Supplementary material for Monocular Event-Based
Vision for Dodging Static Obstacles with a Quadrotor

Notes

Please note that all code described as open-source or provided will be made available after the peer
review process has concluded. Thank you for your patience.

S1 Additional simulation collision metrics
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(a) Zero collision rates. (b) One or fewer collision rates. (c) Two or fewer collision rates.

Figure S1: Rates for moderate and long trajectories in simulation of zero collisions (typically re-
ferred to just as “success rates”) and one and two collisions. On the long trajectory there is consis-
tently better performance with the jointly-trained (proposed) model.

We present additional collision metrics from simulation rollouts for the proposed model and ab-
lations described in Section 4.1 (jointly-trained, independently-trained, and no depth supervision
models) in Figure S1. As we allow more collisions in the success rate calculation (typically “suc-
cess rate” refers only to zero collisions, as in the paper) we observe a leveling out of performance
among all models on the moderate trajectory, but performance remains consistently better on the
long trajectory with the jointly trained model.

S2 Use of varying event camera hardware

Two quadrotor-event camera platforms were used, one with a Davis346 (resolution 260 x 346) and
one with a Prophesee Gen3.1 VGA (resolution 480 x 640) (Figure 4). As mentioned in the text
(Section 3.4), these two sensors have very different sensor and event-pixel characteristics; further-
more, the biases were left as the default values and not tuned for any experiment. To enable the
simulation pre-trained policy to extend to a real-world Davis346 and further to the Prophesee cam-
era, calibrated and time-synchronized event batches and depth images were gathered to fine-tune
models with real data gathered from a hand-held device with both sensors (Figure S2). ROS was
used to run both sensors in parallel while recording message data that includes ROS timestamps and
corresponding events messages for either event camera (iniVation AG ROS driver [1] was used for
running the Davis346, and Prophesee Al ROS driver [2] was used for running the Prophesee) as
well as ROS timestamps and corresponding depth and “infrared1” messages from the D435 depth
camera. Since the “infrared1” camera is pre-aligned with the depth images, we use these images
to run multi-camera calibration. E2Calib [3] was used to generate images from either event camera
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Figure S2: Example of rigidly-attached event camera (Prophesee Gen3.1 VGA) and depth cam-
era (Intel Realsense D435) used to gather events batches and depth images for approximate post-
processing calibration and time synchronization, for use in fine-tuning perception backbone from
Figure 2. Note that an IR filter is used on the event camera lens so that we may enable the infrared
emitter on the D435 for more-accurate indoor depth images.

at timestamps specified by the depth images (for both types, rosbag data needed to be converted to
DVS EventArray message type [4, 5, 6]). With the images from E2Calib and “infrared1”, we use
Kalibr [7] to perform multi-camera calibration.

As all perception models are sized according to the Davis346 resolution, for the Prophesee camera
we center-crop a 260 x 346 sized event batch for input to the perception backbone D(6). Note that
while the simulated camera and corresponding Vid2E events output have different intrinsics than the
Davis346 and Prophesee cameras, no alignment is performed during the sim-to-real transfer, and we
expect the fine-tuning of the model to incorporate changes in lens geometry and distortion.

S3 State estimation for outdoor flight

As described in Figure 4, the Falcon250-Prophesee platform uses the VOXL board [8] for onboard
state estimation. This board contains an independent computer, connected to the primary computer
via an Ethernet cable. This visual-inertial odometry (VIO) module provides six degrees-of-freedom
robot poses at 30Hz. We employed an Unscented Kalman Filter (UKF) that takes high-frequency
IMU data in combination with these pose estimates to provide odometry at 150Hz. Low-level atti-
tude and thrust controllers are run on PX4 open-source [9] control stack using the Pixhawk4 flight
controller, with desired values provided by custom controllers running on the primary onboard com-
puter.



References

[1] iniVation AG. Dv-ros: Robotic operating system integration for inivation cameras, 2024. URL
https://gitlab.com/inivation/dv/dv-ros. Accessed: 2024-06-10.

[2] P. AL. Prophesee ros wrapper: Ros driver for prophesee event-based sensors, 2024. URL
https://github.com/prophesee-ai/prophesee_ros_wrapper. Accessed: 2024-06-10.

[3] M. Muglikar, M. Gehrig, D. Gehrig, and D. Scaramuzza. How to calibrate your event camera.
In IEEE Conf. Comput. Vis. Pattern Recog. Workshops (CVPRW), June 2021.

[4] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. A 240x 180 130 db 3 us latency
global shutter spatiotemporal vision sensor. I[EEE Journal of Solid-State Circuits, 49(10):2333—
2341, 2014.

[5] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128x128 120db 15mus latency asynchronous
temporal contrast vision sensor. IEEE journal of solid-state circuits, 43(2):566-576, 2008.

[6] E. Mueggler, B. Huber, and D. Scaramuzza. Event-based, 6-dof pose tracking for high-speed
maneuvers. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2761-2768. IEEE, 2014.

[7] J. Maye, P. Furgale, and R. Siegwart. Self-supervised calibration for robotic systems. In 2013
IEEE Intelligent Vehicles Symposium (IV), pages 473-480. IEEE, 2013.

[8] ModalAI VOXL Technical Docs. URL https://docs.modalai.com/docs/datasheets/
voxl-datasheet.

[9] L. Meier, D. Honegger, and M. Pollefeys. Px4: A node-based multithreaded open source
robotics framework for deeply embedded platforms. In 2015 IEEE international conference
on robotics and automation (ICRA), pages 6235-6240. IEEE, 2015.


https://gitlab.com/inivation/dv/dv-ros
https://github.com/prophesee-ai/prophesee_ros_wrapper
https://docs.modalai.com/docs/datasheets/voxl-datasheet
https://docs.modalai.com/docs/datasheets/voxl-datasheet

	Additional simulation collision metrics
	Use of varying event camera hardware
	State estimation for outdoor flight

