreover, the visualized images in Appendix G also highlight the benign nature of the images
produced by our method.

Table 20: Safety check of the generated images of CIFAR100-S by our GIF-SD, in terms of different
metrics of Google Cloud Vision APIL.

Metrics ~ Very unlikely Unlikely Neutral Likely Very likely

Adult 96% 4% 0% 0% 0%
Spoof 82% 15% 3% 0% 0%
Medical 86% 14% 0% 0% 0%
Violence 69% 31% 0% 0% 0%
Racy 66% 25% 9% 0% 0%

Zhttps://cloud.google.com/vision/docs/detecting-safe-search
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G More Visualization Results

This appendix provides more visualized results for the created samples by our methods on various
natural image datasets. Specifically, we report the synthetic images by GIF-SD on Caltech101 in
Figure 13, those by GIF-DALLE in Figure 14 and those by GIF-MAE in Figure 15. The visualized
results show that our GIF-SD and GIF-DALLE can create semantic-consistent yet content-diversified
images well, while GIF-MAE can generate content-consistent yet highly style-diversified images. The
visualization of GIF-SD and GIF-DALLE on other natural image datasets are shown in Figures 16-25.

G.1 Visualization of the expanded images on Caltech101
G.1.1 Visualization of the expanded images by GIF-SD on Caltech101

Input Our GIF-SD expansion

Figure 13: Visualization of the created samples on Caltech101 by GIF-SD.
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G.1.2 Visualization of the expanded images by GIF-DALLE on Caltech101

Input Our GIF-DALLE expansion
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Figure 14: Visualization of the created samples on Caltech101 by GIF-DALLE.
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G.1.3 Visualization of the expanded images by GIF-MAE on Caltech101

Input Our GIF-MAE expansion

Figure 15: Visualization of the created samples on Caltech101 by GIF-MAE.
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G.2 Visualization of the expanded images on Cars

G.2.1 Visualization of the expanded images by GIF-SD on Cars

Input Our GIF-SD expansion

Figure 16: More visualization of the synthetic samples on Cars by GIF-SD.
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G.2.2 Visualization of the expanded images by GIF-DALLE on Cars

Input Our GIF-DALLE expansion
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Figure 17: More visualization of the synthetic samples on Cars by GIF-DALLE.
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G.3 Visualization of the expanded images on Flowers

G.3.1 Visualization of the expanded images by GIF-SD on Flowers

Figure 18: More visualization of the synthetic samples on Flowers by GIF-SD.
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G.3.2 Visualization of the expanded images by GIF-DALLE on Flowers

Our GIF-DALLE expansion

Figure 19: More visualization of the synthetic samples on Flowers by GIF-DALLE.
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G.4 Visualization of the expanded images on Pets

G.4.1 Visualization of the expanded images by GIF-SD on Pets

Our GIF-SD expansion

Figure 20: More visualization of the synthetic samples on Pets by GIF-SD.
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G.4.2 Visualization of the expanded images by GIF-DALLE on Pets

Input Our GIF-DALLE expansion

Figure 21: More visualization of the synthetic samples on Pets by GIF-DALLE.
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G.5 Visualization of the expanded images on CIFAR100-Subset
G.5.1 Visualization of the expanded images by GIF-SD on CIFAR100-Subset

Input Our GIF-SD expansion
W

A s
R

Figure 22: More visualization of the synthetic samples on CIFAR100-Subset by GIF-SD.
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G.5.2 Visualization of the expanded images by GIF-DALLE on CIFAR100-Subset

Input Our GIF-DALLE expansion

Figure 23: More visualization of the synthetic samples on CIFAR100-Subset by GIF-DALLE. Note
that the resolution of the input CIFAR100 images is small (i.e., 32x32), so their visualization is a
little unclear.
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G.6 Visualization of the expanded images on DTD
G.6.1 Visualization of the expanded images by GIF-SD on DTD

Figure 24: More visualization of the synthetic samples on DTD by GIF-SD.
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G.6.2 Visualization of the expanded images by GIF-DALLE on DTD

Our GIF-DALLE expansion
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