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ABSTRACT

Randomized smoothing has emerged as a certified defence mechanism with proba-
bilistic guarantees that works at scale. However, current randomized smoothing
methods offer theoretical guarantees that are limited by their reliance on specific
noise distributions, and they struggle to handle complex adversarial attacks. In this
paper, we propose a novel certification method based on randomized smoothing
designed to handle complex adversarial attacks, including combinations of mul-
tiple attack types. We call this method Dynamic Smoothing (DSMOOTH). Our
key idea is to incorporate more general distributions for smoothing then isotopic
Gaussian noise, for which probabilistic guarantees can be derived in terms of the
Mahalanobis distance. These general distributions make the smoothed classifier
more robust against a wide range of threats, including localized adversarial attacks
and multi-attacks. We validate the performance of our method experimentally on
challenging threat models using CIFAR-10 and IMAGENET, and demonstrate its
superiority over state-of-the-art defenses in terms of certified accuracy. Our results
show that the proposed method significantly improves the robustness of machine
learning models against complex attacks, advancing their suitability for use in
safety-critical applications. Code: [removed for review]

1 INTRODUCTION

Machine Learning has seen considerable progress in recent years, especially with deep neural
networks (DNNs). However, these networks are vulnerable to adversarial examples (Szegedy et al.,
2013; Goodfellow et al., 2014; Zhao et al., 2023), posing a challenge for their use in safety-critical
areas (Kurakin et al., 2016; Shayegani et al., 2023). Adversarial attacks, such as DeepFool (Moosavi-
Dezfooli et al., 2016), AutoAttack (Croce & Hein, 2020), patch-based attacks (Brown et al., 2017b),
and attacks on LLMs (Zou et al., 2023) continue to evolve, outpacing existing defenses and creating
a persistent struggle between attackers and defenders (Carlini & Wagner, 2017a; Madry et al., 2017a).
Current defenses, e.g., denoising generative models (Gu & Rigazio, 2014; Ho et al., 2020), adversarial
training (Miller et al., 2020; Kireev et al., 2022), and defensive distillation (Papernot et al., 2016a;
Wang et al., 2021), have not fully succeeded in preventing stronger attacks. Hence, the problem of
building trustworthy ML systems suitable for critical applications remains an open question.

Certified robustness has emerged as an alternative approach, with randomized smoothing (Lecuyer
et al., 2019; Li et al., 2019; Cohen et al., 2019b; Anderson & Sojoudi, 2022; Scholten et al., 2023;
Anani et al., 2024) being a notable method. This technique, which provides probabilistic guarantees,
involves creating a smoothed classifier by applying Gaussian noise to the base classifier. This
method was shown by Lecuyer et al. (2019) and Li et al. (2019) to provide consistent classification
within a certified radius under ℓ2 norm considerations, although the guarantees were initially loose.
Cohen et al. (2019b) were the first to offer tight robustness guarantees for this method against ℓ2
norm-constrained adversarial attacks, sparking further studies in this area.

Randomized smoothing has become a widely recognized method for certified robustness, though it
has limitations. Cohen et al. (2019b) identified the need for further exploration of ℓp norms beyond
ℓ2. Recent works have been addressing robustness guarantees for randomized smoothing against
various types of adversaries, including ℓ1-bounded attacks (Teng et al., 2020), ℓ0-bounded attacks
(Levine & Feizi, 2020c; Lee et al., 2019), and Wasserstein attacks (Levine & Feizi, 2020a). However,
defending against complex, high-dimensional adversarial attacks remains an open challenge.
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Our Contribution.

• We provide a certification method based on randomized smoothing, which we refer to as
Dynamic SMOOTHhing (DSMOOTH, Sec. 4.1). DSMOOTH uses more complex smoothing
distributions than traditional randomized smoothing, making the smoothing process more
adaptable to localized and non-uniform adversarial attacks then previous methods. Our
method is also a suitable certified defense method against attacks based on multiple norms,
such as multi-attacks.

• We derive probabilistic guarantees based on the Mahalanobis distance (Sec. 4.2). Our
analysis, which is non-trivial, provides a framework to derive guarantees using push-forward
measures (Thm. 4.4), which can be of independent interest. Furthermore, we derive proba-
bilistic guarantees using the ℓ2 norm, recovering known guarantees for isotopic Gaussian
noise (Cor. 4.7).

• We provide extensive experiments on CIFAR-10 and IMAGENET, considering a multi-
attack that combines the Square Attack algorithm (Andriushchenko et al., 2020) and FGSM
(Goodfellow et al., 2015). We show that DSMOOTH achieves good certified accuracy,
significantly outperforming baselines (Sec. 5).

2 RELATED WORK

Since there is a large amount of scientific articles on this topic, we only discuss the contributions
relevant for this work. The interested reader can refer to, e.g., Kumari et al. (2023); Kwiatkowska
& Zhang (2023), for a more complete overview. Defenses against adversarial examples fall into
empirical and certified categories. Empirical defenses, e.g., adversarial training (Madry et al., 2017a;b;
Jin et al., 2023), aim to enhance robustness but lack guarantees of being unbreakable, as many have
been compromised by stronger attacks, e.g., (Carlini & Wagner, 2017b; Athalye et al., 2018; Tramèr
et al., 2020). Certified defenses and verification methods ensure consistent classifier output within a
small neighborhood of x, using exact methods, e.g., (Huang et al., 2017; Katz et al., 2017; Ehlers,
2017; Mao et al., 2023; 2024), or conservative methods, e.g., (Wong & Kolter, 2018; Raghunathan
et al., 2018; Dvijotham et al., 2018). Randomized smoothing has emerged as a probabilistic certified
defense mechanism that works at scale.

Although the literature on randomized smoothing largely focuses on simple threat models, such
as imperceptible adversarial perturbations of the input images (Szegedy et al., 2014; Goodfellow
et al., 2015; Papernot et al., 2016b; Carlini & Wagner, 2017c), more complex threat models have
been considered. Patch attacks, which place imperceptible modifications on images, can cause
misclassifications and compromise system security. Levine & Feizi (2020b) address this with (De-)
Randomized Smoothing for certifiable defense, leveraging the constraints of patch attacks over
general sparse attacks. Zhang et al. (2023) introduce DRSM (De-randomized smoothed MalConv),
adapting de-randomized smoothing for malware detection through executables (Raff et al., 2018).
Recently, randomized smoothing has been used against image transformations (Fischer et al., 2020).
Randomized smoothing has also been extended to discrete data (Bojchevski et al., 2020).

3 FRAMEWORK

3.1 PROBLEM DESCRIPTION

We are given a pre-trained classifier f . We do not make any specific assumption on the inner workings
of f . For instance, f can be a large convolutional neural network, e.g., ResNet (He et al., 2016),
MobileNet (Howard et al., 2017), or any other model suitable for perception tasks in autonomous
vehicles. We consider a threat model for the classifier f . This threat model generates adversarial
images x̂ by adding perturbations δ̂ to input images x, with the goal of fooling the classifier at
inference time. In this work, we consider general white-box adversarial attacks, i.e., attacks in which
the attacker may have full access to and knowledge of the target model’s architecture, parameters,
and training data. Formally, we consider the following class of adversarial attacks:
Definition 3.1. Consider a classifier f with a loss function L. For an input x with label y, a white-box
attack for f generates an adversarial example x̂ = x+ δ̂, such that

δ̂ = argmax
δ∈C(δ)

L(f(x+ δ), y). (1)
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Here, L is a loss function and C(δ) is a perturbation set, which is the collection of all possible
perturbations δ that can be applied to an input x. A white-box multi-attack is an adversarial strategy
that combines multiple white-box attacks as in equation 1 to generate a single adversarial example.

Adversarial attacks as in equation 1 encompass a wide variety of attacks, such as spatial perturbations
(Engstrom et al., 2019), Wasserstein- bounded perturbations (Hu et al., 2020; Wong et al., 2019),
perturbations of the image colors (Laidlaw & Feizi, 2019) or perceptual adversarial attacks (Laidlaw
et al., 2021; Wong & Kolter, 2021). Adversarial attacks on traffic sign detection by (Li et al., 2021)
and physical adversarial attacks (Brown et al., 2017a; Woitschek & Schneider, 2023) are also attacks
as in Def. 3.1.

Multi-attacks as in Def. 3.1 combine any of these methods, to exploit a broader range of model
vulnerabilities. Multi-attacks optimize perturbations under different norms, leading to more complex,
non-uniform perturbations. An example of a multi-attack, which is used for experimental comparison
in this work, is a combination of the Square Attack algorithm (Andriushchenko et al., 2020) with
FGSM (Goodfellow et al., 2015). This attack, which we denote as SQUARE + FGSM, first applies a
Square Attack to an input image, and then it applies a FGSM attack to the resulting sample.

The research question. We study the problem of providing a certified defense mechanism against
adversarial attacks as in Def. 3.1. This defense mechanism ought to be suitable to handle highly-
dimensional input, such as images in datasets for vision-based perception systems of robots and
autonomous driving systems.

3.2 RANDOMIZED SMOOTHING

Randomized smoothing is a technique for improving the robustness of models against adversarial
attacks (Lecuyer et al., 2019; Li et al., 2019; Cohen et al., 2019b). The main principle of randomized
smoothing is to transform a deterministic classifier into a probabilistic one by averaging its predictions
over many noisy versions of the input. This process effectively “smooths out” the decision boundary
of the classifier, making it less sensitive to input perturbations. Specifically, given a classifier f ,
randomized smoothing is a method for constructing a new classifier g as

g(x) := argmax
y

P (f(x+ ε) = y) with ε ∼ P (ε) .

Here, P (ε) is the smoothing distribution and it determines how noise is added to the input x. Typically,
the smoothing distribution is a Gaussian distribution of the form P (ε) = N (0, σ2I), with I the
identity matrix and σ a user-defined scalar, although other distributions have been considered (see,
e.g., (Teng et al., 2020; Levine & Feizi, 2020c; Lee et al., 2019)). Randomized smoothing provides
probabilistic robustness guarantees in terms of the certified radius. This radius specifies a region
around an input x within which the smoothed classifier’s prediction is guaranteed to be robust, with a
certain probability. The region specified by the certified radius is called a safety region. The choice of
the smoothing distribution significantly affects the robustness guarantees provided by randomized
smoothing. The guarantees obtained with standard Gaussian smoothing distributions, as above,
specify a safety region S using ℓp norms, e.g., S := {x̂ : ∥x̂− x∥p ≤ R} for some radius R. These
types of guarantees are suitable to certify robustness against imperceptible adversarial perturbations
on the input image, such as those generated by L-BFGS (Szegedy et al., 2014), FGS (Goodfellow
et al., 2015), DeepFool (Moosavi-Dezfooli et al., 2016), JSMA (Papernot et al., 2016b), or CW
(Carlini & Wagner, 2017c). However, due to their reliance on global noise perturbations, guarantees
based on isotopic Gaussian smoothing may be unsuitable for complex attacks that use structured and
localized adversarial perturbations.

4 METHODOLOGY

4.1 OVERVIEW

We extend the randomized smoothing framework by Cohen et al. (2019a) to more complex smoothing
distributions. In contrast to prior work, our framework uses anisotopic Gaussian noise as a smoothing
distribution, i.e., a Gaussian distribution in which the variances along different dimensions of the
space are not equal, which allows to handle both sparse and localized adversarial perturbations.
Importantly, in Sec. 4.2 we derive probabilistic guarantees for this method that generalize previous
known guarantees (Cohen et al., 2019a).
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To define our smoothing framework, consider general adversarial examples of the form x̂ = x+ δ̂

constructed with a general white-box (multi)attack as in Def. 3.1. We can view δ̂ as a random variable,
where the randomness is given by the choice of the corresponding natural example x. We define the
covariance matrix Σ such that its entries are

[Σ]i,j := COV[δ̂i, δ̂j ] = E[(δ̂i − E[(δ̂i])(δ̂j − E[(δ̂j ])], (2)

with δ̂i and δ̂j the i-th and j-th entries of the random variable δ̂. For an input x of dimension d, our
smoothed classifier is defined as follows

g(x) := argmax
y

P (f(x+ δ) = y) with ε ∼ N

(
0,

σ2

d
√

det(Σ)
Σ

)
1 (3)

We refer to this algorithm as Dynamic SMOOTHhing (DSMOOTH). This algorithm dynamically
adapts to adversarial attacks, since the matrix Σ embeds information on the adversarial perturbations
δ̂. In equation 3, σ is a user-defined parameter of the smoothed classifier. As in the original work by
(Cohen et al., 2019b), the parameter σ regulates the trade-off between robustness and accuracy. In fact
adding more noise (a higher σ) tends to increase the robustness of the model to adversarial attacks,
as the model’s predictions become more invariant to small perturbations in the input. However,
this can also degrade the model’s accuracy on clean, unperturbed inputs because the predictions
become more uncertain. In App. F we show examples of CIFAR-10 (Fig. 6) and IMAGENET (Fig. 7)
images corrupted with the smoothing distribution as in equation 3 for a SQUARE + FGSM attack
as described in Sec. 3.1. We remark that DSMOOTH as in equation 3 is essentially a generalization
of the framework by Cohen et al. (2019a). In fact, by setting Σ = I in equation 3, DSMOOTH is
equivalent to the randomized smoothing algorithm in equation 1 of Cohen et al. (2019a).

Practical implementation of the smoothing algorithm as in equation 3. In general, the matrix
Σ in equation 3 is unknown and it has to be learned from samples. We approximate Σ is to gather
sample perturbations δ̂ in simulation, and then compute the resulting sample covariance matrix as in
equation 2. However, the resulting smoothing algorithm as in equation 3 may be impractical when
dealing with large input, since the size of Σ grows with the input size.

To overcome this problem, we use Principal Component Analysis (PCA) (Abdi & Williams, 2010) to
provide a surrogate Σk of reduced size for the covariance matrix Σ, and sample ε as in equation 3
using Σk. To generate Σk, we use a rank-k approximation, where k < dim(Σ). This is done by
retaining only the top k eigenvectors corresponding to the largest k eigenvalues. The approximated
covariance matrix Σk can then be expressed as Σk = UkΛkU

T
k , where Uk is a matrix of size d× k

containing the top k eigenvectors, and Λk is a diagonal matrix of size k × k containing the top k
eigenvalues. In Sec. 5 we show empirically that different choices for k do not significantly affect the
performance of DSMOOTH.

Algorithms for the evaluation and certification of g as in equation 3 are given in App. A.

4.2 CERTIFICATION GUARANTEES

We derive certification guarantees for a smoothed classifier as in equation 3. In this section, we
provide guarantees based on the Mahalanobis distance, which can be seen as a generalization of
the ℓ2 norm. However, we derive guarantees for our method in terms of the ℓ2 norm in Sec. 4.3.
Formally, we consider the following distance in our analysis.
Definition 4.1 (Mahalanobis Distance). Consider adversarial examples of the form x̂ = x+ δ̂ as
defined in Sec. 3.1, and denote with Σ be the covariance matrix of the r.v. δ̂. Then, the Mahalanobis
distance of x̂ with respect to (w.r.t.) x is defined as

MAHL(x̂ | x) :=
√
(x̂− x)TΣ−1(x̂− x),

where Σ−1 is the inverse of Σ.

In contrast to the standard ℓp norms, the Mahalanobis distance in Def. 4.1 adjusts for the spread
and orientation of the adversarial perturbations δ. Since the eigenvalues of Σ are proportional to
the amount of variance captured by each principal component, then any safety boundary of the

1Throughout this work we assume that det(Σ) ̸= 0, i.e., we assume that Σ is positive-definite.
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form MAHL(x̂ | x) ≤ R is an ellipsoidal “stretched” in the direction of the worst-case adversarial
examples. In Sec. 5 we show experimentally that certified radii based on the Mahalanobis distance
are better suited for complex adversarial attacks than certification bounds based on ℓp norm. There is
a natural connection between the Mahalnobis and the ℓ2 norm, as discussed in Sec. 4.3.

A general framework for the push-forward measure. Before discussing these results, however,
we prove a general theoretical result, which is essential to provide guarantees for our proposed
certification method. This result, which could be of independent interest, ensures general certification
guarantees when the smoothing distribution is the push-forward distribution of an isotopic Gaussian
distribution. Recall that the push-forward measure is defined as follows.
Definition 4.2 (Push-forward measure). Given a measurable space (X,A) and a measurable function
p : X → Y mapping from X to Y , and a measure µ on X , the push-forward measure p♯µ on Y is
defined as (p♯µ)(B) = µ(p−1(B)) for any measurable set B ⊆ Y .

In other words, sampling from the push-forward measure p♯µ consists of first sampling from µ, and
then applying the function p to this sample. In the following theorem, we extend guarantees for
randomized smoothing to a generic sampling distribution of the form p♯N (0, σ2I). Throughout this
section, we denote with Φ−1 the inverse of the standard Gaussian CDF. The following theorem holds.

Theorem 4.3 (Randomized smoothing for the push-forward measure). Consider a classifier f , and let
p be a deterministic invertible function. Consider the mapping g(x) := argmaxy P (f(x+ δ) = y)

with δ ∼ p♯N (0, σ2I). For a class yA ∈ Y suppose that there exist two constants pA, pB ∈ [0, 1]
such that

P (f(x+ ε) = yA) ≥ pA ≥ pB ≥ max
yB ̸=yA

P (f(x+ ε) = yB) ,

with ε ∼ p♯N (0, σ2I). Then, it holds g(x+ δ) = yA for all δ such that∥∥p−1(δ)
∥∥
2
≤ σ

2

(
Φ−1(pA)− Φ−1(pB)

)
.

Thm. 4.3 provides a defensive method that ensures guarantees in terms of the ℓ2 norm with respect
to p−1(δ). Similarly to the original safety bounds for randomized smoothing proposed by Cohen
et al. (2019a), Thm. 4.3 does not require specific assumptions on the inner workings of f , nor the
knowledge of its Lipschitz constant. Note that Thm. 4.3 is very general, since smoothing distributions
such as p♯N (0, σ2I), for different choices of p, allow one to sample the noise from a broad class of
distributions. By choosing p wisely, we can sample from smoothing distributions that are appropriate
for white-box multi-attacks as in Def. 3.1. Suitable choices of p may depend on the specific
adversarial attacks considered. The proof of Thm. 4.4 provides an explicit choice of p, which is
suitable for our case. Note that it is unclear what the relationship between the quantity

∥∥p−1(δ)
∥∥
2

and any known metric on the sample space x is, for a generic p. However, we show in the remainder
of this section that it is possible to derive bounds for the Mahalanobis distance and the ℓ2 norm using
Thm. 4.3, for specific choices of p.

Probabilistic guarantees for the Mahalanobis distance. We first prove the following technical
result, which allows us to build a suitable function p to apply Thm. 4.3 to our case.
Theorem 4.4. Consider two random variables X ∼ N (x; 0, σ2I) and Y ∼ N (y;µ,Σ). Suppose
that Σ and I have the same dimensions. Furthermore, suppose that det(σ2I) = det(Σ). Then, there
exists a deterministic invertible function p such that:

1. Y = p♯X;

2.
√

(y − µ)TΣ−1(y − µ) = 1
σ

∥∥p−1(y)
∥∥
2

for all y in the support of Y .

Here, the function p is explicitly defined as p(x) := 1
σLx+ µ, where L be a lower-triangular matrix

that gives the Cholesky decomposition of Σ.

The proof of this theorem is deferred to App. C. By Thm. 4.4, we can apply Thm. 4.3 to the
smoothing algorithm as in equation 3, to derive guarantees in terms of the Mahalanobis distance. The
following lemma holds.
Lemma 4.5 (Probabilistic Guarantees for the Mahalanobis distance). Consider a classifier f , and let
g(x) be the corresponding smoothed classifier as in equation 3. For a class yA ∈ Y suppose that

5
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there exist two constants pA, pB ∈ [0, 1] such that
P (f(x+ ε) = yA) ≥ pA ≥ pB ≥ max

yB ̸=yA

P (f(x+ ε) = yB) ,

with ε ∼ N
(
0, σ2

d
√

det(Σ)
Σ

)
. Then, it holds g(x̂) = yA for all adversarial samples x̂ such that

MAHL(x̂ | x) ≤ σ

2 2d
√

det(Σ)

(
Φ−1(pA)− Φ−1(pB)

)
.

This lemma allows one to derive probabilistic guarantees for randomized smoothing, in terms of the
distance as in Def. 4.1. The proof of this result is deferred to App. C.

4.3 RELATIONSHIP WITH THE ℓ2 NORM

In this section, we derive probabilistic guarantees for DSMOOTH, based on the ℓ2 norm. There
is a straightforward connection between the Mahalanobis distance and the ℓ2 norm, as follows.
For a matrix Σ as in Def. 4.1, denote with W any matrix such that Σ = WWT . Then, it holds
Σ−1 = (W−1)TW−1. Hence,

MAHL(x̂ | x) =
√
(x̂− x)T (W−1)TW−1(x̂− x) =

∥∥W−1(x̂− x)
∥∥
2
. (4)

By equation 4, the Mahalanobis distance is the ℓ2 norm after a whitening transformation (Kessy
et al., 2018), i.e., a linear transformation that transforms a vector of random variables x̂ − x with
a known covariance matrix Σ into a set of new variables whose covariance is the identity matrix.
In general, the matrix W in equation 4 is not uniquely defined. However, the resulting ℓ2 norm∥∥W−1(x̂− x)

∥∥
2

is equivalent across all these transformations, although some forms of W may have
practical advantages over others (see, e.g., (Kessy et al., 2018)). We discuss common choices of W
in App. D. By combining equation 4 with Lemma 4.5, we derive probabilistic guarantees for the ℓ2
norm as follows.
Corollary 4.6 (Probabilistic guarantees for the ℓ2 norm). Consider a classifier f , and g(x) be the
corresponding smoothed classifier as in equation 3. For a class yA ∈ Y suppose that there exist two
constants pA, pB ∈ [0, 1] such that

P (f(x+ ε) = yA) ≥ pA ≥ pB ≥ max
yB ̸=yA

P (f(x+ ε) = yB) ,

with ε ∼ N
(
0, σ2

d
√

det(Σ)
Σ

)
. Then, it holds g(x̂) = yA for all adversarial samples x̂ such that∥∥W−1(x̂− x)

∥∥
2
≤ σ

2 2d
√

det(Σ)

(
Φ−1(pA)− Φ−1(pB)

)
,

where W is any matrix such that Σ = WWT .

We remark that, in general, the properties of W in Cor. 4.5 depend on the specific covariance matrix
Σ. However, if the perturbations ε are sampled from an isotopic Gaussian distribution as in Cohen
et al. (2019a), i.e., ε ∼ N (0, σ2I), then Cor. 4.5 gives the same approximation guarantees as in
Cohen et al. (2019a). In fact, consider a DSMOOTH algorithm with Σ = σ2I . For this algorithm, we
can choose W−1 = 1

σ I , and have that
d
√

det(Σ) = d
√

det(σ2I) = σ2 and
∥∥W−1(x̂− x)

∥∥
2
=

1

σ
∥x̂− x∥2 . (5)

By substituting equation 5 in Cor. 4.5 we derive the same approximation guarantees as in Theorem 1
by Cohen et al. (2019a), which we restate for convenience.
Corollary 4.7 (Probabilistic guarantees for isotopic Gaussian noise, equivalent to Theorem 1 by
Cohen et al. (2019a)). Consider a classifier f , and g(x) be the corresponding smoothed classifier
as in equation 3, with Σ = σ2I . For a class yA ∈ Y suppose that there exist two constants
pA, pB ∈ [0, 1] such that

P (f(x+ ε) = yA) ≥ pA ≥ pB ≥ max
yB ̸=yA

P (f(x+ ε) = yB) ,

with ε ∼ N
(
0, σ2I

)
. Then, it holds g(x̂) = yA for all adversarial samples x̂ such that

∥x̂− x∥2 ≤
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
.

We remark that the bounds of Cor. 4.7 are known to be tight for isotopic Gaussian noise (Cohen et al.,
2019a).
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Table 1: Base classifiers and execution time of DSMOOTH on CIFAR-10. In this table, Params. (in
millions) denotes the number of parameters, and Time (in seconds) denotes the average execution
time required for a model to certify a datapoint, using the DCERT algorithm as in App. A. The
execution time of DSMOOTH is similar to that of RANDSMOOTH and LSMOOTH on these base
classifiers (see Table 3-5 in App. E.1).

Model Params. (m) Time (s) Model Params. (m) Time (s)

resnet20 0.27 4.35± 0.08 mobilenetv2_x0_5 0.7 7.63± 0.33
resnet32 0.47 5.87± 0.24 mobilenetv2_x1_4 4.33 17.58± 0.54
resnet44 0.66 6.81± 0.09 shufflenetv2_x1_0 1.26 6.89± 0.09
resnet56 0.86 7.9± 0.05 shufflenetv2_x0_5 0.35 4.47± 0.1
vgg13_bn 9.94 7.43± 0.1 shufflenetv2_x2_0 5.37 13.73± 0.49
vgg16_bn 15.25 10.46± 0.21 repvgg_a0 7.84 18.74± 0.72
vgg19_bn 20.57 11.01± 0.09 repvgg_a1 12.82 26.28± 0.14
mobilenetv2_x1_0 2.24 12.2± 0.32 repvgg_a2 26.82 27.65± 0.26

Table 2: Base classifiers and execution time of DSMOOTH on IMAGENET. In this table, Params. (in
millions) denotes the number of parameters, and Time (in seconds) denotes the average execution
time required for a model to certify a datapoint, using the DCERT algorithm as in App. A. The
execution time of DSMOOTH is similar to that of RANDSMOOTH and LSMOOTH on these base
classifiers (see Table 4-6 in App. E.1).

Model Params. (m) Time (s) Model Params. (m) Time (s)

resnet50 25.56 26.73± 0.21 wide_resnet50_2 68.88 40.24± 0.78
resnet152 60.19 107.52± 8.04 wide_resnet101_2 126.89 86.91± 11.97

5 EXPERIMENTS

The overall aim of the experiments is to demonstrate that DSMOOTH achieves good certified accuracy
compared to baselines on complex adversarial attacks as in Def. 3.1. The certified accuracy is defined
as the fraction of the test set, which a smoothed algorithm classifies correctly with a prediction that
is certifiably robust within a ball of a given radius. Since DSMOOTH is a randomized smoothing
classifier, it is not possible to compute this quantity exactly. Instead, we report on the approximate
certified test set accuracy following previous related work, e.g., Cohen et al. (2019a). In addition
to evaluating the certified accuracy, we also report on the execution time of DSMOOTH, and its
sensitivity to different choices of the parameter k for the k-rank approximation as in Sec. 4.1.

In all the experiments we consider the SQUARE + FGSM multi-attack as detailed in Sec. 4.1,
obtained as a combination of the Square Attack algorithm (Andriushchenko et al., 2020) and FGSM
(Goodfellow et al., 2015). This attack applies a Square Attack to an input image (using ℓ∞ norm), and
then it applies a FGSM attack to the resulting adversarial sample (using ℓ2 norm). In this experiment
we use Square Attack with maximum perturbation 0.5 and 5000 queries. The FGSM attack uses
maximum perturbation parameter 0.5. In App. F we show examples of CIFAR-10 (Fig. 6) and
IMAGENET (Fig. 7) images corrupted with the smoothing distribution as in equation 3 for this type
of attack.

5.1 OVERALL SET-UP

Base classifiers training. We consider various pre-trained classifiers, that achieve high accuracy on
CIFAR-10 and IMAGENET respectively (see Table 1-2). We then fine-tune these classifiers to improve
the robustness to adversarial attacks to SQUARE + FGSM as detailed in Sec. 3.1. Pre-trained models
on CIFAR-10 (Table 1) are downloaded from https://github.com/chenyaofo/pytorch-cifar-models, and
pre-trained models on IMAGENET (Table 2) are downloaded from https://github.com/pytorch/pytorch.
Fine-tuning consists of adjusting these models to a dataset that contains both CIFAR-10 training
images and adversarial examples. The ratio of natural and adversarial examples is 50 : 50. In
this work, we opt for a simple training procedure, to highlight the benefits of our method against
baselines. However, we believe that the certified accuracy of our method could be further improved
by considering more complex adversarial training procedures, such as Wong & Kolter (2021).
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Baselines. We compared our smoothing algorithm in equation 3 to two baseline approaches
for certified robustness: the standard randomized smoothing algorithm by (Cohen et al., 2019a)
(RANDSMOOTH), and the approach by Teng et al. (2020) (LSMOOTH). The randomized smoothing
algorithm by Cohen et al. (2019a) provides certification guarantees in terms of the ℓ2 norm, whereas
the algorithm by Teng et al. (2020) provides guarantees in terms of the ℓ1 norm. We do not consider
randomized smoothing techniques with certification guarantees in terms of ℓp norms with p > 2,
since impossibility results are known for increasing p (Yang et al., 2020; Blum et al., 2020; Kumar
et al., 2020). Specifically, we do not consider any certification mechanism for the ℓ∞ norm, since the
isotopic Gaussian distribution as in RANDSMOOTH is optimal for defending against ℓ∞ attacks, if
we don’t use a more powerful technique than Neyman-Pearson (Yang et al., 2020).

System. The system used features multiple Intel® Xeon® Gold 6252 CPUs, each with a base clock
speed of 2.10 GHz, operating at various frequencies between 2011 MHz and 2800 MHz. The system
also includes six NVIDIA GPUs for more intensive graphics and computational workloads. These
are two NVIDIA GPUs with a 64-bit width and clock speed of 33 MHz, and four NVIDIA GPUs of
the GV102 model with a 64-bit width, operating at a clock speed of 33 MHz.

5.2 RESULTS ON CIFAR-10
Execution time. We test the performance of DSMOOTH. To this end, we run the DCERT algorithm,
as detailed in App. A, on various base models. Parameters for DCERT are α = 0.001, n0 = 100
Monte Carlo samples for selection and n = 100000 samples for estimation. With this parameters
choice, there is at most 0.001 probability that DCERT returns a radius that is not robust (see App. A).
For each base classifier, we test our algorithm on 500 images from CIFAR-10 and we report on the
average execution time (in seconds) to certify a single image. The results are reported in Table 1.
Overall we observe that DSMOOTH is scalable to all models, although for models with several million
parameters, such as RepVGG_a2, the performance decreases. We remark that the performance of our
algorithm is similar to the performance of previous algorithms, e.g., the algorithms by Cohen et al.
(2019a); Teng et al. (2020). We refer the reader to Table 3-5 in App. E.1 for the execution time of
previous algorithms.

Comparison against baselines. We run the DCERT algorithm (App. A) against baselines with
parameters α = 0.001, n0 = 100 samples for selection and n = 100000 samples for estimation. For
each base classifier in Table 1, we test DCERT and baselines on 500 images from CIFAR-10. The
results are displayed in Fig. 1, where we observe that in all cases our algorithm performs significantly
better than the baselines. These results demonstrate that DSMOOTH is suitable to handle complex
adversarial attacks as in Def. 3.1, whereas RANDSMOOTH and LSMOOTH are unsuitable to that end.
In fact, in most cases the certified accuracy of RANDSMOOTH and LSMOOTH is approximately 0.1.
Since CIFAR-10 has only 10 classes, these results suggest that RANDSMOOTH and LSMOOTH do
not perform significantly better than uniform random sampling.

Additional experiments. In App. E.2 we provide additional experiments on CIFAR-10 to determine
the effect of different choices of α and number of samples for selection n on the performance of
DCERT.

5.3 RESULTS ON IMAGENET

Execution time. We evaluate the effectiveness of our smoothing algorithm as described in equa-
tion 3. To achieve this, we apply the DCERT algorithm, as outlined in App. A, across different base
models. For DCERT, we use parameters α = 0.001, n0 = 100 Monte Carlo samples for selection,
and n = 1000 samples for estimation. In this scenario, we approximate the matrix Σ from equation 2
using a PCA algorithm, as explained in Sec. 4.1, with a rank-k approximation where k = 1000. Each
base classifier is tested on 500 images from IMAGENET, and we measure the average execution
time (in seconds) required to certify a single image. The results are summarized in Table 2. Overall,
DSMOOTH demonstrates scalability to very large models, and its performance is comparable to that
of previous algorithms (see Table 3-5 in App. E.1).

Comparison against baselines. Once again, we evaluated our smoothing algorithm from equation 3
against baselines. We apply the DCERT algorithm (see App. A) with parameters α = 0.001, n0 = 100
samples for selection, and n = 1000 samples for estimation. Due to the large size of Σ, we use a
rank-k approximation Σk with k = 1000. For each base classifier listed in Table 2, we evaluate
DCERT and the baseline methods on 500 images from CIFAR-10. The results are presented in Fig. 2,
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(a) resnet20 (b) resnet32 (c) resnet44 (d) resnet56

(e) vgg13_bn (f) vgg16_bn (g) vgg19_bn (h) mobilenetv2_x1_0

(i) mobilenetv2_x0_5 (j) mobilenetv2_x1_4 (k) shufflenetv2_x1_0 (l) shufflenetv2_x0_5

(m) shufflenetv2_x2_0 (n) repvgg_a0 (o) repvgg_a1 (p) repvgg_a2

Figure 1: Approximate certified accuracy of DSMOOTH (MAHL in the legend), RANDSMOOTH (ℓ2
in the legend) and LSMOOTH (ℓ1 in the legend) on CIFAR-10 for various base models as in Table 1.
DSMOOTH is significantly better than baselines.

showing that our algorithm consistently outperforms the baselines. As with the CIFAR-10 results, this
demonstrates that DSMOOTH is effective against complex adversarial attacks as defined in Def. 3.1,
while RANDSMOOTH and LSMOOTH are inadequate for this purpose.

Ablation study on the rank-k approximation of Σ. We conclude with a set of experiments to
determine if our results are sensitive to the rank k of the PCA approximation of the covariance matrix
Σ. To this end, we run the DCERT algorithm with the smoothing distribution as in equation 3, for
k = 10, 100, 1000, 10000. Each run uses the parameters σ = 0.5, α = 0.001, n0 = 100 samples
for selection and n = 1000 samples for estimation. The results are displayed in Fig. 3. The results
suggest that DSMOOTH is not very sensitive to different choices of k.
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(a) resnet50 (b) resnet152 (c) wide_resnet50_2 (d) wide_resnet101_2

Figure 2: Approximate certified accuracy of DSMOOTH (MAHL in the legend), RANDSMOOTH (ℓ2
in the legend) and LSMOOTH (ℓ1 in the legend) on IMAGENET for various base models as in Table 2.
We observe that DSMOOTH comes out on top.

(a) resnet50 (b) resnet152 (c) wide_resnet50_2 (d) wide_resnet101_2

Figure 3: Approximate certified accuracy of DSMOOTH for different choices of k on IMAGENET, for
various base models as in Table 2. We observe that the parameter k does not significantly affect the
performance of DSMOOTH.

6 DISCUSSION

In this paper, we introduced a novel certification method based on randomized smoothing (see
equation 3) to enhance the robustness of machine learning models against complex adversarial attacks,
including combinations of multiple attack types (see Sec. 4.1). Our approach generalizes the existing
framework of randomized smoothing by incorporating more flexible noise distributions, allowing for
robustness guarantees across a wider range of adversarial threats, such as SQUARE+FGSM (see Sec.
4.1). Through extensive experiments on CIFAR-10 (see Sec. 5.2) and IMAGENET (see Sec. 5.3), we
demonstrated that our method consistently outperforms state-of-the-art defenses in terms of certified
accuracy (see Fig. 1-2) .

However, much like previous work (see, e.g., Cohen et al. (2019a); Teng et al. (2020)), our proposed
method still faces several limitations. The effectiveness of DSMOOTH is constrained by its reliance on
Monte Carlo sampling, which can be computationally expensive on very large models. Additionally,
while our approach extends robustness beyond the standard ℓ2 norm, it may not yet fully capture the
complexities of all possible adversarial threats.

Future work could address these limitations by developing more efficient sampling techniques, or by
leveraging neural architecture search to identify base classifiers that are inherently more robust to ad-
versarial perturbations. Furthermore, exploring alternative noise distributions and adaptive smoothing
strategies could further enhance robustness against a broader array of adversarial threats.
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Algorithm 1 Pseudocode for Certification and Prediction

//evaluate g at x
function DPRED (f,Σ, σ, x, n, α) :

for i ∈ [n] do ĉi ← f(x+ ε), with ε ∼ N
(
0, σ2

d
√

det(Σ)
Σ

)
;

ĉA, ĉB ← top two indices in {ĉ1, . . . , ĉn};
nA, nB ← frequency of ĉA, ĉB in {ĉ1, . . . , ĉn};
if BINOMPVALUE(nA, nA + nB , 0.5) ≤ α then return ĉA;
else return ABSTAIN;

//certify the robustness of g around x
function DCERT (f, pθ, σ, x, n0, n, α) :

for i ∈ [n0] do ĉ0i ← f(x+ ε), with ε ∼ N
(
0, σ2

d
√

det(Σ)
Σ

)
;

for i ∈ [n] do ĉi ← f(x+ ε), with ε ∼ N
(
0, σ2

d
√

det(Σ)
Σ

)
;

ĉ0A ← top index in {ĉ01, . . . , ĉ0n};
nA ← frequency of ĉ0A in {ĉ1, . . . , ĉn};
pA ← LOWERCONFBOUND(nA, n, 1− α);
if pA > 0.5 return prediction ĉ0A and radius σΦ−1(pA);
else return ABSTAIN;

A PRACTICAL ALGORITHMS

Following previous work (Cohen et al., 2019a), we present practical Monte Carlo algorithms for
evaluating the smoothed classifier g(x) and certifying the robustness of g around x. These algorithms
are called DPRED and DCERT respectively. Pseudocode for these procedures is presented in Alg.
1.

DPRED. To evaluate the smoothed classifier’s prediction g(x), one must identify the class cA that
has the highest weight in the categorical distribution f(p(x, e)) with e ∼ N (0, σ2I). To estimate
cA we propose DPRED, which follows the standard approach outlined by (Cohen et al., 2019a).
Pseudocode for this algorithm is presented in Alg. 1, where the function BINOMPVALUE(nA, nA +
nB , 0.5) returns the p-value of the two-sided hypothesis test that nA ∼ BINOMIAL(nA + nB , p).
Intuitively, the function DPRED involves drawing n samples from f ◦ p(x, e). The class cA that
appears most frequently is noted. If cA significantly outnumbers other classes, DPRED returns cA;
otherwise, it abstains from making a prediction. Following Cohen et al. (2019a), the abstention
threshold is calibrated using the hypothesis test from Hung & Fithian (2019) to ensure that the
probability of an incorrect prediction is limited to α, thus guaranteeing a controlled error rate. In fact,
from Proposition 1 by Cohen et al. (2019a) it follows that the probability that DPRED returns a class
other than g(x) is at most α. The following lemma holds.
Lemma A.1 (Following Proposition 1 by Cohen et al. (2019a)). With probability at least 1 − α,
DPRED either abstain or it returns g(x).

For a proof of this result we refer the reader to Appendix C in Cohen et al. (2019a).

DCERT. We provide an algorithm for certifying the robustness of g around an input x, which we
refer to as DCERT. Again, this algorithm follows the standard certification procedure for randomized
smoothing by Cohen et al. (2019a). Pseudocode for DCERT is presented in Alg. 1, where the function
LOWERCONFBOUND(nA, n, 1 − α) returns a one-sided 1 − α lower confidence interval for the
Binomial parameter p given a sample k ∼ BINOMIAL(n, p). Intuitively, DCERT uses a small number
of samples n0 from f(p(x, e)) to identify cA. Then, it uses a large number of samples n to estimate
pA. Finally, DCERT sets pB = 1− pA. The following lemma. Following Proposition 2 by Cohen
et al. (2019a), we have that with probability at least 1− α over the randomness in DCERT, if DCERT
returns a class cA and a radius R (i.e. does not abstain), then we have the robustness guarantee
g(x̂) = cA whenever MAHL(x̂ | x) ≤ R. Formally, the following lemma holds.
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Lemma A.2 (Following Proposition 2 by Cohen et al. (2019a)). With probability at least 1 − α,
if DCERT does not abstain, then g predicts cA within radius R around x, i.e., g(x̂) = cA for all
adversarial examples x̂ such that MAHL(x̂ | x) ≤ R.

For a proof of this result we refer the reader to Appendix C in Cohen et al. (2019a).

B PROOF OF THEOREM 4.3
B.1 PRELIMIARY RESULTS

In order to prove this theorem, we first consider the following auxiliary results.
Lemma B.1 (Neyman-Pearson, following Lemma 3 by Cohen et al. (2019a)). Let X and Y be
random variables in Rd with the same support. Let l : Rd → {0, 1} be any random or deterministic
function. Then, it holds:

• If S =
{
z ∈ Rd : P (X = z) ≤ tP (Y = z)

}
for some t ≥ 0 and P (h(X) = 1) ≥

P (X ∈ S), then P (h(Y ) = 1) ≥ P (X ∈ S);

• If S =
{
z ∈ Rd : P (Y = z) ≥ tP (X = z)

}
for some t ≥ 0 and P (h(X) = 1) ≤

P (X ∈ S), then P (h(Y ) = 1) ≤ P (X ∈ S).

We also consider the following auxiliary lemma.
Lemma B.2 (Neyman-Pearson for the Push-Forward Measure). Consider an invertible measurable
mapping p : Ω ⊆ Rk → Rd and define the random variables

X̂0 := p(e) and E0 := e, with e ∼ N (e; 0, σ2I),

X̂δ := p(e) and Eδ := e, with e ∼ N (e; δ, σ2I).

Let ℓ : Rd → {0, 1} be any deterministic or random function. The following statements hold.

• If S := {z ∈ Rd : δT p−1(z) ≤ β} for a constant β, and P(ℓ(X̂0) = 1) ≥ P(X̂0 ∈ S), then
P(ℓ(X̂δ) = 1) ≥ P(X̂δ ∈ S).

• If S := {z ∈ Rd : δT p−1(z) ≥ β} for a constant β, and P(ℓ(X̂0) = 1) ≤ P(X̂0 ∈ S), then
P(ℓ(X̂δ) = 1) ≤ P(X̂δ ∈ S).

Proof. To simplify the notation, we denote with p−1
i (z) the i-th component of the inverse map

p−1(z). We further define

µ0(e) := N (e; 0, σ2I) and µδ(e) := N (e; δ, σ2I).

We further denote with p♯µ0(z) := µ0(p
−1(z)) and p♯µδ(z) := µδ(p

−1(z)) the corresponding
push-forward measures. By Lemma B.1 it suffices to show that for any β, there exists a constant
t > 0 for which {

z ∈ Rd : δT p−1(z) ≤ β
}
=

{
z ∈ Rd :

p♯µδ(z)

p♯µ0(z)
≤ t

}
(6)

and {
z ∈ Rd : δT p−1(z) ≥ β

}
=

{
z ∈ Rd :

p♯µδ(z)

p♯µ0(z)
≥ t

}
. (7)

To this end, we compute the likelihood ratio for the ratio of the chosen push-forward measures as

p♯µδ(z)

p♯µ0(z)
=

exp
{
− 1

2σ2

∑d
i=1

(
p−1
i (z)− δi

)2}
exp

{
− 1

2σ2

∑d
i=1

(
p−1
i (z)

)2} (8)

= exp

{
1

2σ2

d∑
i=1

(
δip

−1
i (z)− δ2i

)}
(9)

= exp
{
aδT p−1(z)− b

}
, exp

{
1

2σ2

d∑
i=1

}
(10)
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where Eq. equation 8 follows from the definition of µ0 and µδ , Eq. equation 9 follows from standard
calculations, and Eq. equation 10 follows by choosing a := 1/σ2 and b :=

∑d
i=1 δ

2
i /σ

2. Therefore,
for any constant β, we may take t = exp{aβ + b}, noticing that

δT p−1(z) ≤ β ⇔ exp
{
αδT p−1(z)− β

}
≤ t,

δT p−1(z) ≥ β ⇔ exp
{
αδT p−1(z)− β

}
≥ t.

Then, Eq. equation 6 and Eq. equation 7 hold, and the claim follows.

B.2 PROOF OF THE MAIN RESULT

The proof of Theorem 4.3 relies on a few additional simple lemmas, which we present before giving
the main proof.
Lemma B.3. Define the random variables

X̂0 := pθ(x, e) and E0 := e, with e ∼ N (e; 0, σ2I),

Z := e, with e ∼ N (e; 0, I),

and consider the half spaces

S≤ :=
{
δT p−1

x (x̂) ≤ σ∥δ∥Φ−1(pA)
}
,

S≥ :=
{
δT p−1

x (x̂) ≥ σ∥δ∥Φ−1(1− pB)
}
.

Then, it holds P(X̂0 ∈ S≤) = pA and P(X̂0 ∈ S≥) = pB .

Proof. To show the first part of the claim, note that it holds

P(X̂0 ∈ S≤) = P(δT p−1
x (X̂0) ≤ σ∥δ∥Φ−1(pA))

= P(δTE0 ≤ σ∥δ∥Φ−1(pA))

= P(σ∥δ∥Z ≤ σ∥δ∥Φ−1(pA))

= Φ(Φ−1(pA))

= pA

We prove the second part of the claim in a similar fashion. It holds

P(X̂0 ∈ S≥) = P(δT p−1
x (X̂0) ≥ σ∥δ∥Φ−1(pB))

= P(δTE0 ≥ σ∥δ∥Φ−1(pB))

= P(σ∥δ∥Z ≥ σ∥δ∥Φ−1(pB))

= Φ(Φ−1(pB))

= pB

Lemma B.4. Define the random variables

X̂0 := pθ(x, e) and E0 := e, with e ∼ N (e; 0, σ2I),

Z := e, with e ∼ N (e; 0, I),

and consider the half spaces

S≤ :=
{
δT p−1

x (x̂) ≤ σ∥δ∥Φ−1(pA)
}
,

S≥ :=
{
δT p−1

x (x̂) ≥ σ∥δ∥Φ−1(1− pB)
}
.

Then, it holds P(X̂δ ∈ S≤) = Φ(Φ−1(pA)− ∥δ∥/σ) and P(X̂δ ∈ S≤) = Φ(Φ−1(pB)− ∥δ∥/σ).
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Proof. To show the first part of the claim, note that it holds

P(X̂δ ∈ S≤) = P(δT p−1
x (X̂δ) ≤ σ∥δ∥Φ−1(pA))

= P(δTEδ ≤ σ∥δ∥Φ−1(pA))

= P(σδTZ + ∥δ∥2 ≤ σ∥δ∥Φ−1(pA))

= P(Z ≤ Φ−1(pA)− ∥δ∥)/σ)
= Φ(Z ≤ Φ−1(pA)− ∥δ∥/σ)

We prove the second part of the claim in a similar fashion. It holds

P(X̂δ ∈ S≥) = P(δT p−1
x (X̂δ) ≥ σ∥δ∥Φ−1(1− pB))

= P(δTEδ ≥ σ∥δ∥Φ−1(1− pB))

= P(σδTZ + ∥δ∥2 ≤ σ∥δ∥Φ−1(1− pB))

= P(Z ≤ Φ−1(pB)− ∥δ∥/σ)
= Φ(Z ≤ Φ−1(pB)− ∥δ∥/σ)

Lemma B.5. Define the random variables

X̂0 := pθ(x, e) and E0 := e, with e ∼ N (e; 0, σ2I),

X̂δ := pθ(x, e) and Eδ := e, with e ∼ N (e; δ, σ2I),

Z := e, with e ∼ N (e; 0, I),

and consider the half spaces

S≤ :=
{
δT p−1

x (x̂) ≤ σ∥δ∥Φ−1(pA)
}
,

S≥ :=
{
δT p−1

x (x̂) ≥ σ∥δ∥Φ−1(1− pB)
}
.

Then, it holds P
(
X̂δ ∈ S≤

)
≥ P

(
X̂δ ∈ S≥

)
if and only if ∥δ∥ ≤ R.

Proof. The proof of this claim is an application of Lemma B.4. In fact, algebra shows that the claim
holds if and only if ∥δ∥ ≤ σ

2 (Φ
−1(pA)− Φ−1(pB)).

We now have all the necessary tools to prove Thm. 4.3.

Proof of Thm. 4.3. Fix a constant R > 0, and suppose that it holds

(g ◦ pθ)(x, e) = yA for all x and ∥e∥2 < R. (11)

Then, the claim holds. In fact, if the reconstruction loss of the decoder pθ(x, e) is zero, it hold
x̂ = µϕ(x̂, x) from which it follows that g(x̂) = (g ◦ pθ)(µϕ(x̂, x)). Hence, from Eq. equation 11
it follows that g(x̂) = yA for all x̂ such that ∥µϕ(x̂, x)∥ ≤ R. The claim follows using Jensen’s
inequality.

Hence, in order to prove the claim, we must show that Eq. equation 11 holds. To this end, denote
with pθ(x, e) the deterministic decoder. Define the random variables

X̂0 := pθ(x, e) and E0 := e, with e ∼ N (e; 0, σ2I),

X̂δ := pθ(x, e) and Eδ := e, with e ∼ N (e; δ, σ2I).

Note that in order to show that Eq. equation 11 holds, we need to show that

P ((g ◦ pθ)(x, e+ δ) = yA) ≥ P(g(X̂δ) = yA)

> P(g(X̂0) = yA) = P ((g ◦ pθ)(x, e+ δ) = yB) , (12)

for each class yB ̸= yA, and for each δ such that ∥δ∥ ≤ R. Without loss of generality, fix a class
yB ̸= yA.
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For simplicity, for a fixed x we define p−1
x (x̂) := e with e such that pθ(x, e) = x̂. Define the half

spaces

S≤ :=
{
δT p−1

x (x̂) ≤ σ∥δ∥Φ−1(pA)
}
,

S≥ :=
{
δT p−1

x (x̂) ≥ σ∥δ∥Φ−1(1− pB)
}
.

From Lemma B.3 it holds P(X̂0 ∈ S≤) = pA, from which it follows that P(X̂0 ∈ S≤) = pA ≤
pA = P(g(X̂0) = yA). By combining this inequality with Lemma B.2 it holds

P(X̂0 ∈ S≤) ≤ P(g(X̂0) = yA)⇒ P(X̂δ ∈ S≤) ≤ P(g(X̂δ) = yA) (13)

Similarly, from Lemma B.3 it holds P(X̂0 ∈ S≥) = pB , from which it follows that P(X̂0 ∈ S≥) =

pB ≥ pB = P(g(X̂0) = yB). Again, by combining this inequality with Lemma B.2 it holds

P(X̂0 ∈ S≥) ≥ P(g(X̂0) = yA)⇒ P(X̂δ ∈ S≥) ≥ P(g(X̂δ) = yA). (14)

By Lemma B.5, since ∥δ∥ ≤ R it holds P(X̂δ ∈ S≤) ≥ P(X̂δ ∈ S≥). Then, it holds

P(g(X̂δ) = yA) ≥ P(X̂δ ∈ S≤) ≥ P(X̂δ ∈ S≥) ≥ P(g(X̂δ) = yA),

where the first inequality follows from Eq. equation 13, the second one follows from Lemma B.5,
and the last inequality follows from Eq. equation 14. Hence, Eq. equation 12 follows and so does the
claim.

C PROOF OF THEOREM 4.4 AND LEMMA 4.5
Proof of Theorem 4.4. In order to prove the theorem, we give an explicit construction of the function
p. Let L be a lower-triangular matrix that gives the Cholesky decomposition of Σ, i.e., Σ = LLT ,
where LT is the transpose of L. Then, we define our function p as

p(x) :=
1

σ
Lx+ µ.

Note that the function p is deterministic and invertible, since the matrix L is positive-definite by
definition of the Cholesky decomposition. Its inverse is given by the formula p−1(y) = σL−1(y−µ).
With this function, we can show that claims 1-2 hold.

(Proof of claim 1) The PDF of a multivariate Gaussian distribution N (x; 0, σ2I) is given by:

PX(x) =
1√

(2π)d det(σ2I)
exp

(
− 1

2σ2
∥x∥22

)
.

Similarly, the PDF of N (y;µ,Σ) is:

PY (y) =
1√

(2π)d det(Σ)
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
.

In order to prove the claim, we want to express PY (y) in terms of PX(p−1(y)). To this end, by
substituting p−1(y) into PX(x) we get

PX(p−1(y)) =
1√

(2π)d det(σ2I)
exp

(
− 1

2σ2

∥∥p−1(y)
∥∥2
2

)
=

1√
(2π)d det(σ2I)

exp

(
− 1

2σ2

∥∥σL−1(y − µ)
∥∥2
2

)
=

1√
(2π)d det(σ2I)

exp

(
− 1

2σ2

(
σL−1(y − µ)

)T (
σL−1(y − µ)

))
=

1√
(2π)d det(σ2I)

exp

(
−1

2
(y − µ)T (L−1)TL−1(y − µ)

)
=

1√
(2π)d det(σ2I)

exp

(
−1

2
(y − µ)T (LTL)−1(y − µ)

)
=

1√
(2π)d det(Σ)

exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
= PY (y),
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where we have used that det(σ2I) = det(Σ). Hence, claim 1 holds.

(Proof of claim 2) This claim follows directly from claim 1. In fact, since PX(p−1(y)) = PY (y) and
det(σ2I) = det(Σ), we have that

− 1

2σ2

∥∥p−1(y)
∥∥2
2
= −1

2
(y − µ)TΣ−1(y − µ).

The claim follows by standard calculations.

Proof. Proof of Lemma 4.5 First, note that it holds:

det

(
σ2

d
√

det(Σ)
Σ

)
=

(σ2)d

det(Σ)
det (Σ) = det

(
σ2I
)
.

Hence, by Thm. 4.4, there exists a deterministic invertible function p such that

N

(
0,

σ2

d
√

det(Σ)
Σ

)
= p♯N

(
0, σ2I

)
Hence, the claim follows by applying Thm. 4.3, and noting that it holds√

(x̂− x)TΣ−1(x̂− x) =
1

2d
√

det(Σ)

∥∥p−1(y)
∥∥
2
.

D WHITENING TRANSFORMATION

Whitening transformation is a linear transformation applied to a dataset to make the transformed
variables uncorrelated and to standardize their variances (Kessy et al., 2018). Given a data matrix
X ∈ Rn×d, where n is the number of samples and d is the number of features, whitening aims to
transform X into a new matrix Xwhitened such that the covariance matrix of Xwhitened is the identity
matrix I . The transformation is typically defined as Xwhitened = XW , where W ∈ Rd×d is the
whitening matrix. The matrix W is derived from the covariance matrix Σ of the original data X , such
that

Σ =
1

n
XTX.

The primary goal is to find a matrix W that satisfies WTΣW = I . There are several methods to
derive the whitening matrix W , each with its own practical advantages. In the following sub-sections
we report on common methods to derive the matrix W . We refer the reader to, e.g., (Kessy et al.,
2018) for a more comprehensive overview of these methods.

D.1 ZCA WHITENING (ZERO-PHASE COMPONENT ANALYSIS).

ZCA whitening aims to find a transformation that minimally alters the original data while achieving
whitening. The matrix W is derived as WZCA = QΛ−1/2QT , where Q is the matrix of eigenvectors
of the covariance matrix Σ, and Λ is a diagonal matrix containing the corresponding eigenvalues
λ1, λ2, . . . , λd of Σ.

Practical Advantages.

• Minimal Distortion: ZCA whitening minimally distorts the original data in the least-squares
sense, preserving the overall structure and appearance of the data.

• Interpretability: Since ZCA whitening preserves the spatial structure of the original data
(e.g., images), it is often more interpretable in visual tasks.
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Table 3: Base classifiers and execution time of RANDSMOOTH on CIFAR-10. In this table, Params.
denotes the number of parameters (in millions), and Time denotes the average execution time
required for a model to certify a datapoint, using the DCERT algorithm as in App. A , with parameters
α = 0.001, n0 = 100 Monte Carlo samples for selection and n = 100000 samples for estimation (in
seconds).

Model Params. (m) Time (s) Model Params. (m) Time (s)

resnet20 0.27 2.1± 0.07 mobilenetv2_x0_5 0.7 5.61± 0.1
resnet32 0.47 3.46± 0.08 mobilenetv2_x1_4 4.33 15.36± 0.08
resnet44 0.66 4.53± 0.08 shufflenetv2_x1_0 1.26 4.56± 0.08
resnet56 0.86 5.73± 0.05 shufflenetv2_x0_5 0.35 2.53± 0.21
vgg13_bn 9.94 5.51± 0.1 shufflenetv2_x2_0 5.37 11.4± 0.07
vgg16_bn 15.25 7.05± 0.08 repvgg_a0 7.84 16.7± 0.07
vgg19_bn 20.57 9.04± 0.09 repvgg_a1 12.82 24.05± 0.18
mobilenetv2_x1_0 2.24 11.17± 0.07 repvgg_a2 26.82 25.17± 0.33

D.1.1 PCA WHITENING (PRINCIPAL COMPONENT ANALYSIS)
PCA Whitening involves projecting the data onto the principal components and scaling each compo-
nent by the inverse square root of its corresponding eigenvalue. This method transforms the data so
that it is uncorrelated and each principal component has unit variance. The whitening matrix W for
PCA whitening is derived from the eigendecomposition of the covariance matrix Σ. The whitening
matrix W in PCA whitening is computed as WPCA = Λ−1/2QT , where Λ−1/2 is a diagonal matrix
whose elements are the inverse square roots of the eigenvalues of Σ, and Q is the matrix whose
columns are the eignvectos of the covariance matrix Σ.

Practical Advantages.

• Dimensionality Reduction: PCA whitening naturally combines whitening with dimensional-
ity reduction, as it allows discarding components corresponding to small eigenvalues, which
may represent noise.

• Variance Preservation: It maximizes variance along the orthogonal axes, which is useful in
scenarios where retaining variance in the principal directions is important.

D.1.2 CHOLESKY WHITENING

Cholesky whitening uses the Cholesky decomposition of the inverse covariance matrix. The whitening
matrix W is computed as WCholesky = L−1, where L is the lower triangular matrix from the Cholesky
decomposition of the covariance matrix Σ (i.e., Σ = LLT ).

Practical Advantages.

• Computational Efficiency: Cholesky whitening is computationally efficient for large-scale
datasets because it leverages a triangular decomposition, which is faster to compute than
full eigenvalue decomposition.

• Numerical Stability: This method is numerically stable, especially when Σ is well-
conditioned.

E ADDITIONAL EXPERIMENTS

E.1 EXPERIMENTS ON EXECUTION TIME

We provide tables on the execution time of RANDSMOOTH on CIFAR-10 (Table 3) and IMAGENET
(Table 4). Overall, we observe that the execution time of RANDSMOOTH is similar to the execution
time of DSMOOTH. Furthermore, we provide tables on the execution time of LSMOOTH on CIFAR-
10 (Table 5) and IMAGENET (Table 6). Again, we observe that the execution time of RANDSMOOTH
is similar to the execution time of DSMOOTH.

E.2 EXPERIMENTS ON CERTIFIED ACCURACY

We provide additional experiments on the certified accuracy of the base classifiers in Table 1 on
CIFAR-10, for various parameters choices.
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Table 4: Base classifiers and execution time of RANDSMOOTH on IMAGENET. In this table, Params.
denotes the number of parameters (in millions), and Time denotes the average execution time
required for a model to certify a datapoint, using the DCERT algorithm as in App. A , with parameters
α = 0.001, n0 = 100 Monte Carlo samples for selection and n = 1000 samples for estimation. (in
seconds).

Model Params. (m) Time (s) Model Params. (m) Time (s)

resnet50 25.56 26.3± 0.44 wide_resnet50_2 68.88 40.02± 0.64
resnet152 60.19 169.84± 8.01 wide_resnet101_2 126.89 85.45± 11.73

Table 5: Base classifiers and execution time of LSMOOTH on CIFAR-10. In this table, Params.
denotes the number of parameters (in millions), and Time denotes the average execution time
required for a model to certify a datapoint, using the DCERT algorithm as in App. A , with parameters
α = 0.001, n0 = 100 Monte Carlo samples for selection and n = 100000 samples for estimation (in
seconds).

Model Params. (m) Time (s) Model Params. (m) Time (s)

resnet20 0.27 51.42± 2.2 mobilenetv2_x0_5 0.7 56.52± 3.21
resnet32 0.47 52.92± 5.05 mobilenetv2_x1_4 4.33 64.82± 6.11
resnet44 0.66 45.05± 24.42 shufflenetv2_x1_0 1.26 25.89± 3.72
resnet56 0.86 32.43± 2.12 shufflenetv2_x0_5 0.35 9.4± 3.8
vgg13_bn 9.94 8.53± 0.97 shufflenetv2_x2_0 5.37 28.38± 5.32
vgg16_bn 15.25 24.8± 4.57 repvgg_a0 7.84 29.44± 1.63
vgg19_bn 20.57 11.57± 1.32 repvgg_a1 12.82 26.97± 2.15
mobilenetv2_x1_0 2.24 15.88± 3.49 repvgg_a2 26.82 39.19± 2.25

Effect of the number n of samples for estimation. We perform a set of experiments to determine
the effects of the number n of samples for estimation on the performance of DSMOOTH, which is quan-
tified using the approximate certified accuracy. To this end, we run our algorithm with parameters α =
0.001m n0 = 100 Monte Carlo samples for selection, and n = 100, 1000, 10000, 100000, 1000000
samples for estimation. The results are displayed in Fig. 4. We observe, that the number of samples
affects the certified accuracy. This results highlight a well-known feature of smoothing algorithms,
such as DSMOOTH, namely that these algorithms require a large number of samples to achieve good
certified accuracy.

Effect of the parameter α. We conduct a series of experiments to evaluate how the parameter
α influences the performance of DSMOOTH, measured by the approximate certified accuracy. Our
testing involves running the algorithm with n0 = 100 Monte Carlo samples for selection, n = 100000
samples for estimation, and varying α values of 0.1, 0.01, 0.001, 0.0001, and 0.00001. The outcomes
are shown in Fig. 5. We find that while the number of samples impacts the certified accuracy, the
parameter α does not notably affect the model’s performance.

F EXAMPLES OF NOISY IMAGES

We show examples of CIFAR-10 (Fig. 6) and IMAGENET (Fig. 7) images corrupted with the
smoothing distribution as in equation 3.
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Table 6: Base classifiers and execution time of LSMOOTH on IMAGENET. In this table, Params.
denotes the number of parameters (in millions), and Time denotes the average execution time
required for a model to certify a datapoint, using the DCERT algorithm as in App. A , with parameters
α = 0.001, n0 = 100 Monte Carlo samples for selection and n = 1000 samples for estimation. (in
seconds).

Model Params. (m) Time (s) Model Params. (m) Time (s)

resnet50 25.56 27.83± 0.18 wide_resnet50_2 68.88 41.0± 0.17
resnet152 60.19 89.53± 2.62 wide_resnet101_2 126.89 68.08± 1.67

(a) resnet20 (b) resnet32 (c) resnet44 (d) resnet56

(e) vgg13_bn (f) vgg16_bn (g) vgg19_bn (h) mobilenetv2_x1_0

(i) mobilenetv2_x0_5 (j) mobilenetv2_x1_4 (k) shufflenetv2_x1_0 (l) shufflenetv2_x0_5

(m) shufflenetv2_x2_0 (n) repvgg_a0 (o) repvgg_a1 (p) repvgg_a2

Figure 4: Approximate certified accuracy of DCERT on various base models as in Table 1. We use
parameters α = 0.001 and n0 = 100 Monte Carlo samples for selection. We show the certified
accuracy for various choices of the number n of samples for estimation.
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(a) resnet20 (b) resnet32 (c) resnet44 (d) resnet56

(e) vgg13_bn (f) vgg16_bn (g) vgg19_bn (h) mobilenetv2_x1_0

(i) mobilenetv2_x0_5 (j) mobilenetv2_x1_4 (k) shufflenetv2_x1_0 (l) shufflenetv2_x0_5

(m) shufflenetv2_x2_0 (n) repvgg_a0 (o) repvgg_a1 (p) repvgg_a2

Figure 5: Approximate certified accuracy of DCERT on various base models as in Table 1. We use
parameters n0 = 100 Monte Carlo samples for selection, and n = 100000 samples for estimation.
We show the certified accuracy for various choices of the parameter α.
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(a) σ = 0.0 (b) σ = 0.1 (c) σ = 0.5 (d) σ = 1.0

Figure 6: Examples of CIFAR-10 images corrupted with the smoothing distribution as in equation 3
for a SQUARE + FGSM attack as described in Sec. 3.1. Here, we use resnet32 as a base classifier.
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(a) σ = 0.0 (b) σ = 0.1 (c) σ = 0.5 (d) σ = 1.0

Figure 7: Examples of IMAGENET images corrupted with the smoothing distribution as in equation 3
for a SQUARE + FGSM attack as described in Sec. 3.1. Here, we use resnet50 as a base classifier.
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