
A PROOFS

A.1 NOTATIONS

Table 4: Table of Notations
symbol description symbol description
G(V,E) The input graph C The label set of G

D The maximum degree of graph G ρ The homophily ratio
τl The probability of linked nodes with a common neigh-

borhood
τu The probability of unlinked nodes with a common neigh-

borhood
xi The initial features of node vi hi The processed features after GNN of node vi
σ0 The noise in the dimension of value zero σ1 The noise in the dimension of value one
ϵ The self-embedding weight w The aggregation weight
d The embedding dimensionality δ The upper bound of any two features, representing the

orthogonality

A.2 SUMMARY OF THEORETICAL RESULTS

Table 5: Summary of our theoretical results. ρ is the homophily ratio. D is the maximum degree. τu
is the probability that an unlinked pair has a common neighborhood. ϵ denotes the self-embedding
weight. δ represents the orthogonality of the features.

IF (O(|V |)) CF (O(|C|)) NORF (O(log(|V |)))
GCN any condition No 1

8D
> δ

GIN ϵ > D
2
− 1 ρ > 1

|C| , ϵ > max(|C| − 1, 2(1 + ρ)D) ϵ = D
2
, 1
4D2 > δ

GRNN ϵ > |w|1
2

− 1 ρ > 1
|C| , ϵ > max(|C| − 1, 2(1 + ρ)w1) ϵ > |w|1

2
, 4
13|w|21

> δ

Table 5 summarizes our theoretical results, manifesting that GRNN can preserve graph reconstructabil-
ity for any feature initialization by carefully adjusting self-embedding weight ϵ and aggregation
weight w. Additionally, with NORF, GRNN minimizes embedding dimensionality d while keeping
initial feature orthogonality δ. Note that GRNN can retain the best reconstructability by properly
setting the self-embedding weight ϵ and the aggregation weight w with the lowest dimensionality in
O(log(|V |)).

A.3 DETAILED DISCUSSIONS

From a local (node-level) perspective, the k-th layer of a GNN is defined as follows.

a
(k)
i = AGGREGATE(k)

({
h
(k−1)
j

∣∣∣vj ∈ N(vi)
})

, and h(k)
i = COMBINE(k)

(
h
(k−1)
i ,a

(k)
i

)
,

where N(vi) denotes the neighborhood set of vi. The AGGREGATE function is used to gather infor-
mation from neighbors. Various approaches for AGGREGATE have been proposed, such as uniform
weight (Kipf & Welling, 2017; Xu et al., 2018a) and neural network (Hamilton et al., 2017; Veličković
et al., 2018). On the other hand, the COMBINE function fuses the information from neighbors into the
self-embedding of the center node.

Following Sato et al. Sato et al. (2021), in the theoretical analysis, the multi-layer perceptron is
universal, and the number of dimensions is fixed but allowed to be massive.
Definition 6. The MLP of GCN and GIN is defined as follows.

MLP(h) = ReLU(Wh),

where the projection matrix W is a unitary matrix.

Following Definition 6 Xu et al. (2018b), we have

E[MLP(hi)
⊤MLP(hj)] =

1

2
E[h⊤

i hj ].

Thus, it only needs to calculate the inner product of the embedding vectors before activation to
evaluate the graph reconstructability.

Following Liu et al. (2021), when two nodes are linked, they have a probability τl with a common
neighborhood. Otherwise, the unlinked pair has a probability τu with a common neighborhood. The
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above probabilities can be derived according to Robins et al. Robins et al. (2009). Moreover, our
theoretical results can be generalized into other models of link, e.g., random-graph, when we are able
to derive the probability of link by the stochastic process, e.g., following Wu et al. (2010).5

A.4 PROOF OF PROPOSITION 1

Proposition 1. A model is graph reconstructable if and only if the learned embeddings are able to
distinguish linked and unlinked node pairs, where the inner product of the embeddings of a linked
node pair is strictly greater than that of an unlinked node pair, i.e.,

h⊤
i hj > h⊤

i hk,∀(vi, vj) ∈ E and (vi, vk) /∈ E.

Proof. (⇒) We prove this by contradiction. If the inner product of embeddings for an unlinked
node pair is greater than that for any linked node pair, the reconstructed graph has at least one edge
different from the input graph. (⇐) One can perfectly reconstruct the input graph with the decision
boundary of the linked node pairs and unlinked node pairs. The proposition follows.

A.5 PROOF OF PROPOSITION 2

Proposition 2. With identity features, GCN is provable to distinguish linked and unlinked node
pairs.

Proof. After one GCN layer,

hi = [hi,k]k∈[1,|V |], where hi,k =


1 k = i
1
Di

vk ∈ N(vi)

0 otherwise.

If two nodes are linked, we have

E[h⊤
i hj ] =

1

Di
+

1

Dj
+ τl

Di − 1

DiDj
.

Otherwise,
E[h⊤

i hj ] = τu
1

Di
.

Since
1

Di
+

1

Dj
+ τl

Di − 1

DiDj
> τu

1

Di
,

the theorem follows.

A.6 PROOF OF PROPOSITION 3

Proposition 3. With identity features, GIN is provable to distinguish linked and unlinked node pairs,
if ϵ > D

2 − 1.

Proof. After one GIN layer,

hi = [hi,k]k∈[1,|V |], where hi,k =


1 + ϵ k = i

1 vk ∈ N(vi)

0 otherwise.

If two nodes are linked,
E[h⊤

i hj ] = 2(1 + ϵ) + τl(Di − 1).

Otherwise,
E[h⊤

i hj ] = τuDi.

5The assumption of the probabilities of linked nodes and unlinked nodes that have a common neighborhood
is just a simple math trick to reduce the complexity of the equation. Actually, we can assign each node with
different values of probabilities of common neighborhood and our theoretical results are also held.
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Then,
2(1 + ϵ) + τl(Di − 1) > τuDi

⇒2(1 + ϵ) + τlDi > τuDi

⇒2(1 + ϵ) > (τu − τl)Di.

By setting ϵ > D
2 − 1, the above inequality holds. Thus, the theorem follows.

A.7 PROOF OF PROPOSITION 4

Proposition 4. With contextual features, GCN is not provable to distinguish linked and unlinked
node pairs if σ0 > 2σ1.

Proof. After one GCN layer,

hi = [hi,k]k∈[1,|C|], where hi,k =

{
N (1 + ρ, (1 + ρ)σ1) k = l

N ( 1−ρ
(|C|−1)

, σ0 +
1−ρ

(|C|−1)
σ1) otherwise.

If two nodes are linked, we have

E[h⊤
i hj ] = ρ((1 + ρ)2 +

(1− ρ)2

|C| − 1
) + (1− ρ)|C|(

(1 + ρ)(σ0 +
1−ρ

(|C|−1)
σ1)

2 + ( 1−ρ
(|C|−1)

)((1 + ρ)σ1)
2

(σ0 +
1−ρ

(|C|−1)
σ1)2 + ((1 + ρ)σ1)2

).

Otherwise,

E[h⊤
i hj ] =

1

|C| ((1+ρ)2+
(1− ρ)2

|C| − 1
)+(1− 1

|C| )|C|(
(1 + ρ)(σ0 +

1−ρ
(|C|−1)

σ1)
2 + ( 1−ρ

(|C|−1)
)((1 + ρ)σ1)

2

(σ0 +
1−ρ

(|C|−1)
σ1)2 + ((1 + ρ)σ1)2

).

Suppose that σ0 > 2σ1,

[
1

|C| ((1 + ρ)2 +
(1− ρ)2

|C| − 1
) + (1− 1

|C| )|C|(
(1 + ρ)(σ0 +

1−ρ
(|C|−1)

σ1)
2 + ( 1−ρ

(|C|−1)
)((1 + ρ)σ1)

2

(σ0 +
1−ρ

(|C|−1)
σ1)2 + ((1 + ρ)σ1)2

)]

− [ρ((1 + ρ)2 +
(1− ρ)2

|C| − 1
) + (1− ρ)|C|(

(1 + ρ)(σ0 +
1−ρ

(|C|−1)
σ1)

2 + ( 1−ρ
(|C|−1)

)((1 + ρ)σ1)
2

(σ0 +
1−ρ

(|C|−1)
σ1)2 + ((1 + ρ)σ1)2

)]

>[
1

|C| ((1 + ρ)2 +
(1− ρ)2

|C| − 1
) +

2

3
(1− 1

|C| )|C|(1 + ρ))]− [ρ((1 + ρ)2 +
(1− ρ)2

|C| − 1
) +

2

3
(1− ρ)|C|(1 + ρ)]

=[(
1

|C| − ρ)((1 + ρ)2 +
(1− ρ)2

|C| − 1
) +

2

3
(ρ− 1

|C| )|C|(1 + ρ))]

=(ρ− 1

|C| )(
2

3
|C|(1 + ρ))− (1 + ρ)2 − (1− ρ)2

|C| − 1
)

>0.

Therefore, Proposition 1 doesn’t hold. The theorem follows.

A.8 PROOF OF PROPOSITION 5

Proposition 5. With contextual features, GIN is provable to distinguish linked and unlinked node
pairs, if ρ > 1

|C| and ϵ > max(|C| − 1, 2(1 + ρ)D).

Proof. After one GIN layer,

hi = [hi,k]k∈[1,|C|], where hi,k =

{
N (1 + ρ+ ϵ, (1 + ρ+ ϵ)σ1) k = l

N ( 1−ρ
(|C|−1)

Di, σ0 +
1−ρ

(|C|−1)
σ1Di) otherwise.

If two nodes are linked, we have

E[h⊤
i hj ] =ρ((1 + ρ+ ϵ)2 +

(1− ρ)2

|C| − 1
D2

i )

+ (1− ρ)|C|(
(1 + ρ+ ϵ)(σ0 +

1−ρ
(|C|−1)

σ1Di)
2 + ( 1−ρ

(|C|−1)
)((1 + ρ+ ϵ)σ1)

2

(σ0 +
1−ρ

(|C|−1)
σ1Di)2 + ((1 + ρ+ ϵ)σ1)2

).
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Otherwise,

E[h⊤
i hj ] =

1

|C| ((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i )

+ (1− 1

|C| )|C|(
(1 + ρ+ ϵ)(σ0 +

1−ρ
(|C|−1)

σ1Di)
2 + ( 1−ρ

(|C|−1)
)((1 + ρ+ ϵ)σ1)

2

(σ0 +
1−ρ

(|C|−1)
σ1Di)2 + ((1 + ρ+ ϵ)σ1)2

).

Suppose that σ1 ≥ σ0, the equation holds by setting ϵ > 2(1− ρ)D.

Suppose that σ0 > σ1, we have

[ρ((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i )

+ (1− ρ)|C|(
(1 + ρ+ ϵ)(σ0 +

1−ρ
(|C|−1)

σ1Di)
2 + ( 1−ρ

(|C|−1)
)((1 + ρ+ ϵ)σ1)

2

(σ0 +
1−ρ

(|C|−1)
σ1Di)2 + ((1 + ρ+ ϵ)σ1)2

)]

− [
1

|C| ((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i )

+ (1− 1

|C| )|C|(
(1 + ρ+ ϵ)(σ0 +

1−ρ
(|C|−1)

σ1Di)
2 + ( 1−ρ

(|C|−1)
)((1 + ρ+ ϵ)σ1)

2

(σ0 +
1−ρ

(|C|−1)
σ1Di)2 + ((1 + ρ+ ϵ)σ1)2

)]

>[ρ((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i )

+ (1− ρ)|C|(1 + ρ+ ϵ)]− [
1

|C| ((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i ) + (1− 1

|C| )|C|(1 + ρ+ ϵ)]

=(ρ− 1

|C| )((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i )− (ρ− 1

|C| )|C|(1 + ρ+ ϵ)]

=(ρ− 1

|C| )((1 + ρ+ ϵ)2 +
(1− ρ)2

|C| − 1
D2

i − |C|(1 + ρ+ ϵ)].

By setting ρ > 1
|C| and ϵ > |C| − 1, the above inequality holds. Thus, the theorem follows.

A.9 PROOF OF THEOREM 1

Theorem 1. With nearly orthogonal random features, GCN is provable to distinguish linked and
unlinked node pairs if 1

8D > δ.

Proof. After one GCN layer,

hi = xi +
1

Di

∑
vk∈N(vi)

xk, and hj = xj +
1

Dj

∑
vl∈N(vj)

xl.

If two nodes are linked, we have
E[h⊤

i hj ]

=x⊤
i xj +

∑
vk∈N(vi)

x⊤
k xj

Di
+

∑
vl∈N(vj)

x⊤
i xl

Dj
+

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

DiDj

=
1

Di
+

1

Dj
+ x⊤

i xj +
∑

vk∈N(vi)\{vj}

x⊤
k xj

Di
+

∑
vl∈N(vj))\{vi}

x⊤
i xl

Dj
+

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

DiDj

≥ 1

Di
+

1

Dj
+ τl

Di − 1

DiDj
− 4δ.

Otherwise,
E[h⊤

i hj ]

=x⊤
i xj +

1

Di

∑
vk∈N(vi)

x⊤
k xj +

1

Dj

∑
vl∈N(vj)

x⊤
i xl +

1

DiDj

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

≤τu
1

Di
+ 4δ.
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Based on Proposition 1, we have

1

Di
+

1

Dj
+ τl

Di − 1

DiDj
− 4δ > τu

1

Di
+ 4δ.

By transportation,
1− τu
Di

+
1 + τl
Dj

> 8δ.

By setting 1
8D > δ, the theorem follows.

A.10 PROOF OF THEOREM 2

Theorem 2. With nearly orthogonal random features, GIN is provable to distinguish linked and
unlinked node pairs, if ϵ = D

2 and 1
4D2 > δ.

Proof. After one GIN layer,

hi = (1 + ϵ)xi +
∑

vk∈N(vi)

xk, and hj = (1 + ϵ)xj +
∑

vl∈N(vj)

xl,

If two nodes are linked, we have

E[h⊤
i hj ]

=(1 + ϵ)2x⊤
i xj + (1 + ϵ)(

∑
vk∈N(vi)

x⊤
k xj +

∑
vl∈N(vj)

x⊤
i xl) +

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

=2(1 + ϵ) + (1 + ϵ)2x⊤
i xj + (1 + ϵ)(

∑
vk∈N(vi)\vj

x⊤
k xj +

∑
vl∈N(vj)\vi

x⊤
i xl) +

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

≥2(1 + ϵ) + τl(Di − 1)− [(1 + ϵ)2 + (1 + ϵ)(Di +Dj) +DiDj ]δ

=2(1 + ϵ) + τl(Di − 1)− (1 + ϵ+Di)(1 + ϵ+Dj)δ.

Otherwise,

E[h⊤
i hj ]

=(1 + ϵ)2x⊤
i xj + (1 + ϵ)(

∑
vk∈N(vi)

x⊤
k xj +

∑
vl∈N(vj)

x⊤
i xl) +

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

≤τuDi + (1 + ϵ+Di)(1 + ϵ+Dj)δ.

Based on Proposition 1, we have

2(1 + ϵ) + τl(Di − 1)− (1 + ϵ+Di)(1 + ϵ+Dj)δ > τuDi + (1 + ϵ+Di)(1 + ϵ+Dj)δ

⇒2(1 + ϵ)− (1 + ϵ+Di)(1 + ϵ+Dj)δ > Di + (1 + ϵ+Di)(1 + ϵ+Dj)δ

⇒1 + ϵ >
Di

2
+ (1 + ϵ+Di)(1 + ϵ+Dj)δ

By setting ϵ = D
2 and 1

4D2 > δ, the theorem follows.

A.11 PROOF OF THEOREM 3

Theorem 3. With nearly orthogonal random features, GRNN in the following form,

GRNN(k)(vi) = MLP((1 + ϵ)h
(k−1)
i +

∑
vj∈N(vi)

wjh
(k−1)
j ),

is provable to distinguish linked and unlinked node pairs, if ϵ = ∥w∥1

2 and 4
13∥w∥2

1
> δ.

Proof. After one layer GRNN,

hi = (1 + ϵ)xi +
∑

vk∈N(vi)

wkxk, and hj = (1 + ϵ)xj +
∑

vl∈N(vj)

wlxl.
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If two nodes are linked, we have
E[h⊤

i hj ]

=(1 + ϵ)2x⊤
i xj + (1 + ϵ)(

∑
vk∈N(vi)

wkx
⊤
k xj +

∑
vl∈N(vj)

wlx
⊤
i xl) +

∑
vk∈N(vi)

∑
vl∈N(vj)

wkwlx
⊤
k xl

=2(1 + ϵ) + (1 + ϵ)2x⊤
i xj + (1 + ϵ)(

∑
vk∈N(vi)\vj

wkx
⊤
k xj +

∑
vl∈N(vj)\vi

wlx
⊤
i xl) +

∑
vk∈N(vi)

∑
vl∈N(vj)

wkwlx
⊤
k xl

≥2(1 + ϵ) + τl(∥w∥1 − 1)− [(1 + ϵ)2 + 2(1 + ϵ)∥w∥1 + ∥w∥21]δ
=2(1 + ϵ) + τl(∥w∥1 − 1)− (1 + ϵ+ ∥w∥1)2δ.
Otherwise,

E[h⊤
i hj ]

=(1 + ϵ)2x⊤
i xj + (1 + ϵ)(

∑
vk∈N(vi)

x⊤
k xj +

∑
vl∈N(vj)

x⊤
i xl) +

∑
vk∈N(vi)

∑
vl∈N(vj)

x⊤
k xl

≤τu∥w∥1 + (1 + ϵ+ ∥w∥1)2δ.
Based on Proposition 1, we have

2(1 + ϵ) + τl(∥w∥1 − 1)− (1 + ϵ+ ∥w∥1)2δ > τu∥w∥1 + (1 + ϵ+ ∥w∥1)2δ
⇒2(1 + ϵ)− (1 + ϵ+ ∥w∥1)2δ > ∥w∥1 + (1 + ϵ+ ∥w∥1)2δ

⇒1 + ϵ >
∥w∥1
2

+ (1 + ϵ+ ∥w∥1)2δ.

By setting ϵ = ∥w∥1

2 and 4
13∥w∥2

1
> δ, the theorem follows.

A.12 PROOF OF COROLLARY 1

Corollary 1. By uniform sampling |V | embedding vectors as the nearly orthogonal random features,
the dimensionality has to be set in the order of O(∥w∥41log(|V |)) to retain graph reconstructability.

Proof. First, we employ the upper bound of spherical caps (Ball et al., 1997).

P (xT
i xj > δ) < e

−dδ2

2

⇒1− P (xT
i xj > δ) ≥ 1− e

−dδ2

2 .

By sampling |V | random features for G, we have to ensure the orthogonality of the total |V ||(V |−1)
2

pairs.

(P (xT
i xj ≤ δ))

|V |(|V |−1)
2 ≥ (1− e

−dδ2

2 )
|V |(|V |−1)

2 .
By Taylor’s expansion,

(P (xT
i xj ≤ δ))

|V |(|V |−1)
2 ≥ 1− |V |(|V | − 1)

2
e

−dδ2

2 .

According to Theorem 3, where δ < 4
13∥w∥2

1
, we obtain

(P (xT
i xj ≤ 4

13∥w∥21
))

|V |(|V |−1)
2 ≥ 1− |V |(|V | − 1)

2
e

−8d

169∥w∥41 .

Let p = (P (xT
i xj ≤ 4

13∥w∥2
1
))

|V |(|V |−1)
2 , which represents that the initial |V | random features are

nearly orthogonal according to δ = 4
13∥w∥2

1
. We have

1− p <
|V |(|V | − 1)

2
e

−8d

169∥w∥41

⇒ln(1− p)− ln(
|V |(|V | − 1)

2
) <

−8d

169∥w∥41

⇒ln(
|V |(|V | − 1)

2
)− ln(1− p) >

8d

169∥w∥41

⇒169∥w∥41
8

(ln(
|V |(|V | − 1)

2
)− ln(1− p)) > d.

Since p is closer to 1, the embedding dimension d has to be set in the order of O(∥w∥41log(|V |)).
The corollary follows.
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A.13 PROOF OF PROPOSITION 6

Proposition 6. For link prediction, the level of graph reconstructability can be evaluated by the AUC
score of the inner product of learned embeddings from GRNN.

Proof. According to Proposition 1, there exists a linear decision boundary to classify the linked and
unlinked node pairs. Thus, by sorting the inner product of node embeddings to derive the AUC score,
the graph is prefectly reconstructable if AUC is equal to 1. Note that the value of inner prodcut
between two nodes indicating the Jaccard similarity, the portion of the common neighborhood over
the total neighborhood since the inner product of two none without any shared neighborhood should
zero. The proposition follows.

A.14 PROOF OF PROPOSITION 7

Proposition 7. For community detection, the learned embeddings from GRNN approximate the
affliction matrix H via symmetric nonnegative matrix factorization.

Proof. The objective function of community detection (Lu et al., 2020) can be written as follows .

min∥A−HHT ∥F , s.t. H ≥ 0 (1)

where ∥∥F is the Frobenius norm and H is the affliattion matrix of each community. H ≥ 0
indicate that the elements of H is nonnegative. Since optimum of graph reconstructability is that
the inner product of pairs of node embedding can be obtain classified via a hyperplane as shown in
Proposition 1, we can obtained a indicated function (or classifier) to transform the objective of graph
reconstructability into Eq. 1. Also, we adopt the ReLu activation in Definition 6, thus the learned
embeddibg from GNN satisfied H ≥ 0. The proposition follows.

A.15 PROOF OF COROLLARY 4

Corollary 4. The time complexity of GRNN with NORF is O(|E|log(|V |) + |V |log2(|V |)).

Proof. Since the embedding dimensionality of NORF is O(log(|V |)), the dense matrix multiplica-
tion of MLP requires O(log2(|V |)) of each node. Processing AGGRGATION and COMBINE requires
O(|E|log(|V |)) and O(|V |log(|V |)). Summing up, the overall time complexity of GRNN with
NORF becomes O(|E|log(|V |) + |V |log2(|V |)).

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SETUP

Following Kipf & Welling (2017), we adopt a two-layer GNN model, where the projection matrix
is initialized as a random unitary matrix. We adopt the skip-gram with negative sampling Hu et al.
(2020a) with Adam optimizer. The settings include a learning rate of 10−3 with a weight decay of
10−4, dropout rate of 0.2, and a mini-batch size of 32 across all datasets.

B.2 RUNNING TIME

Since NORF is able to reduce the dimensionality of embedding, we further evaluate the running time
of GRNN on the synthetic dataset with different graph sizes in Table 6. Since the identity features
scheme requires a time complexity of O(|V |2), it cannot be applied on large graphs, e.g., in our
experiments, when the number of nodes is greater than 1, 000, 000, we run into the out-of-memory
problem. On the other hand, while the contextual features scheme has the best efficiency (O(|V ||C|)),
it does not retain the graph reconstructability on a disassortative graph. In contrast, our NORF
can reconstruct all kinds of input graph by ensuring the orthogonality of random features, while
significantly reducing the complexity to O(|V |log(|V |)).
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Table 6: Running Time of GRNN with different features

# nodes IF CF NORF
time(sec) GRR (0.8) GRR (0.2) time(sec) GRR (0.8) GRR (0.2) time(sec) GRR (0.8) GRR (0.2)

10,000 193.23 0.9892 0.9827 9.53 0.9731 0.6533 28.97 0.9992 0.9921
100,000 27983.66 0.9887 0.9869 112.53 0.9802 0.6870 530.28 0.9921 0.9896

1,000,000 OOM OOM OOM 1437.39 0.9723 0.6436 8921.91 0.9871 0.9799

Table 7: Node classification (ACC.).

method
Pubmed (ρ = 0.80) Actor ((ρ = 0.22)

IF CF NORF NORF + CF IF CF NORF NORF + CF
GCN 0.7752 0.8648 0.7942 0.8912 0.3244 0.3244 0.3429 0.3544
GAT 0.7692 0.8328 0.7880 0.8891 0.3311 0.3221 0.3348 0.3604
SGC 0.7741 0.8551 0.7812 0.8998 0.3312 0.3249 0.3519 0.3701

GRNNmean 0.7541 0.8706 0.8209 0.9110 0.3245 0.3318 0.3550 0.3811
GRNNmax 0.7719 0.8719 0.8121 0.9009 0.3503 0.3239 0.3627 0.3721
GRNNattn 0.7617 0.8921 0.8209 0.9025 0.3519 0.3347 0.3610 0.3777

B.3 NODE CLASSIFICATION

Table 7 summarizes the experimental results of node classification on both assortative (Pubmed) (Kipf
& Welling, 2017) and disassortative (Actor) (Rozemberczki et al., 2021) graphs. We adopt the real
node attributes as contextual features. We take 80% of node labels for training and the rest of the
datasets for testing. Generally speaking, GRNN achieves the best performance by carefully controlling
the weight between neighborhood and central nodes. We observe that, in Pubmed, the contextual
features are useful to predict the node labels through the message-passing process in GNN by
considering the neighborhood features distribution because the connected node tends to have the same
labels on the assortative graph. However, such a procedure would degrade the model performance on
the disassortative graph. In contrast, identity features and NORF merely encode the node identity and
are not disturbed by irrelevant (and even misleading) contextual information. Note that NORF also
outperforms identity features because it requires smaller embedding dimensionality, thus leading to
better convergence. Summing up, combining NORF with CF can balance the identity and contextual
information in GNN and consistently improve all types of GNN. Among them, GRNN with NORF
and CF combined performs the best.

B.4 MORE REAL-WORLD GRAPHS

Here, we examine the GRNN on more real-world graphs to investigate the correctness of our
theoretical framework. Following Liu et al. Liu et al. (2021), we evaluate four GRNN variants against
GCN and two GIN variants, coupled with various feature initialization schemes, on both assortative
(Cora and Pubmed) (Kipf & Welling, 2017) and disassortative (Actor and Cornell) (Rozemberczki
et al., 2021) graphs.

C DISCUSSION

C.1 GRAPH AUTO-ENCODER.

Generally, graph autoencoder (Wang et al., 2016; 2017) is also a special case of GRNN, which aims
to encode the graph (adjacency matrix) in a low dimensional space by minimizing the reconstruction
loss, while GRNN is better than graph autoencoder for graph reconstructability. The encoder of
graph autoencoder, i.e., the first projection layer, can be regarded as a special case of GRNN with the
sum pooling over the randomly initialized features. This is because the input features of the graph
autoencoder utilize the row (or column) vector of the adjacency matrix corresponding to each node.
Thus, the projection layer of the graph autoencoder can be summarized as vi =

∑
eij∈E wproj

j , where

wproj
j is the j-th row vector of the projection matrix. However, as the graph autoencoder does not

employ the self-embedding weight ϵ for preserving the node identity, it may have difficulty to retain
the graph reconstructability. Even if we adopt the self-embedding weight with graph autoencoder,
according to Corollary 1, since the aggregation weight w of graph autoencoder is in the order of O(D),
where D is the node degree, the embedding dimensionality of the autoencoder is O(D4log(|V |))
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Table 8: Real-World Graph (AUC)

method
Assortative Graph

Cora (ρ = 0.81) Pubmed (ρ = 0.80)
IF CF NORF NORF +CF IF CF NORF NORF +CF

GCN 0.9931 0.9789 0.9666 0.9712 0.9981 0.9877 0.9632 0.9892
GIN 0.9983 0.9894 0.9183 0.9913 0.9987 0.9889 0.9177 0.9959
GAT 0.9821 0.9679 0.9712 0.9806 0.9919 0.9766 0.9641 0.9902,
SGC 0.9791 0.9710 0.9688 0.9744 0.9812 0.9782 0.9429 0.9821

GRNNmean 0.9925 0.9901 0.9872 0.9799 0.9981 0.9832 0.9854 0.9912
GRNNmax 0.9971 0.9843 0.9819 0.9903 0.9902 0.9835 0.9561 0.9913
GRNNattn 0.9989 0.9788 0.9905 0.9970 0.9986 0.9847 0.9841 0.9903

method
Disassortative Graph

Actor (ρ = 0.22) Cornell (ρ = 0.30)
CF IF NORF NORF +CF CF IF NORF NORF +CF

GCN 0.9963 0.7491 0.9670 0.9721 0.9983 0.7325 0.9831 0.9968
GIN 0.9984 0.7510 0.9021 0.9112 0.9934 0.7211 0.8814 0.8912
GAT 0.9423 0.7001 0.9516 0.9701 0.9891 0.7126 0.9533 0.9778
SGC 0.9919 0.7212 0.9560 0.9624 0.9885 0.7360 0.9610 0.9871

GRNNmean 0.9943 0.7590 0.9863 0.9924 0.9926 0.7390 0.9721 0.9912
GRNNmax 0.9865 0.7621 0.9799 0.9829 0.9916 0.7419 0.9801 0.9901
GRNNattn 0.9966 0.7423 0.9835 0.9912 0.9945 0.7376 0.9757 0.9844

to retain the graph reconstructability. By contrast, our GRNN only requires O(log(|V |)) for the
embedding by carefully controlling the self-embedding and aggregation weights, which is much
more efficient, especially on a large graph. In addition, the number of training parameters of the
graph autoencoder is O(|V |log(|V |)), while our GRNN only requires O(log2(|V |)). In this paper,
we further explore the theoretical limitation by considering different types of features, i.e., identity
and contextual features with assortative and disassortative graphs.

C.2 POSITIONAL ENCODING

Positional encoding, i.e., encoding the global position of phones in audios (Park et al., 2021), pixels
in images (Dosovitskiy et al., 2020), and words in texts (Wang & Chen, 2020), plays a crucial role
in many prominent neural networks. For GNNs, encoding the position of nodes is very challenging
since there exists no canonical positioning of nodes in graphs. Therefore, nodes in a graph can be
assigned one-hot encoding in accordance with the node index (Chen et al., 2022), enabling GNNs to
derive more expressive power than the 1-WL test (Murphy et al., 2019). Sato et al. (Sato et al., 2021)
demonstrate that GNNs become more powerful by adding a random feature to each node, which
obtains almost optimal polynomial-time approximation algorithms for the minimum dominating
set and the maximum matching problem. However, these works mainly focus on analyzing the
expressive power of GNNs from a global view. Our theoretical results manifest that identity and
(nearly) orthogonal random features can effectively preserve topological information from the graph.

C.3 SKIP-GRAM EMBEDDING

The importance of reconstructability for skip-gram-based embedding is revealed by a recent
work (Chanpuriya et al., 2021), which investigates whether embedding methods learned by the
skip-gram objective can reconstruct the original graph. The authors subsequently employ the em-
bedding algorithm to solve several fundamental network mining tasks, including common edges,
degree sequences, triangle counts, and community structure. This is because the skip-gram-based
embedding schemes could be summarized in various forms of matrix factorization over the Pairwise
Mutual Information (PMI) Matrix (Qiu et al., 2018). Nevertheless, they do not consider the factor of
node features (e.g., attributes or identity encoding) and the graph topology (e.g., graph degree and
homophily). In addition, we theoretically analyze the dimensionality of embedding and reduce the
complexity from O(|V |) to O(log(|V |)), while retaining the reconstructability by properly designing
the GNN and initial features.
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