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A APPENDIX

A.1 GENERAL SYMBOLS

Revisit the meaning of symbols.
x input latent variables
⇠ multivariate Gaussian noises (injected to x) ⇠ Nn(0,⌃)

w input weight vector
b bias vector

u input of an activation function, equals w>(x+ ⇠)

�̃
2 variance of u, equals w>⌃w

{�1 , ... , �p} scaling factor set. e.g. {0.64, 1.13}
subscript i i-th unit of a layer

superscript (k) k-th layer of a network

For simplicity of the derivation, denote:
z , w

>
x+ b

⌧ , w
>
⇠

where z represents the zero-noise component (center) inside the activation function, and ⌧ , the
uncertainty component. Then,

u+ b = z + ⌧

The following results depend on the fact that Gaussian distribution is stable – a linear combination
of Gaussian random variables ⇠ Nn(0,⌃) is still a Gaussian random variable ⇠ N (0, w>⌃w).

A.2 DERIVATION OF QUASI-LINEAR GAIN AND BIAS FOR tanh (AND SIGMOIDAL) LAYERS

We use a linear combination of error functions with different scaling factors to approximate tanh
function. In our experiments, a set of two scaling parameters, {0.64, 1.13}, is enough to maintain
a favorable error. In practice, one can add more terms for even higher accuracy without losing
efficiency (depending on the computing resources), because the extra terms can be easily paralleled.

tanh(u+ b) ⇡ 1

p

pX

j=1

erf [�j(u+ b))]

Thus, the quasilinear gain N and bias M of a single unit in a tanh layer are

N = E

2

4 d

du

0

@1

p

pX

j=1

erf [�j(u+ b))]

1

A

3

5

M = E

2

41
p

pX

j=1

erf [�j(u+ b))]

3

5

(35)

To find quasilinear gain N

E[ d
du

erf(�(u+ b))]

=

Z 
d

du
erf(�(u+ b))

�
p(⌧)d⌧

=

Z 1

�1

2�p
⇡
exp

⇥
��

2(z + ⌧)2
⇤ 1p

2⇡�̃
exp


� ⌧

2

2�̃2

�
d⌧

=

p
2�

⇡�̃

Z 1

�1
exp


��

2(z + ⌧)2 � ⌧
2

2�̃2

�
d⌧
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complete the square

=

p
2�

⇡�̃

Z 1

�1
exp

2

64�

0

@
r

1

2�̃2
+ �2 ⌧ +

�
2
zq

1
2�̃2 + �2

1

A
2

+
�
4
z
2

1
2�̃2 + �2

� �
2
z
2

3

75 d⌧

use substitution ⌫ =
q

1
2�̃2 + �2 ⌧ + �2zq

1
2�̃2 +�2

then d⌫ =
q

1
2�̃2 + �2 d⌧

=

p
2�

⇡�̃

Z 1

�1

1q
1

2�̃2 + �2
exp


�⌫

2 +
�
4
z
2

1
2�̃2 + �2

� �
2
z
2

�
d⌫

=
�

p
2⇡�̃

q
1

2�̃2 + �2
exp


�
4
z
2

1
2�̃2 + �2

� �
2
z
2

� Z 1

�1

2p
⇡
exp(�⌫

2)d⌫

since
R1
�1

2p
⇡
exp(�⌫

2)d⌫ = 2 , simplify and get

=
2p
⇡

�p
2�2�̃2 + 1

exp


� �

2
z
2

2�2�̃2 + 1

�

=
2p
2⇡

✓
2�2

�̃
2 + 1

2�2

◆� 1
2

exp


�1

2

z
2

(2�2�̃2 + 1)/(2�2)

�

which can be rewritten with standard Gaussian pdf '(·)

=
2

�̂
'
⇣
z

�̂

⌘

where �̂
2 = 2�2�̃2+1

2�2 . Therefore,

N =
1

p

pX

j=1

E

d

du
erf [�j(u+ b)]

�
=

2

p

pX

j=1

1

�̂j
'

✓
z

�̂j

◆

where

�̂
2
j =

2�2
j �̃

2 + 1

2�2
j

To find the quasilinear bias M ,

E[erf(�(u+ b))]

=

Z
erf(�(u+ b))p(⌧)d⌧

=

Z
d

du

Z
erf(�(u+ b))p(⌧)d⌧

�
du

=

Z Z 
d

du
erf(�(u+ b))

�
p(⌧)d⌧du

=

Z
E

d

du
erf(�(u+ b))

�
du

since u = z + ⌧ � b , du = dz
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also d
duerf(�(u+ b)) = d

dzerf(�(u+ b)) , then

=

Z z

0

2

�̂
'
⇣
z

�̂

⌘
dz

= 2�
⇣
z

�̂

⌘
� 1 where �(·) is the standard Gaussian cdf

= erf

✓
zp
2�̂2

◆

Therefore,

M =
1

p

pX

j=1

E [erf(�j(u+ b))] =
1

p

pX

j=1

erf

0

@ zq
2�̂2

j

1

A

The derivation of SL model for the whole tanh layers is similar to its single unit counterpart (see
below). However, one should note when replacing weight vector w with weight matrix (of kth layer)
w

(k), the exp terms yield matrices, but we only need to calculate the diagonal entries. Lastly, the
SL model of layers with sigmoidal activations (e.g. logistic) can be obtained in a similar way.

N
(k) =

2

p

pX

j=1

1

�̂
(k)
j

�'

 
z
(k)

�̂
(k)
j

!

(36)

M
(k) =

1

p

pX

j=1

erf

0

@ z
(k)

q
2�̂(k)2

j

1

A (37)

where

�̂
(k)2

j =
2�2

j �̃
(k)2 + 1

2�2
j

and �̃
(k)2 = diag

⇣
w

(k)>⌃(k�1)
w

(k)
⌘

(38)

A.3 DERIVATION OF QUASI-LINEAR GAIN AND BIAS FOR softplus LAYERS

The derivation of quasi-linear gain and bias for a softplus layer is related to that for a sigmoid
layer (section 5.1), since the derivative of the softplus function is the sigmoid function, and the
latter can be approximated with a linear combination of Gaussian cdf. We have

softplus(u+ b) =
1

�
log(1 + e

�(u+b))

For simplicity, we choose � = 1 as default value. Then we use the following approximation

d

du
softplus(u+ b) =

1

1 + e�(u+b)
⇡ 1

p

pX

j=1

�

✓
�jp
2
(u+ b)

◆

Here �(·) is the standard normal cdf, which can be rewritten by error function

�

✓
�p
2
(u+ b)

◆
=

1

2

✓
1 + erf

✓
�(u+ b)

2

◆◆

There are two reasons that we use the error function. The first is to reuse the derivation of
E[erf(�(u + b))] in the previous section; the second is that calculating Gaussian cdf is compu-
tationally demanding, while the approximation algorithm of the error function is available Cody
(1969). We also convert our final answer to complementary error function erfc to avoid subtractive
cancellation that leads to inaccuracy in the tails. Now the quasilinear gain N becomes

N = E

d

du
softplus(u+ b)

�
⇡ 1

p

pX

j=1

�

✓
z

�̂j

◆
=

1

2p

pX

j=1

erfc

0

@� zq
2�̂2

j

1

A

14



Under review as a conference paper at ICLR 2024

where

�̂
2
j =

2
��j

2

�2
�̃
2 + 1

2
��j

2

�2 =
�
2
j �̃

2 + 2

�
2
j

Therefore,

M = E [softplus(u+ b)]

=

Z
softplus(u+ b) p(⌧) d⌧

=

Z
d

du

Z
softplus(u+ b)p(⌧)d⌧

�
du

=

Z Z 
d

du
softplus(u+ b)

�
p(⌧)d⌧du

=

Z
E

d
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�
du

=

Z z

�1

1

p
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�

✓
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◆
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=
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p
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j=1
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�

✓
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◆
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=
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p
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z �

✓
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◆
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✓
z
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=
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p
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2
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✓
z
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is the quasilinear bias, where '(·) is the standard Gaussian pdf. Rewrite for the full layer and get

N
(k) =

1

2p

pX

j=1

erfc

0

@� z
(k)

q
2�̂(k)2

j

1

A (39)

M
(k) = N

(k) � z
(k) +

1

p

pX

j=1

�̂
(k)
j �'

 
z
(k)

�̂
(k)
j

!

(40)

where

�̂
(k)2
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2
j �̃

(k)2 + 2
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and �̃
(k)2 = diag
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(k)>⌃(k�1)
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(k)
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A.4 DERIVATION OF QUASI-LINEAR GAIN AND BIAS FOR RELU LAYERS

First, consider a single i-th unit in a ReLU layer. Let zi = w
>
i x + bi, then the gain of the i

th unit,
Ni, is

Ni = E

d

du
ReLU(u)

�

=

Z 1

�zi

p(⌧i)d⌧i

= 1��(� zi

�̃i
)

=
1

2

"
1 + erf(

zip
2�̃2

i

)

#

where �̃
2
i = w

>
i ⌃wi.

The bias of the i
th unit, Mi, is

Mi = E[ReLU(u)]

=

Z 1

�zi

(zi + ⌧i) p(⌧i)d⌧i

= (zi)

Z 1

�zi

p(⌧i)d⌧i
| {z }

A

+

Z 1

�zi

⌧i p(⌧i)d⌧i
| {z }

B

A = Nizi

B = mean of the unnormalized truncated Gaussian N (⌧ | 0, w>
i ⌃wi,�zi,1)

= �̃i '

✓
� zi

�̃i

◆

Rewrite for the full layer and get

N
(k) =

1

2


1 + erf

✓
z
(k)

p
2�̃(k)2

◆�
(42)

M
(k) = N

(k) � z
(k) + �̃

(k) �'

✓
� z

(k)

�̃(k)

◆
(43)

where z
(k) = w

(k)>
M

(k�1) + b
(k), and

�̃
(k)2 = diag(w(k)>⌃(k�1)

w
(k)) (44)

The SL model of layers with any piece-wise linear activation function (e.g. leaky ReLU) can be
obtained in a similar way.

A.5 KALMAN SIMULATION DETAILS

The simulated 2D drone environment consisted of a 180⇥180 grid generated according to:

Bm⇥m = 12⇥2 ⌦B1 +G⌦B
3
2 (45)

in which B1 and B2 are matrices with normally distributed independent entries, 12⇥2 denotes the
2⇥2 box-smoothing filter and G denotes the Gaussian filter with standard-deviation 2-pixels. The
background (B) was then re-scaled to have a maximum absolute value of 3.

The target consisted of a cropped elliptical sinc-function:

T (x, y) = 1.5sinc

✓
1.5

s✓
x

16

◆2

+

✓
y

14

◆2◆
(46)
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with integers x 2 [�16, 16] and y 2 [�14, 14]. The function was then cropped to a (discretized)
ellipse according to the selection rule:

✓
x

16

◆2

+

✓
y

14

◆2

 1.25 (47)

We incorporated targets into the environment by rounding the target’s continuous-valued position
and placing the cropped-target image at that location in the environment (on-center).

Both the image generation and object-detection networks were trained using 250,000 exemplars
featuring the same target used in testing. The image-generation network was trained to reproduce
images in the same environment as testing, whereas the object-detection network was trained using
25,000 simulated environments with 10 images each to reflect a generic sensing network.

We used the image-generation network for static (single time-point) testing in the main text as the
combined image-generation and object-detection networks contain fan-out and fan-in architectures,
respectively. This test improves generality to other network architectures. However, in application,
it is more accurate and tractable to directly model the relationship between true states and network
outputs with a single network (i.e., how position and kinematics bias the detected target location), as
opposed to first simulating the predicted image (the image-generation network) and then passing it
to the object-detection network. Therefore, for testing a dynamic target, we trained a simple network
(”auxiliary network”) to directly predict the object-detection network’s output using the same inputs
(drone location, target location, and drone velocity). This network contained two fully-connected
tanh-layers (40 and 60 units) with fully-connected regression layers for input/output.

All networks were trained in MATLAB R2022B’s Deep Learning package to minimize L2 loss using
ADAM with default parameters (�1 = .9, �2 = .99) and rate = 2 ⇥ 10�4. Minibatches contained
1000 images and 5,000 additional images were held-out for cross-validation, hence each training
epoch contained 250-folds (minibatches). The number of training epochs was tuned based upon
visual inspection of cross-validation loss: 100 epochs (25,000 minibatches) for image-generation,
350 epochs (87,500 minibatches) for object-detection, and 500 epochs (125,000 minibatches) for
the auxilary network.

In the static (1-step) simulations in the main text kinematics were ignored as the 1-step prior-
distributions do not interact with method (i.e. xSL(0) = xJac(0)) implies (AxSL(0) = AxJac(0)).
Instead distributions were randomly generated according to:

q
P1|0 = (M0 +

I8

2
)
p
⌃ (48)

with M randomly generated for each exemplar (normal-iid) and scaling factor
p
⌃=.4 for tar-

get/drone velocity and 1 for target/drone position.
p
P denotes an arbitrary matrix root (P =p

P
p
P

T
).

In the dynamic simulation, we modified kinematics to be mean-reverting (ensuring that the
drone/target did not fly out of bounds). The full kinematics were:

z :=


zdrone

ztarg

�
:=

2

666666664

posdrone�x

posdrone�y

veldrone�x

veldrone�y

postarg�x

postarg�y

veltarg�x

veltarg�y

3

777777775

(49)

zdrone(t+ 1) =


(1� ↵D)I2 .25I2
��DI2 .9I2

�
+

m� k

2

2

64

↵D

↵D

�D

�D

3

75+ ⌘drone (50)

ztarg(t+ 1) =


(1� ↵T )I2 .25I2
��T I2 .9I2

�
+

m

2
+

2

64

↵T

↵T

�T

�T

3

75+ ⌘targ (51)
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with ↵D = .1,�D = .01, ↵T = .1,�T = .05, m = 240 denoting the (square) environment’s
width and k denoting the square field-of-view width for the drone’s camera. ⌘drone was Gaussian
distributed with var = 2 for position and .6 for velocity. ⌘targ was the sum of a Gaussian pro-
cess (var=.4 for position and 1 for velocity) and the 5-step moving-average of a Gaussian process
following the same distribution.

In addition to camera-images, the drone received simulated onboard sensor-estimates (i.e., GPS) of
its current position and velocity with noise variances of 1 and .5, respectively. These readings were
combined with the image measurements during Kalman filtering. Motion blur was simulated using
the MATLAB image-processing toolbox using polar-coordinates of drone velocity to parameterize
the angle and magnitude of the motion kernel.
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