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1 SUPPLEMENTARY

1.1 QUERY REFINEMENT

After each layer of decoder structure, the triplet queries are updated with the decoder output. We
design the fusing process that aggregate the representation between the two branches, to further
improve the reprensetation of queries. For relationship predicate queries of next layer Qt+1

tp , we
fuse the triplet entities hidden state with the pair-wise fusion function proposed in Zhang et al.
(2018), which has been adopted in SGG task. The triplets entities queries Ql+1

to ,Ql+1
ts are updated

with the triplet predicate decoder output Qtp, with the nears neighbors feature representation on
encoder memory Zt, according to the center coordinates of predicted entities position [xc, yc].

Ql+1
tp = Ql

tp + ReLU(WxQ
l
ts +WyQ

l
to)− ||Ql

ts −Ql
to||22 (1)

Ql+1
ts = Ql

ts +Zt(m,n) + ReLU(WesQ
l
tp) (2)

Ql+1
to = Ql

to +Zt(m,n) + ReLU(WeoQ
l
tp) (3)

m,n← argmin
m,n∈[0,1]×[0,1]

(||[xc, yc]− [m,n]||1) (4)

1.2 MATCHING QUALITY CALCULATION FOR GRAPH ASSEMBLING

We take the matching quality of subject entities and predicates as example. For each factors of
distance function is determined by the semantic outputs of entity detector and triplet decoder. The
dgiou ∈ RNr×Ne , dcos ∈ RNr×Ne , dcenter ∈ RNr×Ne are calculated by following process.

M s = dloc(Bs,Be) · dcls(Ps,Pe), dloc(Bs,Be) =
dgiou
dcenter

(5)

dgiou = max(min(GIOU(bs, be), 0), 1), dcos =
ps · pᵀ

e

||ps|| · ||pe||
(6)

dcenter(i, j) = ||[xc, yc]
s
i − [xc, yc]

e
i ||1 (7)

where [xc, yc]
s are the center coordinates of one box in Bs.

1.3 TRIPLETS MATCHING COST

The triplets predication of the model is T = {(bse,ps
e, b

o
e,p

o
e,pp, bp)}. The triplets matching cost

C ∈ RNr×Ngt is composed by three part: predicate cost Cp and entity cost Ce.

C = λpCp + λeCe Itri = argmin
T ,T gt

C (8)

For the predicate cost Cp(i, j) between the i-th predicates prediction and j-th ground-truth relation-
ship, it is computed according the predicate classification distribution.

Cp(i, j) = exp

(
pp,i · one-hot(pgtp,j)

||pp,i|| · ||one-hot(pgtp,j)||
− 1

)
+ ∥bp,i − bgtp,j∥1 (9)
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where pp,i is the i-th pp of T , and pgtp,j is the predicate label of the j-th triplet in ground truth.
Similarly, bp,i is the i-th center coordinates(subject and object) bp of the triplet prediction, bgtp,j is
entity centers set of the j-th triplet in ground truth.

In entity cost Ce(i, j) between the i-th triplets prediction and j-th ground-truth relationship„ the
calculation is given by:

Ce(i, j) = + wgiou ·
∏

⋆={s,o}

exp
(
max(min(GIOU(b⋆e,i, b

⋆
gt,j), 0), 1)

)
(10)

+ wl1 ·
∑

⋆={s,o}

||b⋆e,i, b⋆gt,j ||1 (11)

+ wcls ·
∏

⋆={s,o}

exp

(
p⋆
e,i · one-hot(p(∗,gt)e,j )

||p⋆
e,i|| · ||one-hot(p(∗,gt)e,j )||

− 1

)
(12)

where b⋆e,i is the i-th entity box location come from the triplets prediction T after graph assembling,
p⋆
e,i is the i-th entity classification prediction. b⋆gt,j is the box location of j-th subject/object in the

ground truth triplets, and p
(∗,gt)
e,j is entity(subject/object) class label of j-th ground truth triplets.

Based is cost function, we can obtain the matching of relationship prediction. We adopt the one-
to-one Hungarian algorithm into an iterative many-to-one matching. Due to the label efficiency, the
relationships can not be exhausted labeled in datasets. The one-to-one matching may lead to unstable
training because many foreground relationships will be ignored. The model can not learn the proper
NMS mechanism for prediction calibration. To circumvent this, we relax the matching threshold to
prevent the NMS mechanism from learning. We iteratively execute T times of Hungarian minimum-
cost bipartite graph matching.

1.4 DATASETS AND IMPLEMENTATION DETAILS

1.4.1 DATASETS AND METRICS

Visual Genome Datasets For Visual Genome (Krishna et al., 2017) dataset, we take the same split
protocol as Xu et al. (2017); Zellers et al. (2018). The most frequent 150 object categories and 50
predicates are adopted for evaluation. To demonstrate the long-tailed recognition performance on
VG dataset, we follow the protocol from Li et al. (2021) by dividing the categories into three disjoint
groups. We we adopt the evaluation metric recall@K(R@K) and mean recall@K (mR@K) of
SGDet, and also report the mR@100 on each long-tail category groups: head, body and tail.

Openimage V6 Datasets The Openimage datasets (Kuznetsova et al., 2020) are large scale vision
recognition datasets proposed by Google, and been used as SGG benchmarks in Zhang et al. (2019);
Lin et al. (2020); Li et al. (2021); Teng & Wang (2021). We adopt the same data splits with the Li
et al. (2021), which has 126,368 images used for training, 1813 and 5322 images for validation and
test, respectively, with 301 object categories and 31 predicate categories.

The the weighted evaluation metrics (e.g. wmAPphr, wmAPrel, scorewtd) used in previous
works (Zhang et al., 2019; Lin et al., 2020; Li et al., 2021; Teng & Wang, 2021). However, we
argue that weighted scores are unfair when used to evaluate rare categories. Because it re-weights
by multiplying the frequency of categories on per-class performance, low-frequency categories are
disregarded, resulting in class unbalanced assessment metrics, even though this metric is more nu-
merically stable, as cited in Zhang et al. (2019). In this work, we will report both weighted and
initial performance (e.g. mAPphr, mAPrel, score) in our experiments, for more fair class balance
evaluation metrics.

1.4.2 IMPLEMENTATION DETAILS

We use the ResNet-101 and DETR (Carion et al., 2020) as backbone networks and entities detectors,
with six layers encoder and six layers decoder. The Ne = 100 entities queries with d = 256 hidden
dimension are used as the proposals for feature aggregation. The same DETR detector parameters
are use for all one-stage methods reproduced by us. In our triplets constructor, we use the 3 layers
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encoders. In triplets decoder, we adopt 12 layers decoder for predicate branch, and 5 layers decoder
for entity branch, with Nr = 150 queries with d = 256 hidden dimensions. For two-stage methods,
we use the Faster-RCNN detector with the ResNet-101 backbone.

To speedup the convergence, we first train the entities detector on the target dataset. Then, using this
pre-trained detector, we train the relationship detector parts. The key difference between this work
and previous work Kim et al. (2021); Li et al. (2021) is that we do not need to fix the parameters of
the entities detector to avoid performance drop in SGG training. We keep the parameters of detector
in training mode, that still can preserve the considerable performance, or obtain better performance
in SGG training.
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