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ABSTRACT

Link prediction is a crucial task in dynamic graph learning. Recent advancements
in continuous-time dynamic graph models, primarily by leveraging richer tem-
poral details, have significantly improved link prediction performance. However,
due to their complex modules, they still face several challenges, such as overfitting
and optimization difficulties. More importantly, it is challenging for these meth-
ods to capture the ’shift’ phenomenon, where node interaction patterns change
over time. To address these issues, we propose a simple yet novel method called
Frequency Enhanced Continuous-Time Dynamic Graph (FreeDyG) model for
link prediction. Specifically, we propose a node interaction frequency encoding
module that both explicitly captures the proportion of common neighbors and the
frequency of the interaction of the node pair. Unlike previous works that pri-
marily focus on the time domain, we delve into the frequency domain, allow-
ing a deeper and more nuanced extraction of interaction patterns, revealing peri-
odic and ”shift” behaviors. Extensive experiments conducted on seven real-world
continuous-time dynamic graph datasets validate the effectiveness of FreeDyG.
The results consistently demonstrate that FreeDyG outperforms existing methods
in both transductive and inductive settings. Our code is available at this repository:
https://github.com/Tianxzzz/FreeDyG

1 INTRODUCTION

Link prediction on dynamic graphs is a fundamental problem in various real-world applications,
such as social media analysis Huo et al. (2018); Alvarez-Rodriguez et al. (2021), recommendation
systems Song et al. (2019); Yuxiao et al. (2012); Wang et al. (2021b), and drug discovery Abbas
et al. (2021). Recently, dynamic graph representation learning methods have become widespread in
both industry and academia due to their remarkable performance in solving this problem.

Existing dynamic graph learning methods can be divided into two main categories: discrete-time
dynamic graph (DTDG) models Pareja et al. (2020); Zhao et al. (2019); Yang et al. and continuous-
time dynamic graph (CTDG) models Kumar et al. (2019); Wang et al. (2021c); Xu et al. (2020);
Trivedi et al. (2019); Yu et al. (2023); Wang et al. (2021a;d); Jin et al. (2022a); Luo et al. (2023);
Chang et al. (2020); Huang et al. (2020). Notably, there has been a growing interest in CTDG
algorithms, primarily because of their ability to preserve time information effectively.

Although the above CTDG methods have achieved impressive results, they still have some limita-
tions. Firstly, some methods rely on random walks (RW) Wang et al. (2021d); Jin et al. (2022b),
temporal point processes (TPP) Chang et al. (2020); Huang et al. (2020), or ordinary differential
equations (ODE) Luo et al. (2023); Liang et al. (2022) to enhance their learning ability. How-
ever, these methods are computationally expensive and may lead to overfitting of the historical
interactions. Secondly, most existing methods encode interaction sequences independently, disre-
garding potential relationships between them. Although Yu et al. (2023) proposes the neighbor
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co-occurrence mechanism, it relies solely on the number of historical common neighbors between
node pairs to predict the likelihood of node pairs interacting in the future. As a result, it is difficult
for them to capture the “shift” phenomenon which is commonly hidden behind time series data. For
instance, in a co-author network, researchers who are acquainted with each other tend to collaborate
during the same period each year, as conferences are typically held around the same time annually.
However, when a new and popular research topic emerges suddenly, such as large language models
(LLMs), there is a notable shift in these collaboration patterns. Researchers then show a preference
for establishing collaborations with unfamiliar researchers who specialize in that area.

To address the above challenges, we delve into the frequency domain and propose a simple yet
novel method called Frequency Enhanced Continuous-Time Dynamic Graph (FreeDyG) model
for link prediction. FreeDyG comprises two essential components: the encoding layer and the
frequency-enhanced MLP-Mixer layer. The encoding layer is designed to transform each interac-
tion (u, v, t) into an embedding sequence, considering the historical neighbors of both node u and
v. In contrast to existing methods, we also introduce a new node interaction frequency encoding ap-
proach to explicitly capture the interaction frequency between node pairs. Then, we propose a novel
frequency-enhanced MLP-Mixer layer to efficiently capture the periodic temporal patterns and the
”shift” phenomenon hidden in the frequency domain. Specifically, we apply the Fourier Transform
to the encoded embedding sequence, followed by multiplication with a learnable complex number
tensor. This can adaptively enhance desired frequencies, thereby improving the model’s ability to
capture relevant information.

Our contributions can be summarized as follows: Firstly, we introduce a novel frequency-enhanced
dynamic graph model called FreeDyG for the task of link prediction. Instead of the temporal domain,
FreeDyG tries to address this problem by delving into the frequency domain. Secondly, in addition
to the traditional encoding of node/link features and time information, we propose a node interaction
frequency encoding approach that explicitly captures the frequency of neighbor nodes from both the
source and target nodes. Furthermore, we design a novel frequency-enhanced MLP-Mixer layer
to further capture periodic temporal patterns and the ”shift” phenomenon present in the frequency
domain. Finally, we conduct extensive experiments on seven widely used real-world continuous-
time dynamic graph datasets, evaluating both transductive and inductive settings. The experimental
results demonstrate the superior performance of FreeDyG compared to state-of-the-art methods.

2 PRELIMINARIES

Task Definition. Following prevailing methods Poursafaei et al. (2022); Yu et al. (2023); Rossi
et al. (2020), our study primarily focuses on CTDGs with edge addition events. A CTDG
G can be represented as a chronological sequence of interactions between specific node pairs:
G = {(u0, v0, t0), (u1, v1, t1), . . . , (un, vn, tn)}, where ti denotes the timestamp and the times-
tamps are ordered as (0 ≤ t0 ≤ t1 ≤ ... ≤ tn). ui, vi ∈ V denote the node IDs of the i − th
interaction at timestamp ti, V is the entire node set. Each node u ∈ V is associated with node
feature xu ∈ RdN , and each interaction (u, v, t) has edge feature etu,v ∈ RdE , where dN and dE
denote the dimensions of the node and link feature respectively. Based on the above definitions, link
prediction in CTDGs can be formulated as: given a pair of nodes with a specific timestamp t, we
aim to predict whether the two nodes are connected at t based on all the available historical data.

Discrete Fourier Transform (DFT). Given a sequence of data {xn}Nn=1, the Discrete Fourier Trans-
form (DFT) is utilized to convert the sequence into the frequency domain. The DFT operation can
be defined as:

Xk =

N∑
k=1

xne
− 2πi

N nk, 1 ≤ k ≤ N (1)

where i denotes the imaginary unit and {Xk}Nk=1 is a sequence of complex numbers in the frequency
domain. Thus, Xk captures the spectrum of the sequence {xn}Nn=1 at the frequency ωk = 2πk/M .
We note that the DFT is a one-to-one transformation, enabling the recovery of the original sequence
through the inverse DFT (IDFT):

xn =
1

N

N∑
k=1

Xke
2πi
N nk (2)
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Figure 1: The overview of FreeDyG.

The computation complexity of DFT is O(N2). In practice, the Fast Fourier Transform (FFT) is
commonly used to compute the DFT efficiently, which could recursively express the DFT of a se-
quence of length N and reduce the computation complexity from O(N2) to O(N logN). Similarly,
the IDFT in Equation 2 can be efficiently computed using the inverse Fast Fourier Transform (IFFT).
Due to the page limit, we omit the details of DFT and FFT, which can be found in Bruun (1978).

3 METHOLODGY

In this section, we provide a detailed description of our FreeDyG. As shown in Figure 1, the model
operates on a node pair (u, v) and a specific timestamp (t). Initially, we sample L first-hop histor-
ical neighbors for both nodes, ordered based on temporal proximity, to construct two interaction
sequences, St

u and St
v . If a node has fewer than L historical neighbors, zero-padding is used to fill

the gap. Subsequently, we employ an encoding layer to encode the features of each node, link, and
timestamp within the sequences. Additionally, we incorporate the frequencies of neighbor appear-
ances in both St

u and St
v to exploit correlations between nodes. The encoded representations are then

aligned and fed into a frequency-enhanced MLP-Mixer layer, enabling the capture of information at
different frequencies. The outputs are aggregated to generate time-aware representations of u and v
at timestamp t (i.e., ht

u and ht
v). The final prediction is generated by the link prediction layer.

3.1 ENCODING LAYER

Node/Edge Encoding. In dynamic graphs, both nodes and edges (links) frequently possess associ-
ated features. To derive embeddings for interactions, it is sufficient to extract the intrinsic features of
the neighboring nodes and edges based on the sequence St

∗, where ∗ can be either u or v. Similar to
existing works, we encode the nodes and links as Zt

∗,N ∈ RL×dN and Zt
∗,E ∈ RL×dE respectively,

where dN , dE are the dimensions of node and edge embeddings respectively.

Time Encoding. Time encoding is employed to map constant timestamps to vectors Zt
∗,T ∈ RL×dT ,

where dT is the dimension of time embeddings. Specifically, we utilize the widely adopted time
encoding function cos(tnω), where ω =

{
α−(i−1)/β

}dT

i=1
is employed to encode timestamps. α

and β are hyperparameters to make tmax × α−(i−1)/β close to 0 when i close to dT . A cosine
function is then applied to project these values into the range of [−1,+1]. Notably, we use relative
timestamps instead of absolute timestamps for encoding. In other words, if the timestamp of the
sampled interaction is t0, and the specific timestamp for link prediction is t, we utilize cos((tn−t)ω)
as the effective relative time encoding function. It is worth mentioning that ω remains constant and
is not updated during the training phase. This technique makes the model easy to optimize and leads
to performance improvement, as demonstrated in Cong et al. (2023).

Node Interaction Frequency (NIF) Encoding. Most existing methods encode interaction se-
quences, i.e., St

u and St
v , independently, disregarding potential relationships between them. Yu et al.

(2023) introduces a neighbor co-occurrence scheme, suggesting that nodes with a higher number of
shared historical neighbors are more likely to interact in the future. However, while a significant
portion of edges in networks exhibit recurring patterns over time, these recurrence patterns vary
considerably across different networks and domains Poursafaei et al. (2022).
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To address this issue, we introduce a node interaction frequency encoding approach, which takes into
account not only the appearance frequency of common neighbors but also the interaction frequency
between the node pairs. It recognizes that the potential for future interactions between two nodes
is influenced by both their common neighbors and their past interactions. Specifically, given the
interaction sequences St

u and St
v , we count the frequency of each neighbor in both St

u and St
v . In

addition, We specifically encode for the frequency of the interaction of the node pair and get the node
interaction frequency features for u and v, which are represented by Zt

∗,C . For example, suppose the
historical interacted nodes of u and v are {c, v, c, d, v} and {d, u, d, c, u}. The appearing frequencies
of c, d in u/v’s historical interactions are 2/1, 1/2 respectively. And the node pair interaction
frequency is [2, 2]. Therefore, the node interaction frequency features of u and v can be denoted
by F t

u = [[2, 1], [2, 2], [2, 1], [1, 2], [2, 2]]T and F t
v = [[1, 2], [2, 2], [1, 2], [2, 1], [2, 2]]T . Then, we

encode the node interaction frequency features by:

Zt
∗,F = f

(
F t
∗[:, 0]

)
+ f

(
F t
∗[:, 1]

)
∈ RL×dF , (3)

where ∗ could be u or v. f() represents a two-layer perceptron with ReLU activation. And the
dimension of input and output of f() are 1 and dF .

Finally, we concatenate all encodings mentioned above to an embedding of dimension d with train-
able weight W∗ ∈ Rd∗×d and b∗ ∈ Rd, resulting in Zt

u,∗ ∈ Rltu×d and Zt
v,∗ ∈ Rltv×d. Here,

∗ can be N , E, T or F . Subsequently, the concatenated encodings for nodes are summed as
Zt
u ∈ RL×d = Zt

u,N + Zt
u,E + Zt

u,T + Zt
u,F and Zt

v ∈ RL×d = Zt
v,N + Zt

v,E + Zt
v,T + Zt

v,F ,
respectively.

3.2 FREQUENCY-ENHANCED MLP-MIXER LAYER

We derive the historical interaction embedding sequences for the node pair by utilizing the encoding
layer. Since each interaction embedding is arranged chronologically, it can be viewed as discrete
time series data. Consequently, we naturally leverage the Fourier transform to decompose of time
series data into their constituent frequencies, which can effectively capture the interaction patterns
of nodes across various frequencies. To this end, we introduce the frequency-enhanced MLP-Mixer
layer, which contains two sublayers: the frequency-enhancing layer and the MLP-Mixer layer.

Frequency Enhancing (FE) layer. Given the input Zl
∗ of the l-th layer and the first layer input is

Zt
∗. For simplicity, Zl

∗ is short for Zl,t
∗ . To better identify important frequencies within the historical

interaction sequence data, we perform the Fast Fourier Transform (FFT) along the first dimension
of Zl

∗ ∈ RL×d to convert it into the frequency domain:

Z l
∗ = F(Zl

∗), (4)

where F denotes the 1D FFT. Z l
∗ ∈ C{L

2 +1}×d denotes the frequency components of Zl
∗ and C

denotes the complex number domain. Then we can adaptively enhance the frequency components
by multiplying it with a learnable complex number tensorW ∈ C{L

2 +1}×d.

Ẑ l
∗ =W · Z l

∗ (5)

where · denotes the element-wise multiplication, Ẑ l
∗ ∈ C{L

2 +1}×d represents the enhanced fre-
quency components. Finally, we transform Ẑ l

∗ back to the time domain.

Z̃l
∗ ← F−1

(
Ẑ l

∗

)
. (6)

where F−1() denotes the inverse 1D FFT, which converts the complex number tensor into a real
number tensor. Then we use the residual connection and dropout layer as:

Zl
∗ = Zl

∗ +Dropout
(
Z̃l
∗

)
(7)

MLP-Mixer layer. After that, we employ MLP-Mixer Tolstikhin et al. (2021) to further capture
the non-linearity characteristics, which contains two types of layers: token mixing MLP layer and
channel mixing MLP layer. The computation is listed as:

Zl
∗,token = Zl

∗ +W2
token σ(W

1
token LayerNorm(Zl

∗)),

Zl
∗,channel = Zl

∗,token + σ(LayerNorm(Zl
∗,token)W

1
channel )W

2
channel

(8)
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where σ is an element-wise nonlinearity, W∗
token ∈ Rd×d and W∗

channel ∈ Rd×d are trainable param-
eters in the token-mixing and channel-mixing MLPs, respectively. The same channel-mixing MLP
layer (token-mixing MLP layer) is applied to every row (column) of input.

Theorem 1. Given an input Z ∈ RN×D and a learnable matrixW ∈ RN×D and their correspond-
ing frequency domain conversion, the multiplication in the frequency domain is equivalent to the
global convolution in the time domain.

Proof. We regard Z ∈ RN×D as {zn ∈ RD}Nn=1 andW ∈ RN×D as {wn ∈ RD}Nn=1. Denote the
d-th dimension features of Z and W as {z(d)n }Nn=1 and {w(d)

n }Nn=1. Then, the global convolution can
be defined as:

{z(d)n }Nn=1 ⊛ {w(d)
n }Nn=1 =

N∑
m=1

w(d)
m · z(d)(n−m) mod N (9)

where ⊛ and mod denote the convolution and integer modulo operation, respectively. Then, ac-
cording to Equation 1, the multiplication in the frequency domain can be written as:

DFT ({w(d)
n }Nn=1) · DFT ({z(d)n }Nn=1) = w

(d)
k

N∑
n=1

z(d)n e−
2πi
N kn

= w
(d)
k

(
N−m∑
n=1

z(d)n e−
2πi
N kn +

N∑
n=N−m

z(d)n e−
2πi
N kn

)

= w
(d)
k

(
N∑

n=m

z
(d)
n−me−

2πi
N k(n−m) +

m∑
n=1

z
(d)
n−m+Ne−

2πi
N k(n−m)

)

=

N∑
m=1

w(d)
m e−

2πi
N km

N∑
n=1

z
(d)
(n−m)%Ne−

2πi
N k(n−m)

= DFT ({z(d)n }Nn=1 ⊛ {w(d)
n }Nn=1)

(10)

3.3 AGGREGATOR

Different from most previous methods that simply aggregate the sequence of each appearing element
using average pooling, we get the time-aware representations ht

u ∈ Rd and ht
v ∈ Rd of node u and

v at timestamp t by the following weighted aggregation equation:

ht
∗ = ((W agg · Zl

∗,channel)
T · Zl

∗,channel)
T (11)

where W agg ∈ R1×L is a trainable vector designed to adaptively learn the importance of various
interactions.

3.4 LINK PREDICTION LAYER

The prediction ŷ is computed by adopting a 2-layer multilayer perceptron (MLP) and using softmax
to convert it into link probability on the concatenation of the above two nodes’ representation:

ŷ = Softmax(MLP (RELU(MLP (ht
u||ht

v)))). (12)

3.5 LOSS FUNCTION

For link prediction loss, we adopt binary cross-entropy loss function, which is defined as:

Lp = − 1

K

S∑
i=1

(yi ∗ logŷi + (1− yi) ∗ log(1− ŷi)), (13)

where K is the number of positive/negative samples, yi represents the ground-truth label of i-th
sample and the ŷi represents the prediction value.
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Figure 2: Comparison of model performance, parameter size and training time per epoch on WIKI
and Reddit.

4 EXPERIMENTS

4.1 DATASETS

We utilize seven publicly available real-world datasets: Wiki, REDDIT, MOOC, LastFM, Enron,
Social Evo, and UCI, in our study. Appendix A provides a detailed description and the statistics of
the datasets are shown in Table 4. The sparsity of the graphs is quantified using the density score,
calculated as 2|E|

|V |(|V |−1) , where |E| and |V | represent the number of links and nodes in the training
set, respectively. To facilitate training, validation, and testing, we split these datasets into three
chronological segments with ratios of 70%-15%-15%.

4.2 BASELINES

To evaluate the performance of our method, we conduct experiments comparing it with previous
state-of-the-arts, including JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu
et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2021d), EdgeBank (Poursafaei et al.,
2022), TCL (Wang et al., 2021a), GraphMixer (Cong et al., 2023), DyGFormer (Yu et al., 2023).
Detailed descriptions of these methods can be found in Appendix B.

4.3 EVALUATION METRICS AND EXPERIMENTAL SETTINGS

For evaluating our method, we employ Average Precision (AP) and Area Under the Receiver Op-
erating Characteristic Curve (AUC-ROC) as the evaluation metrics. The link prediction task en-
compasses two settings: 1) transductive setting, which focuses on predicting future links between
nodes observed during training, and 2) inductive setting, which involves predicting future links
between unseen nodes. To ensure comprehensive comparisons, we also evaluate each method with
three negative sampling strategies as Poursafaei et al. (2022), i.e., random (rnd), historical (hist), and
inductive (ind) negative sampling, which the latter two are more challenging. The evaluation details
of all three strategies can be found in Appendix C.

All models are trained for a maximum of 200 epochs using the early stopping strategy with patience
of 20. The model that achieves the highest performance on the validation set is selected for testing.
For all models, we employ the Adam optimizer and set the learning rate and batch size to 0.0001 and
200, respectively. The hyperparameter configurations of the baselines align with those specified in
their respective papers. For our FreeDyG, we set the dT to 100,and both α and β to 10. The number
of frequency-enhanced MLP-Mixer layers are 2. We conduct ten runs of each method with different
seeds and report the average performance to eliminate deviations. All experiments are performed on
an NVIDIA A100-SXM4 40GB GPU.

4.4 COMPARISON WITH SOTA

In this section, we compare our FreeDyG with the previous SOTA in both transductive and induc-
tive settings. Table 10 and Table 2 show the AP of all datasets in these two settings respectively.
To provide a more comprehensive study of our FreeDyG, we show results among all three negative
sampling strategies. Due to the limitation of space, we put similar results on AUC-ROC in Table 5
and Table 6 in Appendix. We note that EdgeBank Poursafaei et al. (2022) is only designed for the
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NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer FreeDyG

rnd

Wiki 96.69 ± 0.25 95.23 ± 0.50 96.95 ± 0.17 98.42 ± 0.05 98.65 ± 0.04 90.37 ± 0.00 96.47 ± 0.16 97.17 ± 0.05 98.82 ± 0.02 99.26 ± 0.01

Reddit 97.83±0.21 98.17±0.02 98.47±0.03 98.67±0.04 99.11±0.01 94.86±0.00 97.61±0.03 97.37±0.01 99.11±0.02 99.48±0.01

MOOC 77.20±1.32 79.97±0.82 85.44±0.76 89.43±2.95 78.66±0.31 57.97±0.00 81.12±0.43 82.73±0.16 87.23±0.45 89.61±0.19

LastFM 68.54±2.95 70.79±1.87 73.76±0.45 78.69±2.71 86.58±0.10 79.29±0.00 65.64±2.52 75.64±0.23 92.07±0.28 92.15±0.16

Enron 79.10±0.85 82.02±3.07 72.58±0.79 85.33±1.05 89.56±0.09 83.53±0.00 79.70±0.71 81.08±0.73 92.47±0.12 92.51±0.05

Social Evo. 88.12±0.74 88.87±0.30 93.16±0.17 93.57±0.17 84.96±0.09 74.95±0.00 93.13±0.16 93.37±0.07 94.73±0.01 94.91±0.01

UCI 87.65±1.85 70.24±0.32 79.55±0.83 90.69±0.45 94.35±0.11 76.20±0.00 88.12±2.73 93.50±0.49 95.76±0.15 96.28±0.11

Avg.Rank 7.14 6.08 5.85 3.31 2.94 8.79 4.56 5.23 2.14 1

hist

Wiki 81.19±0.48 78.32±0.71 87.01±0.19 86.96±0.36 72.38±1.85 73.35 ± 0.00 88.75±0.27 90.87±0.08 82.23 ± 2.54 91.59±0.57

Reddit 80.03 ± 0.36 79.83 ± 0.31 79.55 ± 0.20 81.75 ± 0.36 80.82 ± 0.45 73.59 ± 0.00 77.14 ± 0.16 78.44 ± 0.18 81.02 ± 0.59 85.67 ± 1.01

MOOC 78.94 ± 1.25 75.60 ± 1.12 82.19 ± 0.62 87.06 ± 1.93 74.05 ± 0.95 60.71 ± 0.00 77.06 ± 0.41 77.77 ± 0.92 85.85 ± 0.66 86.71 ± 0.81

LastFM 74.35 ± 3.81 74.92 ± 2.46 71.59 ± 0.24 76.87 ± 4.64 69.86 ± 0.43 73.03 ± 0.00 59.30 ± 2.31 72.47 ± 0.49 81.57 ± 0.48 79.71 ± 0.51

Enron 69.85 ± 2.70 71.19 ± 2.76 64.07 ± 1.05 73.91 ± 1.76 64.73 ± 0.36 76.53 ± 0.00 70.66 ± 0.39 77.98 ± 0.92 75.63 ± 0.73 78.87 ± 0.82

Social Evo. 87.44 ± 6.78 93.29 ± 0.43 95.01 ± 0.44 94.45 ± 0.56 85.53 ± 0.38 80.57 ± 0.00 94.74 ± 0.31 94.93 ± 0.31 97.38 ± 0.14 97.79 ± 0.23

UCI 75.24 ± 5.80 55.10 ± 3.14 68.27 ± 1.37 80.43 ± 2.12 65.30 ± 0.43 65.50 ± 0.00 80.25 ± 2.74 84.11 ± 1.35 82.17 ± 0.82 86.10 ± 1.19

Avg.Rank 5.46 5.08 5.08 3.85 7.54 5.92 5.46 4.00 2.85 1.28

ind

Wiki 75.65 ± 0.79 70.21 ± 1.58 87.00 ± 0.16 85.62 ± 0.44 74.06 ± 2.62 80.63 ± 0.00 86.76 ± 0.72 88.59 ± 0.17 78.29 ± 5.38 90.05 ± 0.79

Reddit 86.98 ± 0.16 86.30 ± 0.26 89.59 ± 0.24 88.10 ± 0.24 91.67 ± 0.24 85.48 ± 0.00 87.45 ± 0.29 85.26 ± 0.11 91.11 ± 0.40 90.74 ± 0.17

MOOC 65.23 ± 2.19 61.66 ± 0.95 75.95 ± 0.64 77.50 ± 2.91 73.51 ± 0.94 49.43 ± 0.00 74.65 ± 0.54 74.27 ± 0.92 81.24 ± 0.69 83.01 ± 0.87

LastFM 62.67 ± 4.49 64.41 ± 2.70 71.13 ± 0.17 65.95 ± 5.98 67.48 ± 0.77 75.49 ± 0.00 58.21 ± 0.89 68.12 ± 0.33 73.97 ± 0.50 72.19 ± 0.24

Enron 68.96 ± 0.98 67.79 ± 1.53 63.94 ± 1.36 70.89 ± 2.72 75.15 ± 0.58 73.89 ± 0.00 71.29 ± 0.32 75.01 ± 0.79 77.41 ± 0.89 77.81 ± 0.65

Social Evo. 89.82 ± 4.11 93.28 ± 0.48 94.84 ± 0.44 95.13 ± 0.56 88.32 ± 0.27 83.69 ± 0.00 94.90 ± 0.36 94.72 ± 0.33 97.68 ± 0.10 97.57 ± 0.15

UCI 65.99 ± 1.40 54.79 ± 1.76 68.67 ± 0.84 70.94 ± 0.71 64.61 ± 0.48 57.43 ± 0.00 76.01 ± 1.11 80.10 ± 0.51 72.25 ± 1.71 82.35 ± 0.73

Avg.Rank 6.62 6.38 4.15 4.38 5.46 5.62 4.69 4.46 2.43 1.71

Table 1: AP for transductive link prediction with three different negative sampling strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 94.82 ± 0.20 92.43 ± 0.37 96.22 ± 0.07 97.83 ± 0.04 98.24 ± 0.03 96.22 ± 0.17 96.65 ± 0.02 98.59 ± 0.03 98.97±0.01

Reddit 96.50 ± 0.13 96.09 ± 0.11 97.09 ± 0.04 97.50 ± 0.07 98.62 ± 0.01 94.09 ± 0.07 95.26 ± 0.02 98.84 ± 0.02 98.91 ± 0.01

MOOC 79.63 ± 1.92 81.07 ± 0.44 85.50 ± 0.19 89.04 ± 1.17 81.42 ± 0.24 80.60 ± 0.22 81.41 ± 0.21 86.96 ± 0.43 87.75± 0.62

LastFM 81.61 ± 3.82 83.02 ± 1.48 78.63 ± 0.31 81.45 ± 4.29 89.42 ± 0.07 73.53 ± 1.66 82.11 ± 0.42 94.23 ± 0.09 94.89 ± 0.01

Enron 80.72 ± 1.39 74.55 ± 3.95 67.05 ± 1.51 77.94 ± 1.02 86.35 ± 0.51 76.14 ± 0.79 75.88 ± 0.48 89.76 ± 0.34 89.69 ± 0.17

Social Evo. 91.96 ± 0.48 90.04 ± 0.47 91.41 ± 0.16 90.77 ± 0.86 79.94 ± 0.18 91.55 ± 0.09 91.86 ± 0.06 93.14 ± 0.04 94.76 ± 0.05

UCI 79.86 ± 1.48 57.48 ± 1.87 79.54 ± 0.48 88.12 ± 2.05 92.73 ± 0.06 87.36 ± 2.03 91.19 ± 0.42 94.54 ± 0.12 94.85 ± 0.10

Avg.Rank 6.14 6.14 5.45 3.71 3.14 4.56 4.45 1.71 1.14

hist

Wikipedia 68.69 ± 0.39 62.18 ± 1.27 84.17 ± 0.22 81.76 ± 0.32 67.27 ± 1.63 82.20 ± 2.18 87.60 ± 0.30 71.42 ± 4.43 82.78 ±0.30

Reddit 62.34 ± 0.54 61.60 ± 0.72 63.47 ± 0.36 64.85 ± 0.85 63.67 ± 0.41 60.83 ± 0.25 64.50 ± 0.26 65.37 ± 0.60 66.02 ± 0.41

MOOC 63.22 ± 1.55 62.93 ± 1.24 76.73 ± 0.29 77.07 ± 3.41 74.68 ± 0.68 74.27 ± 0.53 74.00 ± 0.97 80.82 ± 0.30 81.63 ± 0.33

LastFM 70.39 ± 4.31 71.45 ± 1.76 76.27 ± 0.25 66.65 ± 6.11 71.33 ± 0.47 65.78 ± 0.65 76.42 ± 0.22 76.35 ± 0.52 77.28 ± 0.21

Enron 65.86 ± 3.71 62.08 ± 2.27 61.40 ± 1.31 62.91 ± 1.16 60.70 ± 0.36 67.11 ± 0.62 72.37 ± 1.37 67.07 ± 0.62 73.01 ± 0.88

Social Evo. 88.51 ± 0.87 88.72 ± 1.10 93.97 ± 0.54 90.66 ± 1.62 79.83 ± 0.38 94.10 ± 0.31 94.01 ± 0.47 96.82 ± 0.16 96.69 ± 0.14

UCI 63.11 ± 2.27 52.47 ± 2.06 70.52 ± 0.93 70.78 ± 0.78 64.54 ± 0.47 76.71 ± 1.00 82.66 ± 0.49 72.13 ± 1.87 82.35 ± 0.39

Avg.Rank 5.71 6.14 5.46 3.71 4.14 3.85 2.85 2.57 1.28

ind

Wikipedia 68.70 ± 0.39 62.19 ± 1.28 84.17 ± 0.22 81.77 ± 0.32 67.24 ± 1.63 82.20 ± 2.18 87.60 ± 0.29 71.42 ± 4.43 87.54 ± 0.26

Reddit 62.32 ± 0.54 61.58 ± 0.72 63.40 ± 0.36 64.84 ± 0.84 63.65 ± 0.41 60.81 ± 0.26 64.49 ± 0.25 65.35 ± 0.60 64.98 ± 0.20

MOOC 63.22 ± 1.55 62.92 ± 1.24 76.72 ± 0.30 77.07 ± 3.40 74.69 ± 0.68 74.28 ± 0.53 73.99 ± 0.97 80.82 ± 0.30 81.41 ± 0.31

LastFM 70.39 ± 4.31 71.45 ± 1.75 76.28 ± 0.25 69.46 ± 4.65 71.33 ± 0.47 65.78 ± 0.65 76.42 ± 0.22 76.35 ± 0.52 77.01 ± 0.43

Enron 65.86 ± 3.71 62.08 ± 2.27 61.40 ± 1.30 62.90 ± 1.16 60.72 ± 0.36 67.11 ± 0.62 72.37 ± 1.38 67.07 ± 0.62 72.85 ± 0.81

Social Evo. 88.51 ± 0.87 88.72 ± 1.10 93.97 ± 0.54 90.65 ± 1.62 79.83 ± 0.39 94.10 ± 0.32 94.01 ± 0.47 96.82 ± 0.17 96.91 ± 0.12

UCI 63.16 ± 2.27 52.47 ± 2.09 70.49 ± 0.93 70.73 ± 0.79 64.54 ± 0.47 76.65 ± 0.99 81.64 ± 0.49 72.13 ± 1.86 82.06 ± 0.58

Avg.Rank 6.62 7.14 4.15 4.14 5.71 4.57 3.57 2.43 1.28

Table 2: AP for inductive link prediction with three different negative sampling strategies.

transductive setting and thus in Table 2 and 6 we omit this method. We find that our FreeDyG out-
performs other baselines in most scenarios and the average ranking of FreeDyG is close to 1, which
is far superior to the second one, i.e., DyGFormer. In addition, it’s notable that DyGFormer, when
adopting the ”hist” negative sampling strategy, experiences a much more significant performance
decline compared to the “rnd” strategy. This underscores a limitation in DyGFormer’s neighbor
encoding approach, which simply relies on the historical co-occurrence counts of neighbors to de-
termine the likelihood of node interactions. In contrast, our method takes into account the historical
frequency patterns of node interactions, leading to improved performance.
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Figure 3: Ablation study of FreeDyG under historical negative sampling setting, where w/o NS
and w/o FE represent FreeDyG without node interaction frequency encoding module and FE layer,
respectively.

We also conduct a comparative analysis of performance, training time per epoch (measured in sec-
onds), and the size of trainable parameters (measured in Megabyte, i.e., MB) between FreeDyG and
baseline methods on the WIKI and Reddit datasets. The results are shown in Figure 2. It is evident
that the RW-based method, i.e., CAWN, not only requires a longer training time but also has a sub-
stantial number of parameters. On the other hand, simpler methods such as JODIE may have fewer
parameters, but there is a significant performance gap compared to the best-performing method. In
contrast, FreeDyG achieves the best performance with a small size of trainable parameters and a
moderate training time required per epoch.

4.5 ABLATION STUDY

Next, we conduct an ablation study on our FreeDyG model to assess the effectiveness of the pro-
posed node interaction frequency encoding approach and frequency-enhancing layer. We refer to
FreeDyG without these two modules as w/o NIF and w/o FE respectively. Figure 3 illustrates the
performance comparison under the historical negative sampling setting. Due to the page limit, the
performance comparison under the random negative sampling setting is shown in Figure 5 in the
Appendix. Both variants exhibit inferior performance across all datasets, highlighting the efficacy
of the modules we proposed. It is noteworthy that under different negative sampling settings, dis-
tinct modules exhibit varying degrees of importance. In the historical negative sampling setting, the
performance decreases more significantly without FE layer. Whereas, under the random negative
sampling setting, the NIF encoding module has a more pronounced impact on performance.

The reason behind this phenomenon is as follows: under the random negative sampling setting,
where the target node of a negative edge is sampled from the entire graph, the negative samples are
significantly easier to distinguish, and the model tends to predict future interactions between node
pairs that have previously interacted. Consequently, the NIF encoding, which captures neighbor
interactions, assumes a more critical role. However, in the historical negative sampling setting,
where the target node of a negative edge is sampled from the source node’s historical neighbors,
the NIF encoding may introduce more false positives on negative samples. This necessitates the
importance of FE layer in capturing temporal or shifting signals. It is evident that the FE component
holds greater significance in this setting.

4.6 HYPERPARAMETER STUDY

In this section, we analyze the impact of the number of sampled neighbors (L) on the performance of
FreeDyG. The results are presented in Table 3. We observe that the performance tends to be subop-
timal when only a few neighbors are sampled (e.g., L = 10), primarily due to the lack of sufficient
information. Furthermore, the optimal number of sampled neighbors varies across different datasets.
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L=10 L=20 L=32 L=64 L=100

AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC AP AUC-ROC

Wikipedia 99.15 ± 0.01 99.30 ± 0.01 99.26 ± 0.01 99.41 ± 0.01 99.23 ± 0.01 99.40 ± 0.01 99.14 ± 0.03 99.19 ± 0.02 99.01 ± 0.04 99.10 ± 0.09

Reddit 99.00 ± 0.02 99.06 ± 0.02 99.21 ± 0.01 99.22 ± 0.01 99.37 ± 0.01 99.40 ± 0.01 99.48 ± 0.01 99.50 ± 0.01 99.45 ± 0.01 99.46 ± 0.01

MOOC 87.10 ± 0.83 87.44 ± 1.01 88.01 ± 0.30 88.17 ± 0.39 89.26 ± 0.20 89.37 ± 0.61 89.61 ± 0.19 89.93 ± 0.35 88.57 ± 0.52 88.71 ± 0.74

LastFM 85.71 ± 0.22 86.64 ± 0.20 87.14 ± 0.20 87.82 ± 0.26 91.13 ± 0.17 90.71 ± 0.20 90.71 ± 0.22 91.53 ± 0.19 92.15 ± 0.16 93.42 ± 0.15

Enron 91.46 ± 0.19 92.09 ± 0.33 92.51 ± 0.05 94.01 ± 0.11 92.24 ± 0.08 93.71 ± 0.09 92.43 ± 0.12 94.00 ± 0.20 91.93 ± 0.31 92.21 ± 0.40

Social Evo. 94.01 ± 0.04 95.74 ± 0.05 94.58 ± 0.02 96.46 ± 0.4 94.91 ± 0.01 96.59 ± 0.04 94.03 ± 0.07 95.70 ± 0.13 94.06 ± 0.20 94.91 ± 0.18

UCI 95.58 ± 0.19 94.21 ± 0.33 96.23 ± 0.11 94.97 ± 0.26 96.28 ± 0.11 95.00 ± 0.21 95.93 ± 0.17 94.46 ± 0.28 95.99 ± 0.27 94.52 ± 0.43

Table 3: Performance comparison of different sample numbers of historical neighbors.

Specifically, datasets characterized by a higher frequency of the ”shift” phenomenon (e.g., MOOC,
LastFM) Poursafaei et al. (2022) require a larger number of samples to effectively capture hidden
patterns and achieve optimal performance. This arises from the essential requirement of FreeDyG
to learn from more nuanced frequency domain features of interaction behaviors over time (i.e., DFT
of a longer time sequence comprises a greater number of refined frequency domain components).

5 RELATED WORK

Dynamic graph representation learning. Existing methods can be roughly grouped into two cate-
gories: discrete-time dynamic graph (DTDG) models and continuous-time dynamic graph (CTDG)
models. DTDG models typically generate discrete snapshots of graphs and fuse information ex-
tracted from different snapshots Pareja et al. (2020); Zhao et al. (2019); Yang et al.. However, they
often suffer from information loss, as time discretization can miss out on capturing important inter-
actions. To solve it, there is growing interest in designing CTDG models that treat dynamic graph
data as link streams and directly learn node representations from interactions that occur continu-
ously. Specifically, existing CTDG models Xu et al. (2020); Wang et al. (2021c;a) commonly em-
ploy Recurrent Neural Networks (RNNs) or Self-Attention mechanisms as their basic mechanism.
Building upon this, some methods incorporate additional techniques like memory networks Rossi
et al. (2020); Kumar et al. (2019); Trivedi et al. (2019), ordinary differential equations (ODE) Luo
et al. (2023); Liang et al. (2022), random walk (RW) Wang et al. (2021d); Jin et al. (2022b), tem-
poral point processes (TPP) Chang et al. (2020); Huang et al. (2020) to better learn the continuous
temporal information.

Fourier Transform. Fourier Transform is a basic technique in the digital signal processing do-
main Reddy (2018); Pitas (2000) over the decades. Numerous studies have integrated it into areas
like computer vision Huang et al. (2023); Wang et al. (2020) and natural language processing Tamkin
et al. (2020); Lee-Thorp et al. (2021). More recent research efforts have sought to harness the power
of Fourier transform-enhanced models for tasks such as long-term time series forecasting Wu et al.
(2023); Zhou et al. (2022; 2021).

6 CONCLUSION

In this paper, we present FreeDyG, a frequency-enhanced continuous-time dynamic graph model
designed specifically for link prediction. Our approach includes a novel frequency-enhanced MLP-
Mixer layer, which effectively captures periodic temporal patterns and the “shift” phenomenon ob-
served in the frequency domain. We also introduce a node interaction frequency encoder that simul-
taneously extracts the information of interaction frequency and the proportion of common neighbors
between node pairs. Extensive experiments conducted on various real-world datasets demonstrate
the effectiveness and efficiency of our proposed FreeDyG model. In future work, we plan to extend
our method to handle continuous-time dynamic graphs with both edge insertion and deletion events.
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A DETAILS OF DATASETS.

Dataset Nodes Edges Unique Edges Node/Link Feature Time Granularity Duration density
WIKI 9227 157474 18257 0/172 Unix timestamp 1 month 4.30E-03

REDDIT 10984 672447 78516 0/172 Unix timestamp 1 month 8.51E-03
MOOC 7144 411749 178443 0/4 Unix timestamp 17 month 1.26E-02
LastFm 1980 1293103 154993 0/0 Unix timestamp 1 month 5.57E-01
Enron 184 125235 3125 0/0 Unix timestamp 3 years 5.53E+00

Social Evo. 74 2099519 4486 0/2 Unix timestamp 8 months 5.36E+02
UCI 1899 59835 20296 0/0 Unix timestamp 196 days 3.66E-02

Table 4: Dataset statistics

Wiki1: A dataset tracking user edits on Wikipedia pages, is represented as a bipartite interaction
graph that contains interactions(edits) between users and Wikipedia pages. Nodes represent users
and pages, and links denote the editing behaviors with timestamps. Each interaction is associated
with a 172-dimensional Linguistic Inquiry and Word Count (LIWC) feature. This dataset addition-
ally contains dynamic labels that indicate whether users are temporarily banned from editing.

Reddit2: A dataset tracking users posting in Reddit, is bipartite and records the posts of users under
subreddits for one month. Users and subreddits are the nodes, and links are the timestamped posting
requests. Each link has a 172-dimensional LIWC feature. This dataset also includes dynamic labels
representing whether users are banned from posting.

MOOC3: is a bipartite interaction network of online sources, where nodes are students and course
content units (e.g., videos and problem sets). Each link denotes a student’s access behavior to a
specific content unit and is assigned a 4-dimensional feature.

LastFM4: is bipartite and consists of the information about which songs were listened to by which
users over one month. Users and songs are nodes, and links denote the listening behaviors of users.

Enron5: is an email correspondence dataset containing around 50K emails exchanged among em-
ployees of the ENRON energy company over a three-year period. This dataset has no attributes.

Social Evo.6: is a mobile phone proximity network that monitors the daily activities of an entire
undergraduate dormitory for a period of eight months, where each link has a 2-dimensional feature.

UCI7: is a Facebook-like, unattributed online communication network among students of the Uni-
versity of California at Irvine, along with timestamps with the temporal granularity of seconds.

B DETAIL DESCRIPTIONS OF BASELINES

JODIE is an RNN-based method. Denote xi(t) as the embedding of node vi at timestamp t, xlink
ij (t)

as the link feature between vi, vj at timestamp t, and mi as the timestamp that vi latest interact with
other node. When an interaction between vi, vj happens at timestamp t, JODIE updates the temporal
embedding using RNN by xi(t) = RNN(xi(mi), xj(mj), x

link
ij (t), t−mi), Then, the embedding

of node vi at timestamp t0 is computed by hi(t0) = (1 + (t0 −mi)w) · xi(mi).

TGAT is a self-attention-based method that could capture spatial and temporal information simul-
taneously. TGAT first concatenates the raw feature xi with a trainable time encoding z(t), i.e.,
xi(t) = [xi||z(t)] and z(t) = cos(tw+ b). Then, self-attention is applied to produce node represen-
tation hi(t0) = SAM(xi(t0), xu(hu)|u ∈ Nt0(i)), where Nt0(i) denotes the neighbors of node vi

1Download from http://snap.stanford.edu/jodie/wikipedia.csv
2Download from http://snap.stanford.edu/jodie/reddit.csv
3Download from http://snap.stanford.edu/jodie/mooc.csv
4Download from http://snap.stanford.edu/jodie/lastfm.csv
5Download from https://zenodo.org/record/7213796#.Y1cO6y8r30o
6Download from https://zenodo.org/record/7213796#.Y1cO6y8r30o
7Download from https://zenodo.org/record/7213796#.Y1cO6y8r30o
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at time t0 and hu denotes the timestamp of the latest interaction of node u. Finally, the prediction
on any node pair at time t0 is computed by MLP ([hi(t0)||hj(t0)]).

TGN is a mixture of RNN- and self-attention-based method. TGN utilizes a memory module to store
and update the (memory) state si(t) of node i. The state of node i is expected to represent i’s history
in a compressed format. Given the memory updater as mem, when an link eij(t) connecting node i
is observed, node i’s state is updated as si(t) = mem(si(t

−), sj(t
−)||eij(t)). where si(t

−) is the
memory state of node i just before time t. || is the concatenation operator, and node j is i’s neighbor
connected by eij(t). The implementation of mem is a recurrent neural network (RNN), and node i’s
embedding is computed by aggregating information from its K-hop temporal neighborhood using
self-attention.

DyRep is an RNN-based method that updates node states upon each interaction. It also includes a
temporal-attentive aggregation module to consider the temporally evolving structural information in
dynamic graphs.

DyGFormer is a self-attention based method. Specifically, for node ni, DyGFormer just retrieves
the features of involved neighbors and links based on the given features to represent their encod-
ings. Instead of learning at the interaction level, DyGFormer splits each source/destination node’s
sequence into multiple patches and then feeds them to transformer (Vaswani et al., 2017).

GraphMixer is a simple MLP-based architecture, that uses a fixed time encoding function rather
than the trainable version and incorporates it into a link encoder based on MLP-Mixer to learn
from temporal links. A node encoder with neighbor mean-pooing is employed to summarize node
features.

TCL is a self-attention based method. It first generates each node’s interaction sequence by per-
forming a breadth-first search algorithm on the temporal dependency interaction sub-graph. Then, it
presents a graph transformer that considers both graph topology and temporal information to learn
node representations. It also incorporates a cross-attention operation for modeling the interdepen-
dencies of two interaction nodes.

CAWN is a mixer of RNN- and self-attention-based method that proposes to represent network
dynamics by extracting temporal network motifs using temporal random walks (CAWs). CAWs
replace node identities with the hitting counts of the nodes based on a set of sampled walks to
establish the correlation between motifs. Then, the extracted motifs are fed into RNNs to encode
each walk as a representation and use self-attention to aggregate the representations of multi-walks
into a single vector for downstream tasks.

EdgeBank is a pure memory-based approach without trainable parameters for transductive dynamic
link prediction. It stores the observed interactions in the memory unit and updates the memory
through various strategies. An interaction will be predicted as positive if it is retained in the memory,
and negative otherwise.

C EVALUATION DETAILS OF SAMPLING STRATEGIES

In the evaluation stage, we combine the original test set, treated as positive samples, with additional
negative samples. Specifically, the ratio of positive samples to negative samples is set to 1:1. We
employ three different negative sampling strategies, as described in Poursafaei et al. (2022): 1) Ran-
dom Negative Sampling Strategy: This strategy randomly samples negative edges from nearly all
possible node pairs within the graphs. 2) Historical Negative Sampling Strategy: Here, negative
edges are sampled from the set of edges observed in previous timestamps but are absent in the cur-
rent step. 3) Inductive Negative Sampling Strategy: Negative edges are sampled from unseen
edges that were not encountered during the training phase.
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NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 96.33 ± 0.07 94.37 ± 0.09 96.67 ± 0.07 98.37 ± 0.07 98.54 ± 0.04 90.78 ± 0.00 95.84 ± 0.18 96.92 ± 0.03 98.91 ± 0.02 99.41 ± 0.01

Reddit 98.31 ± 0.05 98.17 ± 0.05 98.47 ± 0.02 98.60 ± 0.06 99.01 ± 0.01 95.37 ± 0.00 97.42 ± 0.02 97.17 ± 0.02 99.15 ± 0.01 99.50 ± 0.01

MOOC 83.81 ± 2.09 85.03 ± 0.58 87.11 ± 0.19 91.21 ± 1.15 80.38 ± 0.26 60.86 ± 0.00 83.12 ± 0.18 84.01 ± 0.17 87.91 ± 0.58 89.93 ± 0.35

LastFM 70.49 ± 1.66 71.16 ± 1.89 71.59 ± 0.18 78.47 ± 2.94 85.92 ± 0.10 83.77 ± 0.00 64.06 ± 1.16 73.53 ± 0.12 93.05 ± 0.10 93.42 ± 0.15

Enron 87.96 ± 0.52 84.89 ± 3.00 68.89 ± 1.10 88.32 ± 0.99 90.45 ± 0.14 87.05 ± 0.00 75.74 ± 0.72 84.38 ± 0.21 93.33 ± 0.13 94.01 ± 0.11

Social Evo. 92.05 ± 0.46 90.76 ± 0.21 94.76 ± 0.16 95.39 ± 0.17 87.34 ± 0.08 81.60 ± 0.00 94.84 ± 0.17 95.23 ± 0.07 96.30 ± 0.01 96.59 ± 0.04

UCI 90.44 ± 0.49 68.77 ± 2.34 78.53 ± 0.74 92.03 ± 1.13 93.87 ± 0.08 77.30 ± 0.00 87.82 ± 1.36 91.81 ± 0.67 94.49 ± 0.26 95.00 ± 0.21

Avg.Rank 7.14 8.57 6.14 3.31 3.78 4.86 6.14 4.78 2.14 1.14

hist

Wikipedia 80.77 ± 0.73 77.74 ± 0.33 82.87 ± 0.22 82.74 ± 0.32 67.84 ± 0.64 77.27 ± 0.00 85.76 ± 0.46 87.68 ± 0.17 78.80 ± 1.95 82.78± 0.30

Reddit 80.52 ± 0.32 80.15 ± 0.18 79.33 ± 0.16 81.11 ± 0.19 80.27 ± 0.30 78.58 ± 0.00 76.49 ± 0.16 77.80 ± 0.12 80.54 ± 0.29 85.92 ± 0.10

MOOC 82.75 ± 0.83 81.06 ± 0.94 80.81 ± 0.67 88.00 ± 1.80 71.57 ± 1.07 61.90 ± 0.00 72.09 ± 0.56 76.68 ± 1.40 87.04 ± 0.35 88.32 ± 0.99

LastFM 75.22 ± 2.36 74.65 ± 1.98 64.27 ± 0.26 77.97 ± 3.04 67.88 ± 0.24 78.09 ± 0.00 47.24 ± 3.13 64.21 ± 0.73 78.78 ± 0.35 73.53 ± 0.12

Enron 75.39 ± 2.37 74.69 ± 3.55 61.85 ± 1.43 77.09 ± 2.22 65.10 ± 0.34 79.59 ± 0.00 67.95 ± 0.88 75.27 ± 1.14 76.55 ± 0.52 75.74 ± 0.72

Social Evo. 90.06 ± 3.15 93.12 ± 0.34 93.08 ± 0.59 94.71 ± 0.53 87.43 ± 0.15 85.81 ± 0.00 93.44 ± 0.68 94.39 ± 0.31 97.28 ± 0.07 97.42 ± 0.02

UCI 78.64 ± 3.50 57.91 ± 3.12 58.89 ± 1.57 77.25 ± 2.68 57.86 ± 0.15 69.56 ± 0.00 72.25 ± 3.46 77.54 ± 2.02 76.97 ± 0.24 80.38 ± 0.26

Avg.Rank 4.78 5.85 6.01 3.85 6.54 7.14 4.85 4.14 2.85 2.14

ind

Wikipedia 70.96 ± 0.78 67.36 ± 0.96 81.93 ± 0.22 80.97 ± 0.31 70.95 ± 0.95 81.73 ± 0.00 82.19 ± 0.48 84.28 ± 0.30 75.09 ± 3.70 82.74 ± 0.32

Reddit 83.51 ± 0.15 82.90 ± 0.31 87.13 ± 0.20 84.56 ± 0.24 88.04 ± 0.29 85.93 ± 0.00 84.67 ± 0.29 82.21 ± 0.13 86.23 ± 0.51 84.38 ± 0.21

MOOC 66.63 ± 2.30 63.26 ± 1.01 73.18 ± 0.33 77.44 ± 2.86 70.32 ± 1.43 48.18 ± 0.00 70.36 ± 0.37 72.45 ± 0.72 80.76 ± 0.76 78.47 ± 0.94

LastFM 61.32 ± 3.49 62.15 ± 2.12 63.99 ± 0.21 65.46 ± 4.27 67.92 ± 0.44 77.37 ± 0.00 46.93 ± 2.59 60.22 ± 0.32 69.25 ± 0.36 72.30 ± 0.59

Enron 70.92 ± 1.05 68.73 ± 1.34 60.45 ± 2.12 71.34 ± 2.46 75.17 ± 0.50 75.00 ± 0.00 67.64 ± 0.86 71.53 ± 0.85 74.07 ± 0.64 77.27 ± 0.61

Social Evo. 90.01 ± 3.19 93.07 ± 0.38 92.94 ± 0.61 95.24 ± 0.56 89.93 ± 0.15 87.88 ± 0.00 93.44 ± 0.72 94.22 ± 0.32 97.51 ± 0.06 98.47 ± 0.02

UCI 64.14 ± 1.26 54.25 ± 2.01 60.80 ± 1.01 64.11 ± 1.04 58.06 ± 0.26 58.03 ± 0.00 70.05 ± 1.86 74.59 ± 0.74 65.96 ± 1.18 75.39 ± 0.57

Avg.Rank 6.0 5.77 4.77 3.46 4.0 5.35 5.46 4.57 2.85 2.14

Table 5: AUC-ROC for transductive dynamic link prediction with different sampling strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 94.33 ± 0.27 91.49 ± 0.45 95.90 ± 0.09 97.72 ± 0.03 98.03 ± 0.04 95.57 ± 0.20 96.30 ± 0.04 98.48 ± 0.03 99.01 ± 0.02

Reddit 96.52 ± 0.13 96.05 ± 0.12 96.98 ± 0.04 97.39 ± 0.07 98.42 ± 0.02 93.80 ± 0.07 94.97 ± 0.05 98.71 ± 0.01 98.84 ± 0.01

MOOC 83.16 ± 1.30 84.03 ± 0.49 86.84 ± 0.17 91.24 ± 0.99 81.86 ± 0.25 81.43 ± 0.19 82.77 ± 0.24 87.62 ± 0.51 87.01 ± 0.74

LastFM 81.13 ± 3.39 82.24 ± 1.51 76.99 ± 0.29 82.61 ± 3.15 87.82 ± 0.12 70.84 ± 0.85 80.37 ± 0.18 94.08 ± 0.08 94.32 ± 0.03

Enron 81.96 ± 1.34 76.34 ± 4.20 64.63 ± 1.74 78.83 ± 1.11 87.02 ± 0.50 72.33 ± 0.99 76.51 ± 0.71 90.69 ± 0.26 89.51 ± 0.20

Social Evo. 93.70 ± 0.29 91.18 ± 0.49 93.41 ± 0.19 93.43 ± 0.59 84.73 ± 0.27 93.71 ± 0.18 94.09 ± 0.07 95.29 ± 0.03 96.41 ± 0.07

UCI 78.80 ± 0.94 58.08 ± 1.81 77.64 ± 0.38 86.68 ± 2.29 90.40 ± 0.11 84.49 ± 1.82 89.30 ± 0.57 92.63 ± 0.13 93.01 ± 0.08

Avg.Rank 4.69 5.85 5.31 2.85 3.38 5.31 6.0 1.86 1.43

hist

Wikipedia 61.86 ± 0.53 57.54 ± 1.09 78.38 ± 0.20 75.75 ± 0.29 62.04 ± 0.65 79.79 ± 0.96 82.87 ± 0.21 70.33 ± 0.25 82.08 ± 0.32

Reddit 61.69 ± 0.39 60.45 ± 0.37 64.43 ± 0.27 64.55 ± 0.50 64.94 ± 0.21 61.43 ± 0.26 64.27 ± 0.13 66.08 ± 0.34 66.79 ± 0.31

MOOC 64.48 ± 1.64 64.23 ± 1.29 74.08 ± 0.27 77.69 ± 3.55 71.68 ± 0.94 69.82 ± 0.32 72.53 ± 0.84 80.77 ± 0.63 81.52 ± 0.37

LastFM 68.44 ± 3.26 68.79 ± 1.08 69.89 ± 0.28 66.99 ± 5.62 67.69 ± 0.24 55.88 ± 1.85 70.07 ± 0.20 70.73 ± 0.37 72.63 ± 0.16

Enron 65.32 ± 3.57 61.50 ± 2.50 57.84 ± 2.18 62.68 ± 1.09 62.25 ± 0.40 64.06 ± 1.02 68.20 ± 1.62 65.78 ± 0.42 70.09 ± 0.65

Social Evo. 88.53 ± 0.55 87.93 ± 1.05 91.87 ± 0.72 92.10 ± 1.22 83.54 ± 0.24 93.28 ± 0.60 93.62 ± 0.35 96.91 ± 0.09 96.94 ± 0.17

UCI 60.24 ± 1.94 51.25 ± 2.37 62.32 ± 1.18 62.69 ± 0.90 56.39 ± 0.10 70.46 ± 1.94 75.98 ± 0.84 65.55 ± 1.01 76.01 ±0.75

Avg.Rank 5.08 6.00 4.23 4.38 5.38 3.69 3.08 2.85 1.14

ind

Wikipedia 61.87 ± 0.53 57.54 ± 1.09 78.38 ± 0.20 0 75.76 ± 0.29 62.02 ± 0.65 79.79 ± 0.96 82.88 ± 0.21 68.33 ± 2.82 83.17 ± 0.31

Reddit 61.69 ± 0.39 60.44 ± 0.37 64.39 ± 0.27 64.55 ± 0.50 64.91 ± 0.21 61.36 ± 0.26 64.27 ± 0.13 64.80 ± 0.25 64.51 ± 0.19

MOOC 64.48 ± 1.64 64.22 ± 1.29 74.07 ± 0.27 77.68 ± 3.55 71.69 ± 0.94 69.83 ± 0.32 72.52 ± 0.84 80.77 ± 0.63 75.81 ± 0.69

LastFM 68.44 ± 3.26 68.79 ± 1.08 69.89 ± 0.28 66.99 ± 5.61 67.68 ± 0.24 55.88 ± 1.85 70.07 ± 0.20 70.73 ± 0.37 71.42 ± 0.33

Enron 65.32 ± 3.57 61.50 ± 2.50 57.83 ± 2.18 62.68 ± 1.09 62.27 ± 0.40 64.05 ± 1.02 68.19 ± 1.63 65.79 ± 0.42 68.79 ± 0.91

Social Evo. 88.53 ± 0.55 87.93 ± 1.05 91.88 ± 0.72 92.10 ± 1.22 83.54 ± 0.24 93.28 ± 0.60 93.62 ± 0.35 96.91 ± 0.09 96.79 ± 0.17

UCI 60.27 ± 1.94 51.26 ± 2.40 62.29 ± 1.17 62.66 ± 0.91 56.39 ± 0.11 70.42 ± 1.93 75.97 ± 0.85 65.58 ± 1.00 73.41 ± 0.88

Avg.Rank 4.69 5.85 5.31 2.85 3.38 5.31 6.0 1.86 1.43

Table 6: AUC-ROC for inductive dynamic link prediction with different sampling strategies.
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D SUPPLEMENTARY MATERIALS

D.1 THE PSEUDO-CODE OF FREEDYG

In Algorithm 1, we show the pseudo-code of the training process of FreeDyG. In addition, following
the suggestion of the reviewers, we briefly describe the procedure of FFT in Algorithm 2.

Algorithm 1 Training pipeline for FreeDyG

Input: CTDG G, a node pair (u, v) with a specific timestamp (t), the neighbor sample number L,
maximum training epoch of 200, early stopping strategy with patience = 20.

Output: The probability of the node pair interacting at timestamp t
1: initial patience = 0
2: for training epoch = 1, 2, 3... do
3: Acquire the L most recent first-hop interaction neighbors of nodes u and v from G prior to

timestamp t as St
u and St

v;
4: for St

u and St
v in parallel do

5: Obtain node encoding Zt
∗,V and edge encoding Zt

∗,E ;
6: Obtain time encoding Zt

∗,T as Cong et al. (2023);
7: Obtain NIF encoding Zt

∗,F from Equation 3;
8: Zt

∗ ← Zt
∗,V + Zt

∗,E + Zt
∗,T + Zt

∗,F ;
9: for Frequency-ehanced MLP-Mixer Layer do

10: Z l
∗ ← F(Zt

∗) with Equation 1;
11: Ẑ l

∗ ←W · Z l
∗;

12: Z̃l
∗ ← F−1

(
Ẑ l

∗

)
with Equation 2;

13: Zl
∗ ← LayerNorm

(
Zl
∗ +Dropout

(
Z̃l
∗

))
14: Feed Zl

∗ into MLP-Mixer Layer with Equation 10;
15: end for
16: Weighted aggregation with Equation 11;
17: end for
18: Conduct link prediction with ŷ ← Softmax(MLP (RELU(MLP (ht

u||ht
v))))

19: Loss Lp ← − 1
K

∑S
i=1(yi ∗ logŷi + (1− yi) ∗ log(1− ŷi))

20: if current epoch’s metrics worse than the previous epoch’s then
21: patience = patience+ 1
22: else
23: Save the model parameters from the current epoch
24: end if
25: if patience = 20 then
26: Exit training process
27: end if
28: end for
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Algorithm 2 The Pseudo-Code of Fast Fourier Transform

1: Input: Sequence X of length L
2: Output: Y {FFT of X}
3:
4: Function NextPowerOf2(L) {Return the next power of 2 greater than or equal to L}
5: N ← 1 {Initialize n to the smallest power of 2}
6: while N < L do
7: N ← N × 2 {Double n until it is greater than or equal to L}
8: end while
9: return N

10:
11: Function FFT(X , N )
12: if N = 1 then
13: return X
14: end if
15: Xeven ← even-index elements of X[0, . . . , N − 1]
16: Xodd ← odd-index elements of X[0, . . . , N − 1] {Divide the sequence into two parts: even-

indexed and odd-indexed}
17: Yeven ← FFT(Xeven, N/2) {Recursively apply FFT to even part}
18: Yodd ← FFT(Xodd, N/2) {Recursively apply FFT to odd part}
19: Y ← new array of size N {Initialize an array Y of size N}
20: for k = 0 to N/2− 1 do
21: t← e−2πik/N {Compute the twiddle factor}
22: Y [k]← Yeven[k] + t · Yodd[k] {Compute the FFT value for index k}
23: Y [k +N/2]← Yeven[k]− t · Yodd[k] {Compute the FFT value for index k +N/2}
24: end for
25: return Y
26:
27: Procedure:
28: N ← NextPowerOf2(L) {Pad the sequence length to the next power of 2}
29: Xpadded ← X
30: while length of Xpadded < N do
31: append 0 to Xpadded {Pad the sequence with zeros}
32: end while
33: Y ← FFT(Xpadded, N) {Apply FFT to the padded sequence}

D.2 THE EXPERIMENTAL RESULTS ON MICRO-F1 AND MACRO-F1 METRIC

In Table 7-10, we conduct experiments on all datasets under three negative sampling strategies
with both transductive and inductive link prediction. We use Micro-F1 and Macro-F1 scores as the
metric. We note that the results are similar to those on AP and AUC-ROC. Specifically, our FreeDyG
outperforms other baselines in most scenarios and the average ranking of FreeDyG is close to 1.
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NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 87.47 ± 0.99 87.12 ± 0.45 89.69 ± 0.15 93.09 ± 0.05 94.63 ± 0.08 88.06 ± 0.50 90.57 ± 0.24 94.60 ± 0.53 95.92 ± 0.09

reddit 91.99 ± 0.49 93.03 ± 0.21 93.90 ± 0.17 94.15 ± 0.07 95.55 ± 0.03 91.68 ± 0.07 91.24 ± 0.04 95.86 ± 0.20 96.03 ± 0.07

MOOC 73.02 ± 1.20 78.05 ± 1.58 78.26 ± 0.38 84.34 ± 1.72 70.05 ± 0.56 74.02 ± 0.32 74.76 ± 0.18 75.44 ± 1.04 76.74 ± 0.97

LastFM 59.74 ± 3.96 61.01 ± 5.68 65.01 ± 0.26 54.93 ± 3.44 80.94 ± 0.47 59.50 ± 0.33 66.96 ± 0.44 88.13 ± 0.64 88.89 ± 0.38

Enron 71.74 ± 0.84 77.01 ± 2.61 63.09 ± 2.39 78.36 ± 3.22 84.53 ± 0.16 70.88 ± 2.79 76.47 ± 0.16 88.37 ± 0.33 88.91 ± 0.20

Social Evo. 77.46 ± 4.26 83.66 ± 0.62 90.42 ± 0.12 91.18 ± 0.23 80.67± 0.31 90.56 ± 0.18 90.67 ± 0.14 93.26 ± 0.10 93.87 ± 0.07

UCI 67.61 ± 2.97 63.49 ± 9.17 70.29 ± 1.18 79.39 ± 0.67 87.84 ± 0.15 76.15 ± 0.58 83.30 ± 0.99 89.34 ± 0.07 90.25± 0.08

Avg.Rank 7.71 6.43 5.71 4.28 4.43 7.00 5.43 2.57 1.43

hist

Wikipedia 65.17 ± 1.27 63.35 ± 0.61 62.53 ± 0.43 59.67 ± 1.26 50.18 ± 0.23 67.61 ± 0.88 69.94 ± 1.44 52.87 ± 1.88 66.73 ± 1.32

Reddit 59.76 ± 0.26 61.40 ± 0.76 59.27 ± 0.54 60.55 ± 0.33 54.04 ± 0.03 59.22 ± 0.14 61.74 ± 0.10 49.87 ± 0.14 62.74 ± 0.61

MOOC 63.74 ± 9.08 75.35 ± 0.54 72.90 ± 0.37 77.77 ± 0.87 64.20 ± 1.42 59.69 ± 2.06 65.58 ± 0.12 75.10 ± 5.73 76.18 ± 0.87

LastFM 49.71 ± 1.53 59.42 ± 2.52 55.26 ± 0.49 50.86 ± 1.06 59.85 ± 0.68 38.98 ± 2.52 56.39 ± 0.62 68.59 ± 0.55 67.81 ± 0.40

Enron 65.91 ± 0.31 68.11 ± 2.64 56.38 ± 0.64 67.63 ± 1.81 55.72 ± 0.94 66.74 ± 0.34 61.48 ± 1.79 66.52 ± 1.64 66.97 ± 1.28

Social Evo. 73.30 ± 0.25 86.41 ± 0.38 83.47 ± 0.49 84.81 ± 1.28 86.81 ± 0.17 87.70 ± 5.17 84.96 ± 0.96 89.42 ± 0.69 90.02 ± 0.83

UCI 62.13 ± 3.38 51.82 ± 9.65 49.44 ± 0.48 56.82 ± 0.70 44.78 ± 0.02 48.93 ± 0.43 78.66 ± 0.02 59.96 ± 2.00 64.39 ± 1.29

Avg.Rank 6.14 3.86 6.57 4.71 7.00 6.00 4.00 4.71 2.00

ind

Wikipedia 53.90 ± 0.70 53.91 ± 0.01 59.76 ± 0.28 57.25 ± 0.23 52.73 ± 0.22 63.64 ± 0.17 63.78 ± 1.34 49.49 ± 0.02 58.10 ± 0.74

Reddit 58.07 ± 0.12 59.52 ± 0.18 65.52 ± 0.65 58.57 ± 0.41 58.76 ± 0.41 66.09 ± 0.03 63.94 ± 0.19 48.65 ± 0.38 63.09 ± 0.73

MOOC 51.69 ± 3.58 57.96 ± 0.32 64.54 ± 0.64 61.75 ± 2.58 62.90 ± 0.91 60.11 ± 1.55 62.50 ± 0.38 67.13 ± 2.26 70.06 ± 1.45

LastFM 47.55 ± 1.53 51.57 ± 2.24 55.14 ± 0.66 50.34 ± 0.45 63.87 ± 0.22 39.30 ± 2.32 53.42 ± 0.27 66.31 ± 0.30 66.57 ± 0.71

Enron 58.57 ± 0.40 61.26 ± 2.27 54.75 ± 1.25 60.51 ± 0.68 64.57 ± 1.18 65.66 ± 0.50 58.24 ± 0.73 56.80 ± 0.74 60.09 ± 1.43

Social Evo. 73.42 ± 0.40 86.49 ± 0.40 83.68 ± 0.46 86.13 ± 1.02 87.72 ± 0.35 87.62 ± 5.33 84.94 ± 1.05 89.40 ± 0.65 89.87 ± 0.52

UCI 58.34 ± 1.64 53.07 ± 2.71 51.69 ± 0.25 49.75 ± 0.46 46.14 ± 0.02 50.76 ± 0.84 69.43 ± 0.21 46.53 ± 0.84 60.02 ± 2.61

Avg.Rank 7.14 5.28 4.86 6.00 5.00 4.28 4.14 5.71 2.57

Table 7: micro-F1 for transductive link prediction with three different negative sampling strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 87.45 ± 0.99 87.10 ± 0.45 89.69 ± 0.15 93.09 ± 0.05 94.63 ± 0.08 88.06 ± 0.50 90.57 ± 0.24 94.60 ± 0.53 95.92 ± 0.09

reddit 91.99 ± 0.49 93.03 ± 0.21 93.90 ± 0.17 94.14 ± 0.07 95.55 ± 0.03 91.68 ± 0.07 91.24 ± 0.04 95.86 ± 0.20 96.03 ± 0.07

MOOC 72.13 ± 1.45 77.89 ± 1.69 78.23 ± 0.38 84.29 ± 1.75 69.63 ± 0.67 73.91 ± 0.35 74.65 ± 0.18 75.37 ± 1.09 76.63 ± 1.01

LastFM 55.61 ± 4.77 55.77 ±5.49 64.90 ± 0.27 42.42 ± 5.57 80.86 ± 0.44 58.93 ± 0.60 66.70 ± 0.44 87.95 ± 0.60 88.02 ± 0.47

Enron 69.51 ± 1.25 76.55 ± 2.95 62.28 ± 2.65 77.75 ± 3.63 84.23 ± 0.20 69.66 ± 3.13 76.04 ± 0.17 88.01 ± 0.32 88.83 ± 0.21

Social Evo. 78.47 ± 3.55 83.58 ± 0.66 90.41 ± 0.12 91.17 ± 0.23 80.58± 0.29 90.55 ± 0.18 90.67 ± 0.14 93.26 ± 0.10 93.87 ± 0.07

UCI 63.43 ± 4.37 61.57 ± 11.71 70.19 ± 1.18 78.88 ± 0.76 87.76 ± 0.13 76.01 ± 0.62 82.87 ± 1.07 89.24 ± 0.09 90.22 ± 0.08

Avg.Rank 8.00 6.57 5.71 4.28 4.43 6.57 5.43 2.57 1.43

hist

Wikipedia 62.92 ± 1.80 61.21 ± 0.79 59.41 ± 0.55 55.02 ± 1.99 38.90 ± 0.58 66.34 ± 1.02 68.70 ± 1.74 45.72 ± 1.45 61.52 ± 1.25

Reddit 54.11 ± 0.32 56.89 ± 1.19 53.73 ± 0.92 55.45 ± 0.59 44.95± 0.37 54.43 ± 0.27 58.19 ± 0.19 36.58 ± 0.18 58.71 ± 0.59

MOOC 59.01 ± 14.15 77.14 ± 0.50 72.73 ± 0.46 77.44 ± 0.80 63.98 ± 1.37 58.61 ± 2.32 65.07 ± 0.15 74.92 ± 5.87 76.03 ± 0.87

LastFM 48.17 ± 1.92 53.69 ± 2.28 54.23 ± 0.78 35.63 ± 2.79 58.75 ± 0.94 35.34 ± 6.15 55.68 ± 0.71 67.28 ± 0.37 67.48 ± 0.42

Enron 61.92 ± 0.06 66.87 ± 2.99 55.35 ± 0.73 65.93 ± 2.12 51.65 ± 2.12 65.93 ± 0.57 59.69 ± 1.83 64.98 ± 1.91 65.33 ± 1.70

Social Evo. 71.95 ± 0.07 86.37 ± 0.38 83.37 ± 0.50 84.69 ± 1.35 87.75 ± 0.34 87.66 ± 5.21 84.89 ± 0.98 89.23 ± 0.71 90.17 ± 0.64

UCI 57.97 ± 5.87 48.76 ± 12.80 46.15 ± 1.10 49.27 ± 0.75 35.98 ± 0.05 42.58 ± 1.60 78.43 ± 0.01 57.90 ± 2.73 65.07 ± 1.15

Avg.Rank 6.00 4.00 6.57 4.85 6.85 5.71 3.85 4.85 2.28

ind

Wikipedia 46.88 ± 1.59 47.95 ± 0.05 55.48 ± 0.49 51.12 ± 0.58 42.85 ± 0.57 61.48 ± 0.18 61.07 ± 1.82 36.76 ± 1.03 52.71 ± 1.36

Reddit 51.34 ± 0.27 54.00 ± 0.41 62.43 ± 0.94 52.29 ± 0.75 52.47 ± 0.51 63.64 ± 0.07 61.04 ± 0.29 33.66 ± 0.30 61.25 ± 0.81

MOOC 40.70 ± 9.95 54.12 ± 0.92 63.63 ± 0.98 58.48 ± 2.91 62.73 ± 0.88 59.11 ± 1.72 61.73 ± 0.45 66.74 ± 2.20 68.31 ± 1.54

LastFM 42.08 ± 2.31 40.70 ± 4.93 54.07 ± 0.97 34.61 ± 1.62 63.29± 0.89 35.78 ± 5.79 52.41 ± 0.25 51.37 ± 1.04 60.42 ± 1.59

Enron 50.58 ± 1.45 58.24 ± 2.84 53.31 ± 1.42 56.00 ± 0.59 62.66 ± 1.94 64.93 ± 0.70 55.67 ± 0.51 51.37 ± 1.04 55.79 ± 1.06

Social Evo. 72.07 ± 0.25 86.45 ± 0.40 83.60 ± 0.48 86.05 ± 1.07 88.31 ± 0.16 87.57 ± 5.38 84.88 ± 1.08 89.25 ± 0.70 89.94 ± 0.47

UCI 54.41 ± 4.13 48.49 ± 6.79 49.11 ± 0.07 35.97 ± 0.32 37.56 ± 0.05 45.18 ± 2.13 69.24 ± 0.21 38.10 ± 2.10 58.47 ± 2.41

Avg.Rank 7.28 5.57 4.28 6.71 4.57 3.85 4.14 6.00 2.57

Table 8: macro-F1 for transductive link prediction with three different negative sampling strategies.
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NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 84.05 ± 0.89 82.60 ± 0.26 88.20 ± 0.14 91.22 ± 0.27 92.86 ± 0.11 87.09 ± 0.27 89.23 ± 0.09 93.13 ± 0.50 94.42 ± 0.05

reddit 88.84 ± 0.73 88.99 ± 0.48 91.06 ± 0.42 91.60 ± 0.19 94.24 ± 0.04 86.39 ± 0.21 87.88 ± 0.15 94.62 ± 0.22 95.33 ± 0.09

MOOC 71.19 ± 1.66 76.89 ± 0.66 78.00 ± 0.32 83.91 ± 0.76 72.01 ± 0.27 72.55 ± 0.26 73.53 ± 0.17 75.24 ± 1.42 77.81 ± 1.12

LastFM 70.71 ± 4.65 70.68 ± 6.38 70.10 ± 0.36 58.14 ± 6.06 83.55 ± 0.08 65.86 ± 0.48 72.93 ± 0.85 90.03 ± 0.25 90.49 ± 0.23

Enron 65.50 ± 1.05 66.01 ± 3.88 59.29 ± 2.13 71.54 ± 2.98 80.29 ± 0.24 68.47 ± 3.03 69.50 ± 0.18 85.15 ± 0.24 86.34 ± 0.26

Social Evo. 84.78 ± 1.22 83.54 ± 1.94 88.80 ± 0.12 88.49 ± 0.53 79.42± 0.41 89.74 ± 0.13 89.67 ± 0.08 92.16 ± 0.08 92.59 ± 0.07

UCI 61.25 ± 2.27 56.51 ± 5.09 68.41 ± 0.89 69.41 ± 2.12 85.26 ± 0.55 71.13 ± 0.78 82.44 ± 0.68 88.40 ± 0.07 89.11 ± 0.05

Avg.Rank 7.43 7.00 5.85 4.85 4.57 6.43 5.14 2.43 1.28

hist

Wikipedia 48.81 ± 0.11 48.41 ± 0.06 56.76 ± 0.38 52.89 ± 0.24 49.37 ± 0.17 61.10 ± 0.25 61.11 ± 1.25 48.48 ± 0.27 57.43 ± 0.75

Reddit 51.50 ± 0.19 51.64 ± 0.03 54.12 ± 0.11 51.67 ± 0.23 50.87 ± 0.33 54.14 ± 0.27 54.48 ± 0.16 48.10 ± 0.38 51.07 ± 0.36

MOOC 52.98 ± 4.84 59.02 ± 0.65 65.59 ± 0.25 63.13 ± 1.90 64.37 ± 1.07 59.76 ± 1.56 62.65 ± 0.24 66.80 ± 1.86 66.02 ± 0.75

LastFM 52.09 ± 3.15 53.35 ± 4.66 57.99 ± 0.61 50.37 ± 0.55 54.64 ± 0.31 42.84 ± 3.28 57.88 ± 0.24 69.75 ± 0.53 68.54 ± 0.48

Enron 60.29 ± 0.83 55.27 ± 1.11 52.03 ± 0.60 56.84 ± 2.40 58.71 ± 0.75 63.38 ± 0.57 56.05 ± 0.34 57.31 ± 0.47 58.23 ± 1.07

Social Evo. 69.77 ± 0.74 71.25 ± 3.58 81.07 ± 0.94 81.29 ± 3.48 88.14 ± 0.73 87.69 ± 4.42 83.82 ± 0.79 89.01 ± 0.53 90.13 ± 0.58

UCI 56.71 ± 1.55 52.27 ± 0.24 52.72 ± 0.09 49.16 ± 0.49 44.71 ± 0.05 50.54 ± 0.89 71.02 ± 0.11 46.79 ± 0.98 62.19 ± 2.09

Avg.Rank 6.14 7.00 4.71 5.85 5.43 4.43 3.57 4.86 3.00

ind

Wikipedia 48.81 ± 0.11 48.41 ± 0.06 56.76 ± 0.38 52.89 ± 0.24 49.37 ± 0.17 61.09 ± 0.25 61.10 ± 1.26 48.48 ± 0.27 57.42 ± 0.75

Reddit 51.50 ± 0.19 51.64 ± 0.03 54.07 ± 0.03 51.67 ± 0.23 50.86 ± 0.30 54.16 ± 0.24 54.48 ± 0.16 48.10 ± 0.38 51.07 ± 0.36

MOOC 52.98 ± 4.85 59.02 ± 0.65 65.60 ± 0.25 63.13 ± 1.89 64.37 ± 1.07 59.76 ± 1.56 62.66 ± 0.24 66.80 ± 1.87 66.02 ± 0.75

LastFM 52.09 ± 3.1 53.35 ± 4.66 57.99 ± 0.61 50.37 ± 0.55 54.64 ± 0.31 42.83 ± 3.28 57.89 ± 0.24 69.76 ± 0.53 68.54 ± 0.48

Enron 60.29 ± 0.83 55.27 ± 1.11 52.04 ± 0.60 56.85 ± 2.40 58.72 ± 0.76 63.39 ± 0.58 56.06 ± 0.35 57.31 ± 0.47 58.23 ± 1.07

Social Evo. 69.77 ± 0.74 71.25 ± 3.58 81.73 ± 0.92 81.30 ± 3.47 88.20 ± 0.75 87.70 ± 4.42 83.82 ± 0.79 89.01 ± 0.53 90.13 ± 0.58

UCI 56.71 ± 1.53 52.29 ± 0.25 52.62 ± 0.07 49.16 ± 0.51 44.71 ± 0.05 50.58 ± 0.90 71.01 ± 0.11 46.79 ± 0.99 62.19 ± 2.09

Avg.Rank 6.14 7.00 4.57 6.00 5.43 4.43 3.57 4.85 3.00

Table 9: micro-F1 for inductive link prediction with three different negative sampling strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG

rnd

Wikipedia 84.02 ± 0.89 82.55 ± 0.27 88.19 ± 0.14 91.22 ± 0.27 92.86 ± 0.11 87.09 ± 0.27 89.23 ± 0.09 93.13 ± 0.50 94.42 ± 0.05

reddit 88.85 ± 0.72 88.99 ± 0.48 91.06 ± 0.42 91.60 ± 0.19 94.24 ± 0.04 86.39 ± 0.21 87.88 ± 0.15 94.62 ± 0.22 95.33 ± 0.09

MOOC 70.55 ± 1.47 76.80 ± 0.70 77.97 ± 0.33 83.87 ± 0.76 71.78 ± 0.31 72.44 ± 0.28 73.43 ± 0.17 75.18 ± 1.47 77.71 ± 1.14

LastFM 66.82 ± 5.98 67.76 ± 10.04 70.01 ± 0.36 47.46 ± 9.02 83.42 ± 0.08 65.40 ± 0.52 72.80 ± 0.87 90.14 ± 0.24 90.65 ± 0.25

Enron 68.11 ± 0.67 64.21 ± 4.73 58.61 ± 2.40 70.39 ± 3.71 79.97 ± 0.30 67.34 ± 3.43 68.75 ± 0.18 84.84 ± 0.24 86.10 ± 0.16

Social Evo. 85.03 ± 1.14 83.29 ± 2.06 88.78 ± 0.12 88.43 ± 0.56 79.16± 0.40 89.74 ± 0.13 89.67 ± 0.08 92.16 ± 0.08 92.59 ± 0.07

UCI 55.66 ± 3.90 54.23 ± 7.99 68.23 ± 0.88 67.33 ± 2.91 85.21 ± 0.53 70.84 ± 0.87 82.10 ± 0.75 88.31 ± 0.07 89.05 ± 0.04

Avg.Rank 7.43 7.14 5.43 5.00 4.57 6.57 5.14 2.43 1.28

hist

Wikipedia 40.56 ± 0.65 41.01 ± 0.21 51.08 ± 0.68 44.34 ± 0.78 49.37 ± 0.17 57.98 ± 0.33 57.33 ± 1.96 35.52 ± 0.87 50.49 ± 0.59

Reddit 42.53 ± 0.57 43.77 ± 0.15 46.74 ± 0.37 41.72 ± 0.54 44.95 ± 0.25 49.15 ± 0.08 48.60 ± 0.35 33.16 ± 0.21 49.81 ± 0.76

MOOC 44.48 ± 12.08 56.69 ± 1.20 64.92 ± 0.50 60.30 ± 2.21 64.31 ± 1.06 58.89 ± 1.73 62.02 ± 0.30 66.39 ± 1.80 65.63 ± 1.53

LastFM 49.01 ± 3.41 47.68 ± 5.06 56.77 ± 0.93 34.73 ± 1.83 52.05 ± 0.85 38.60 ± 6.90 56.41 ± 0.22 68.61 ± 0.37 68.11 ± 0.40

Enron 55.43 ± 1.92 49.32 ± 1.57 50.45 ± 0.63 52.43 ± 3.86 55.24 ± 1.54 62.66 ± 0.68 53.53 ± 0.11 52.70 ± 0.87 54.70 ± 0.82

Social Evo. 67.53 ± 1.25 69.55 ± 4.61 80.90 ± 0.97 80.88 ± 3.84 88.09 ± 0.57 87.65 ± 4.46 83.73 ± 0.81 88.92 ± 0.46 89.28 ± 0.51

UCI 50.77 ± 4.58 47.47 ± 5.98 50.45 ± 0.38 35.17 ± 0.01 35.48 ± 0.07 45.52 ± 2.05 70.83 ± 0.10 38.54 ± 2.33 50.05 ± 3.15

Avg.Rank 6.14 7.14 4.29 7.43 4.71 4.14 3.57 5.00 2.57

ind

Wikipedia 40.55 ± 0.64 41.01 ± 0.21 51.08 ± 0.69 44.34 ± 0.77 37.36 ± 0.41 57.97 ± 0.34 57.32 ± 1.97 35.52 ± 0.87 50.49 ± 0.59

Reddit 42.53 ± 0.57 43.77 ± 0.15 46.65 ± 0.27 41.72 ± 0.54 39.42 ± 0.38 49.14 ± 0.04 48.58 ± 0.35 33.16 ± 0.21 49.81 ± 0.76

MOOC 44.48 ± 12.08 56.69 ± 1.20 64.92 ± 0.50 60.30 ± 2.20 64.31 ± 1.06 58.90 ± 1.73 62.03 ± 0.30 66.39 ± 1.80 65.63 ± 1.53

LastFM 49.01 ± 3.41 47.68 ± 5.06 56.78 ± 0.93 34.73 ± 1.83 52.05 ± 0.85 38.60 ± 6.90 56.41 ± 0.22 68.63 ± 0.37 68.11 ± 0.40

Enron 55.43 ± 1.92 49.32 ± 1.57 50.45 ± 0.62 52.44 ± 3.86 55.25 ± 1.55 62.67 ± 0.69 53.54 ± 0.12 52.70 ± 0.87 54.70 ± 0.82

Social Evo. 67.53 ± 1.25 69.55 ± 4.61 81.58 ± 0.92 80.88 ± 3.83 88.12 ± 0.51 87.66 ± 4.46 83.72 ± 0.81 88.92 ± 0.46 89.28 ± 0.51

UCI 50.76 ± 4.56 47.50 ± 6.01 50.32 ± 0.37 35.17 ± 0.02 35.49 ± 0.06 45.57 ± 2.05 70.82 ± 0.11 38.56 ± 2.35 50.05 ± 3.15

Avg.Rank 5.86 6.86 4.29 7.14 5.57 4.14 3.57 5.00 2.57

Table 10: macro-F1 for inductive link prediction with three different negative sampling strategies.
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D.3 HYPERPARAMETER STUDY

To enhance the presentation of the results in Table 3, we employ Figure 4 to visually depict the
trends observed across varying numbers of sampled historical neighbors.

Figure 4: Performance comparison on AP of different number of sampled historical neighbors
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D.4 ABLATION STUDY OF FREEDYG UNDER RANDOM NEGATIVE SAMPLING SETTING

Figure 5: Ablation study of FreeDyG under random negative sampling setting, where w/o NS and
w/o FE represent our FreeDyG without node interaction frequency encoding module and FE layer
respectively.
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